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Abstract: While mirror reflections provide valuable cues for vision tasks, recovering the shape of mirror-like objects re-
mains challenging because they reflect their surroundings rather than displaying their own textures. A common
approach involves placing reference objects and analyzing their reflected correspondences, but this often intro-
duces depth ambiguity and relies on additional assumptions. In this paper, we propose a unified framework that
integrates polarization and geometric transformations for shape estimation. We introduce a 9-dimensional po-
larized ray representation, extending the Plücker coordinate system to incorporate the polarization properties
of light as defined by the plane of its electric field oscillation. This enables the seamless evaluation of polar-
ized ray agreement within a homogeneous coordinate system. By analyzing the constraints of polarized rays
before and after reflection, we derive a method for per-pixel shape estimation. Our experimental evaluations
with synthetic and real images demonstrate the effectiveness of our method qualitatively and quantitatively.

1 INTRODUCTION

Recovering the shape of objects with perfectly mir-
ror surfaces is challenging, as these objects reflect
surrounding scenes rather than showing their inher-
ent textures. The robust solution has a wide range of
applications in product inspection, robotics, and ex-
tended reality (XR). Moreover, by leveraging the rich
visual information reflected on the surface, the rays
observable through a mirror contribute to wide-field-
of-view shape recovery, precise localization, and effi-
cient navigation.

In conventional studies, the shape cue of a
mirrored object is extracted by placing a texture-
referencing object, such as a display, and capturing
its reflection with a camera. However, even if a cor-
respondence is provided between the reference object
and the camera, ambiguity about the object’s shape
remains because its depth is not uniquely determined.
Therefore, assuming the surface integrability or lever-
aging the compound mirror’s flatness is required for
shape recovery (Takahashi et al., 2012).

Polarization provides a clue to resolving this am-
biguity. The polarization before and after specular re-
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flection varies depending on the surface normal of the
object, allowing the normal to be recovered by utiliz-
ing multiple viewpoints (Miyazaki et al., 2012; Han
et al., 2024) or the unique polarization pattern of the
sky (Ichikawa et al., 2021). Lu et al. (Lu et al., 2019)
proposed an approach to reconstructing complex mir-
ror surfaces utilizing the polarization field generated
by an LCD with one polarizing plate removed. How-
ever, it is necessary to use two or more calibrated po-
larized states of the liquid crystal, and the process ad-
ditionally requires the extra step of attaching and de-
taching the polarizing plates.

In previous methods, the geometry of correspond-
ing points and the constraints imposed by polariza-
tion are often treated independently or as separate
steps. Additionally, in polarization-based methods,
orthographic projection is typically assumed and re-
cently extended to perspective projection models (Pis-
tellato and Bergamasco, 2024). Can a framework be
established that describes the geometric transforma-
tion of both within a unified analysis in 3D space?
If achieved, this could naturally integrate the two
modalities to provide a structured approach to ana-
lyzing solution spaces.

In this paper, we show that the geometrical trans-
formation before and after reflection can be repre-
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sented using a 9-dimensional polarized ray. Specifi-
cally, we extend the representation of light rays in the
Plücker coordinate system by geometrically defining
the properties of linearly polarized light as the normal
to the oscillation plane of the electric field. Addition-
ally, we derive constraints for shape estimation from
the polarized rays before and after reflection. We en-
able a straightforward evaluation of the agreement be-
tween polarized rays by utilizing a homogeneous co-
ordinate system, and we formulate shape recovery as
a nonlinear optimization problem.

Our main contributions are as follows:
• Introducing the polarization light field, which ex-

tends the conventional light field by incorporating
the plane of polarization normals and demonstrat-
ing that polarization rays can be handled through
geometric transformations.

• Proposing a method for estimating the normal of a
mirror surface object for each pixel by leveraging
the reflection relationships of polarized rays.

2 RELATED WORK

Numerous studies have obtained the normal and posi-
tion of the mirror surface from the reference point and
its observation. In particular, in studies that focus on
planar mirrors (Sturm and Bonfort, 2006; Rodrigues
et al., 2010; Kumar et al., 2008), it is possible to re-
cover the mirror surface even when the pose of the ref-
erence object is unknown. Takahashi et al. (Takahashi
et al., 2012) leveraged multiple reflections to recover
the normal of a multi-facet mirror from two or more
corresponding points. On the other hand, since the
normal of the curved mirror differs for each pixel, not
only is a dense set of corresponding points required
but also steps, such as moving the reference (Kutu-
lakos and Steger, 2008; Grossberg and Nayar, 2005;
Liu et al., 2011; Han et al., 2021), are required to ob-
tain multiple constraints. Thus making it challenging
to cover a wide range of objects’ surfaces.

Some methods deal with the mirror surfaces by
adding additional constraints, such as the integrability
of the surface or radiometric clues (Liu et al., 2013;
Chari and Sturm, 2013). There are methods that use
LCDs as sources of polarized light (Lu et al., 2019;
Kawahara et al., 2023). These techniques take advan-
tage of polarization constraints through higher-order
nonlinear optimization problems, and the geometric
transformation relationships of polarization still re-
quire further exploration.

Shape from polarization (SfP), which reconstructs
normals based on polarization, has been studied ex-
tensively for dielectric materials. Some SfP methods

use specular reflection of unpolarized light as a clue
for estimating the normal. However, there is ambigu-
ity in the estimation (Atkinson and Hancock, 2006;
Miyazaki et al., 2003), so SfP also leverages addi-
tional clues such as multi-view (Cui et al., 2017; Zhao
et al., 2020) and shading(Smith et al., 2016; Huynh
et al., 2010) and active lighting (Ma et al., 2007;
Ichikawa et al., 2023).

While monocular SfP focuses on recovering sur-
face normals, our approach geometrically unifies and
analyzes both the dense feature point correspon-
dences on the reference object and the polarization
correspondences, enabling simultaneous depth recov-
ery.

3 BASICS: POLARIZATION

Light is an electromagnetic wave that oscillates per-
pendicularly to the direction of propagation. The os-
cillation plane of light, invisible to the human eyes,
has random directions for sunlight or incandescent
lamps. This type of light is called unpolarized light.
In contrast, light from LCDs and other sources that
pass through linear polarizers has only a single oscil-
lation plane, and this type of light is called linearly
polarized light.

If we define a plane perpendicular to the direction
of light propagation, the amplitude of the electric field
of linearly polarized light can be represented as a 2D
Jones vector ě as follows;

ě=

(
Ex
Ey

)
=

(
E0 cosα

E0 sinα

)
, (1)

where Ex and Ey are the x and y components of the
amplitude E0 in the plane.

We can leverage polarizing filters to obtain the an-
gle α of the light oscillation in Eq. 1. A polarizing
filter extracts the polarization component at a specific
angle. Specifically, we place a polarizing filter in front
of the camera and calculate the polarization angle α

from the intensity captured at multiple known filter
angles ψ. The amplitude transmission of the electric
field ěc(ψ) for a filter angle ψ can be described using
the Jones calculus as follows (Collett, 2005);

ěc(ψ) =

(
cos2 ψ cosψsinψ

cosψsinψ sin2
ψ

)
ě

= E0

(
cosψcos(ψ−α)
sinψsin(ψ−α)

)
.

(2)

When the energy of this electric field is observed as
intensity by a camera, the following holds;

I(ψ) ∝ ||ěc(ψ)||22. (3)
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Figure 1: Polarized Ray. The plane of polarization is
spanned by the direction of the electric field and the view-
ing direction.

Therefore, from Eq. 2 and Eq. 3, when the filter angle
of the polarizing camera is ψ, linear polarization with
AoLP α is observed with an intensity of

I(ψ) = I0 + I0 cos(2ψ−2α). (4)

We can utilize a quad-Bayer polarization camera to
simultaneously obtain polarization images of four fil-
ter angles ψ = (0,π/4,π/2,3π/4) in a single shot and
recover the sinusoidal in Eq. 4 (Huynh et al., 2010).

4 METHOD

By extending the existing light field representation,
we describe the transformation of both polarization
state and ray geometry and recover the shape of the
mirror object by analyzing it.

4.1 Polarimetric Light Field

The viewing direction vectors for each pixel form a
unique set of rays by mirror reflection. Let us de-
scribe the rays of the light field by extending them
with polarization.

Polarized Ray. As shown in Fig. 1, The direction
vector of the electric field at the image plane can be
described in 3D space, using AoP α obtained from the
observation as follows;

e=
1√

E2
x +E2

y

Ex
Ey
0

=

cosα

sinα

0

 . (5)

The plane of polarization (PoP) on which the electric
field oscillates is spanned by e and the viewing di-
rection vc. Thus, we can represent PoP by its normal
as

h=
v×e⊤

||v×e⊤||
(6)

Let us consider the expansion of the Plücker coor-
dinates system (Sturm and Barreto, 2008) to evaluate
whether rays are equivalent. This 6D homogeneous
coordinate system can express arbitrary rays and con-
sists of two components: the direction of the ray v
and the normal δ of the plane spanned by the origin
and the ray, also called the moment.(

v
δ

)
=

(
v

o×v

)
∈ R6, (7)

where o denotes the origin of the ray, and v is a unit
vector. We combine this with the PoP in Eq. 5 to de-
fine the polarized ray ℓ ∈ R9 as follows.

ℓ=

 v
o×v
h

 . (8)

Note that there is a sign ambiguity in the normal vec-
tor that defines PoP.

Geometric Transformation. The coordinate trans-
formation is linear w.r.t. the direction of the ray ℓ,
the origin o, and the PoP direction h. Thus, the mir-
ror transformation can be described using the House-
holder matrix H and the translation vector tm as fol-
lows;

v′ = Hv,

o′ = Ho+ tm

h′ = Hh,

(9)

where the H and tm are defined by the mirror normal
n and the distance to the mirror plane dm as

H = I −2nn⊤, tm =−2dmn. (10)
From Eq. 9, the mirror transformation of a polarized
ray ℓ can be described using a matrix M ∈ R9×9, as
follows;

ℓ′ = Mℓ

=

 H 0 0
tm ×H H 0

0 0 H

ℓ.
(11)

Up to this point, we can geometrically transform the
polarized rays that consist of the polarized light field.

4.2 Shape from Mirrored Polarimetric
Light Field

As shown in Fig. 2, suppose that the point pd on the
LCD is reflected on the object surface and observed in
the polarization camera’s viewing direction vc. The
goal is to obtain the object surface’s normal n and
depth z. We first introduce the constraints for this
imaging system when all the other unknowns are ob-
tained.
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Figure 2: Shape from Mirrored Polarimetric Light Field.

Constraints. In summary, the constraint is that the
mirror transformation of the polarized light observed
by the camera matches the known polarized light de-
fined on the display side. When the direction of the
electric field ec is obtained in the viewing vc of the
polarization camera, the PoP normal hc is described
as

hc =
vc ×e⊤c

||vc ×e⊤c ||
. (12)

Thus, the polarized ray ℓc obtained on the polarization
camera side is described as

ℓc =

 vc
o×vc
hc

 , (13)

where o is the camera’s origin. Also, the polarized
ray ℓc is reflected at the object surface to become ℓ′c
as

ℓ′c = Mℓc =

 Hvc
tm ×Hvc

Hhc

 , (14)

On the other hand, polarized light can also be de-
scribed on the display side. When the corresponding
point on the LCD is pd and its electric field direction
is ed in the camera coordinate system, the PoP normal
hd is described as

hd =
Hvc ×e⊤d

||Hvc ×e⊤d ||
. (15)

Therefore, the polarized ray ℓd of the LCD side be-
comes

ℓd =

 Hvc
pd ×Hvc

hd

 . (16)

Since these polarized rays are represented in ho-
mogeneous coordinates, ℓ′c and ℓd become identical.

Noting the ambiguity of the sign of the PoP normal,
we can obtain the constraints as

tm ×Hvc −pd ×Hvc = 0,

Hhc ×hd = 0.
(17)

The degree of freedom (DOF) of the normal n is 2,
and the DOF of mirror plane distance dm is 1, but
Eq. 17 is nonlinear. Therefore, for robust estimation,
we introduce regularization that assumes the integra-
bility of the surface.

En = ||1−n⊤n+||22, (18)

where n+ is the surface normal calculated using the
neighboring depth as

n+ =
(−∂xz,−∂yz,1)⊤

||(−∂xz,−∂yz,1)⊤ ||
(19)

Note that the depth z can be obtained by the mirror
plane distance dm and z-component of the viewing zvc
as z = dmzvc . We define the following error function
from Eq. 17 to optimize together with Eq. 18,

Eδ = ||(tm −pd)×Hvc||22,
Eh = ||Hhc ×hd ||22.

(20)

Finally, we consider the following minimization prob-
lem.

min
n,dm

(Eδ +λhEh +λnEn), (21)

where λh, λn are the optimization weight.

Shape Estimation. To obtain the direction of the
electric field ec from the polarization camera obser-
vations, we calculate the value of α in Eq. 4 for each
pixel in the captured image, and then apply to Eq. 5.
The direction of the electric field of the LCD is known
as a product-specific angle in the image coordinate
system of the LCD (typically, it is either horizontal,
vertical, or π/4). Denoting the vector formed by ap-
plying this to Eq. 5 as êd , then ed in the camera coor-
dinate system is calculated with the calibrated display
rotation Rd as

ed = Rd êd . (22)
Regarding the point pd on the LCD corresponding

to the camera’s line of sight vc, we leverage existing
structured lighting to obtain the correspondence. De-
noting the corresponding point in the LCD’s local co-
ordinate system as p̂d , the transformation to the cam-
era coordinate system is described as

pd = Rdp̂d + td , (23)

where td is the translation vector of the display w.r.t.
the camera. Up to this point, we have obtained the
input for Eq. 21 to recover the shape through the opti-
mization.
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Figure 3: The shape reconstruction results with synthetic (a) Sphere and (b) Bunny data. The upper row of each method shows
the results of normal estimation, and the lower row shows the depth estimation results. The error maps of the normal are
calculated as an angular error in degree, and the error maps of the depth are in cm.

LCD

Object

Polarization
camera

Figure 4: Experimental Setup.

5 RESULTS

In this section, we evaluate our method’s prototyping
and demonstrate its effectiveness through quantitative
evaluation using synthetic data and reconstruction re-
sults using real images.

5.1 Quantitative Evaluation with
Synthetic Data

We quantitatively evaluate the accuracy of our re-
construction using synthetic data. We rendered the
simple-shaped Sphere and the complex-shaped Bunny

as target objects under a linear polarized light source.
Considering the actual environment, we set the dis-
tance from the camera to the object to be about 0.8
m and the size of the subject to be about 0.10 m. As
a baseline method, we compare to the approach that
does not utilize polarization (i.e. w/o Eh).

Here, the initial value of the normal vector is set to
face the front, and the depth is set to 0.8 m as a plane.
We used Pytorch’s Adam optimizer for optimization
and set λh = 1.0 and λn = 100 for Eq. 21. The num-
ber of iterations for parameter updates was set to 700.
Regarding comparison methods, many SfP methods
assume an unpolarized light source and dielectric ma-
terial, which makes direct comparison difficult.

Fig. 3 shows the experimental results of the syn-
thetic data. Although the shape obtained by our
method was qualitatively accurate compared to the
baseline method, an error can still be observed even
in the experiment without the intensity noise. These
results suggest that a local minimum exists in the op-
timization of Eq. 21. Specifically, the symmetric error
structure shown in Fig. 3(a) suggests a local minimum
that depends on the polarization direction of the dis-
play. This occurs when the optimization starts from
the initial value of the normal vector that we set uni-
formly oriented forward.
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Figure 5: The shape reconstruction results of real-world objects. (a) Elipse Mirror, (b) Spoon, (c) Aluminum cup. The error
of the depth map is in mm.

Table 1: Results of refractive index estimation.

Input Error Ours w/o En w/o Eh

Sphere
Normal (◦) 0.74 0.87 8.15
Depth (m) 0.042 0.047 0.167

Bunny
Normal (◦) 2.62 2.99 13.31
Depth (m) 0.106 0.124 0.316

5.2 Ablation Study

For further evaluation of the optimization, we verify
the effect of the regularization term En through abla-
tion experiments.

Table 1 shows the difference in results with and
without the regularization term En and the PoP error
cost Eh. These results show that the consistency of
depth and normals work as effective guidance even
for general shapes such as Bunny and that both nor-
mals and depth results are improved.

5.3 Real World Objects

As shown in Fig. 4, our system consist of a single
LCD (HUAWEI MateView 3840×2560px) and a sin-
gle polarization camera (FLIR BFS-U3-51S5P). The
relative pose of the LCD and the polarization camera
is calibrated beforehand using a planner mirror. We
used the same strategy as in the simulation experiment

in Sec. 5.1 for the initial normal and depth values. The
ground truth depth value in the evaluation is obtained
by aligning the depth camera (Intel RealSense D405)
values.

Fig. 5 shows that our method can successfully re-
cover the surface normals and depth of mirror objects
in the real world. These results qualitatively demon-
strate that both global and local shapes can be re-
covered. The average depth error are 2.84mm for
Elipse Mirror, 3.21mm for Spoon, and 4.25mm for
Aluminum cup, respectively. Note that the results only
show the areas that can be recovered, and this area
depends on the direction of the light source that the
display can illuminate.

6 CONCLUSION

In this paper, we introduce a novel method for recon-
structing the per-pixel surface normals and depths of
mirror objects. By analyzing the polarization light
field formed by polarized rays described in a homo-
geneous coordinate system, we clarify the geomet-
ric constraints imposed by both. Our approach uni-
fies polarization and geometry under a single analy-
sis, providing a structured and efficient method for
reconstructing the shape of mirror surfaces. Exper-
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imental results show that our method can accurately
reconstruct the per-pixel depths and surface normals
of various mirror surfaces. Our future work includes
extending the system to a polarized light source com-
bining a mirror and LCD and calibrating a catadiop-
tric system that handles polarization.

Limitations. The primary limitation of our method
is that the reconstructible area of the object is lim-
ited by the spatial range of the display’s illumination.
This issue could be mitigated by using multiple LCDs
or incorporating curved displays. Additionally, the
method assumes a metallic surface, which may re-
strict its applicability. This limitation could be ad-
dressed by extending the approach to handle dielectric
materials using Fresnel reflection.
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