
SGX-Privinfer: A Secure Collaborative System for Quantifying and 
Mitigating Attribute Inference Risks in Social Networks 

Hervais Simo and Michael Kreutzer 
Fraunhofer SIT, Darmstadt, Germany 

Keywords: Privacy, Social Networks, Attribute Inference, TEE, SGX. 

Abstract: The growing popularity of Online Social Networks (OSNs) over the past decade has led to a significant 
portion of the global population sharing diverse personal information online, including relationship status, 
political affiliations, and religious views. However, research has shown that adversaries, such as third-party 
application providers and law enforcement agencies, can aggregate and correlate seemingly innocuous, 
publicly available data across various platforms. This process can uncover sensitive insights about 
individuals, often far beyond what users intend or realize they are disclosing. To mitigate this challenge, it 
is essential to provide OSN users with enhanced transparency and control over their digital footprints and the 
associated risks of attribute inference, as emphasized by regulations like the EU General Data Protection 
Regulation (GDPR). Innovative solutions in this domain often rely on Privacy Inference Detection 
Technologies (PIDTs), which empower users to understand and manage such risks. However, existing PIDTs 
raise significant privacy concerns, as they typically require highly sensitive data to be transferred to cloud 
services for analysis, exposing it to potential misuse or unauthorized access. To address these limitations, 
we introduce SGX-PrivInfer, a novel architecture that enables OSN users to collaboratively and securely 
detect and quantify attribute inference risks based on public profile data aggregated from multiple OSN 
domains. SGX-PrivInfer leverages Trusted Execution Environments (TEEs) to safeguard the confidentiality 
of both user data and the underlying attribute inference models, even in the presence of curious adversaries, 
such as cloud service providers. In its current design, we utilize Intel SGX as the implementation of TEEs 
to achieve these security guarantees. Our performance evaluation, conducted on real-world OSN datasets, 
demonstrates that SGX-PrivInfer is both practical and capable of supporting real-time processing. To the best 
of our knowledge, SGX-PrivInfer is the first architecture and implementation of a PIDT that offers strong 
security guarantees, data protection, and accountability, all backed by Intel SGX’s hardware-enforced 
isolation and integrity mechanisms. 

1 INTRODUCTION 

Privacy Inference Detection Technologies (PIDT) on 
OSNs allow users’ public data to be collected from 
different social media platforms and sent to a remote 
cloud service, where it is combined into aggregated 
ego graphs and inference risks per profile attribute 
are calculated. Unfortunately, by relying on a client-
server model, existing PIDT proposals, e.g., (Simo et 
al., 2021,Talukder et al., 2010,Guha et al., 2008,Jia 
and Gong, 2018) and tools such as Apply Magic 
Sauce (https://applymagicsauce.com/demo), IBM 
Watson Personality insights (https://watson-
developer-cloud.github.io/swift-sdk/services/ 
PersonalityInsightsV3/index.html), require users to 
fully trust the remote server while receiving limited 
security guarantees. As a result, there are growing 

concerns about data protection and privacy. In fact, 
the data uploaded by users to the remote server, 
which is controlled by a third party or cloud provider, 
as well as sensitive inferences drawn from the 
aggregated user data, can be stolen or misused. For 
instance, an adversary, such as the partially trusted 
service provider, could use this data either for 
purposes other than those for which it was originally 
collected, or more broadly, without any legal basis. 
However, none of the previous work on PIDT 
addresses the challenge of ensuring the integrity and 
confidentiality of sensitive user data sent to and 
generated by the remote analysis server, nor the 
confidentiality of the attribute inference model. 

Our Contribution. This paper proposes SGX-
PrivInfer, a Trusted Execution Environment (TEE)-

Simo, H. and Kreutzer, M.
SGX-PrivInfer: A Secure Collaborative System for Quantifying and Mitigating Attribute Inference Risks in Social Networks.
DOI: 10.5220/0013390000003899
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 11th International Conference on Information Systems Security and Privacy (ICISSP 2025) - Volume 2, pages 111-122
ISBN: 978-989-758-735-1; ISSN: 2184-4356
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

111



enhanced PIDT architecture that aims to prevent 
unauthorised/curious entities (e.g. entity operating the 
remote server) from accessing sensitive user data 
while still being able to provide inference risk 
assessment as a service. In the current design, we 
lever-age Intel Software Guard Extensions (SGX) 
(https://software.intel.com/en-us/sgx) to instantiate 
the TEE. We perform an empirical performance 
evaluation of SGX-PrivInfer on a real-world dataset 
of 27.520 ego graphs, demonstrating that the over-
head induced by the proposed privacy extensions and 
mechanisms is low enough to enable real-time 
quantification of attribute inference. 

Outline. The remainder of this paper is organized as 
follows: The next section provides the background 
and related work, including a review of private 
attribute inference attacks and an overview of 
transparency-enhancing technologies (TETs) and 
PIDTs. Section 3 introduces the design of SGX-
PrivInfer, including the system model, threat model, 
design goals, and an architectural overview. Section 
4 presents a proof-of-concept implementation along 
with its preliminary evaluation. Finally, Section 5 
concludes the paper by summarizing our key findings 
and outlining future research directions. 

2 RELATED WORK 

Single-Domain Private Attribute Inference 
Attacks. OSN users often lack a full understanding 
of how their information is being collected and used, 
and what the trade-off is between having their data 
collected for the purpose of accessing services at 
virtually no cost, and the consequences that doing so 
could entail, especially in terms of implications for 
their privacy (Andreou et al., 2018, Maheshwari, 
2019). This lack of both user awareness and support 
for transparency can actually cause or aggravate the 
privacy problems associated with the implicit self-
disclosure of private information. That is, when 
sharing personal information on a social network 
platform, most users assume that their data will 
never leave the boundaries of that specific social 
network and only be accessible to a restricted group 
of users, i.e. their ”friends”. However, this 
assumption is far from reality. As a matter of fact, 
an adversary can easily jeopardize the privacy of the 
OSN user by searching the social network site and 
gathering seemingly non-sensitive and publicly 
available i.a. profile attributes, behavioral data (e.g., 
likes (Kosinski et al., 2013)) and other metadata 
such as location check-ins and topological properties 

of the victim’s social graph (Jurgens, 2013, Labitzke 
et al., 2013). Based on this information, the 
adversary can then perform local inference attacks to 
predict supposedly private and hidden details of the 
profile owner. Instances of such details includes 
sensitive identity attributes (gender, age, sex, 
ethnicity, occupation, income level, relationship / 
marital status, education level, family size, religion 
views) (Mislove et al., 2010, Gong and Liu, 2016, 
Gong et al., 2014), personality traits 
(concienciousness, agreeableness, neuroticism, 
openness, and extraversion) (Kosinski et al., 2013, 
Volkova and Bachrach, 2015), home location 
(Pontes et al., 2012, Li et al., 2012), political 
preferences and views (Idan and Feigenbaum, 2019, 
Volkova et al., 2014), current emotional state 
(Collins et al., 2015), depression and stress level (De 
Choudhury et al., 2013), sexual orientation (Wang 
and Kosinski, 2018, Zhong et al., 2015) and 
household income (Luo et al., 2017,Fixman et al., 
2016). Other work on similar lines, yet with a focus 
on ego graph include Zheleva and Getoor (Zheleva 
and Getoor, 2009), He et al. (He et al., 2006), Ryu et 
al. (Ryu et al., 2013). In addition to texts posted on 
social media, typical sources of information for local 
attribute inference attacks also include user-
generated images. Among approaches considering 
information from these various sources, a growing 
line of research on privacy inference from user-
generated photographs and videos posted on OSNs is 
especially worth mentioning. Here, machine learning 
techniques from the field of computer vision are 
leveraged to deduce identity attributes (gender 
(Rangel et al., 2018, Ciot et al., 2013), race, and age 
(Chamberlain et al., 2017, Fang et al., 2015)) and 
personality traits from non-tagged images (Ferwerda 
and Tkalcic, 2018, Oh et al., 2016), sexual 
orientation from facial images (Wang and Kosinski, 
2018), and detect hidden information like faces (Sun 
et al., 2018, Joo et al., 2015, Joon Oh et al., 2015), 
occupation (Chu and Chiu, 2014, Shao et al., 2013), 
social relationships (Sun et al., 2017, Wang et al., 
2010), and hand-written digits (LeCun et al., 1989), 
sometimes even from images protected by various 
forms of obfuscation (Oh et al., 2017, McPherson et 
al., 2016). 

Cross-Domain Private Attribute Inference 
Attacks. As highlighted by various researchers, 
e.g., (Xiang et al., 2017, Qu et al., 2022), a more 
powerful adversary, such as a malicious data 
aggregator, can collect, aggregate, and correlate 
disparate pieces of information about a targeted user 
and her contacts, across multiple, previously isolated 
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domains. By combining data from various OSNs and 
other platforms, the adversary can construct a highly 
detailed profile of the victim and/or link profiles 
across services. This practice significantly amplifies 
security and privacy risks (Irani et al., 2009), as it 
enables sophisticated profiling and identification 
techniques that go beyond what any single platform 
might reveal. 

Transparency-Enhancing Technologies (TETs) 
and Privacy Inference Detection Technologies 
(PIDTs) for OSN. The General Data Protection 
Regulation of the European Union emphasizes 
transparency as a fundamental enabler of 
informational self-determination, as articulated in 
Articles 12 and 13. TETs (Janic et al., 2013, 
Murmann and Fischer- Hübner, 2017) play a crucial 
role in helping users understand and visualize how 
their data is collected, processed, and used. This is 
particularly significant in the context of challenges 
such as user profiling and private inference threats, 
where the lack of transparency can exacerbate 
privacy risks. Murmann et al. (Murmann and 
Fischer-Hübner, 2017) provide a comprehensive 
survey of ex-post TETs, including Privacy Inference 
Detection Technologies (PIDTs). Similar to TETs, 
PIDTs are designed to provide users with deeper 
insights into the data collected about them, while 
also helping them understand the potential privacy 
risks associated with that data. Over time, numerous 
PIDTs and related tools have been developed to 
address privacy risks in OSN, e.g., (Simo et al., 
2021, Talukder et al., 2010, Jia and Gong, 2018, 
Aghasian et al., 2017, Cai et al., 2016). (Talukder 
et al., 2010) introduced Privometer, a tool for 
measuring the extent of information leakage from an 
OSN user profile. It leverages Chakrabarti et al.’s 
network-only Bayes Classifier inference model 
(Chakrabarti et al., 1998), assuming an adversarial 
model with access to the target user’s ego graph. 
Privometer provides a variety of visual tools to 
empower users, including ego graph visualization, 
analysis of friends’ contributions to privacy leakage, 
and suggestions for self-sanitization. In (Cai et al., 
2016), Cai et al. propose data sanitization strategies 
(attribute-removal and link-removal) for preventing 
sensitive information inference attacks. Jia et al. (Jia 
and Gong, 2018) proposed AttriGuard, which 
leverages a two-phase noise-adding process to 
defend against attribute inference attacks. They 
show the feasibility of leveraging adversarial 
examples (specifically, evasion attacks) (Goodfellow 
et al., 2014) to the unique challenges of defending 
against private attribute inference attacks. Many 

other models have been proposed for scoring the 
privacy of a user by rating the risk of leakage of user 
profile attributes, e.g., (De and Imine, 2017, Zhang et 
al., 2017, Aghasian et al., 2017). In (Aghasian et al., 
2017), Aghasian et al. proposed algorithm for 
calculating the privacy score across multiple social 
networks and across different types of content. In 
(Simo et al., 2021), Simo et al. introduced on 
PrivInferVis, a tool to help users assess and visualize 
individual risks of attribute inference across multiple 
online social networks. While these existing TETs 
and PIDTs provide valuable foundations, they fail to 
address critical challenges, such as ensuring the 
confidentiality of self-disclosed and inferred user 
data and the trustworthiness of the underlying 
inference model. In this paper, we build upon and 
extend this body of work by introducing SGX-
PrivInfer, which leverages Trusted Execution 
Environments (TEEs) (Li et al., 2024) to enforce 
strict hardware-based isolation for critical data such 
as user inputs, inferred attributes, and the inference 
model itself. 

3 SGX-PrivInfer DESIGN 

This section presents the current design of the SGX-
PrivInfer framework, detailing the underlying system 
model, threat model and associated assumptions, as 
well as an overview of the system’s design objectives. 

3.1 System Model 

The proposed framework operates in a setting 
involving multiple end users and two remote 
entities. Specifically, there is a set of n Users who 
wish to collaboratively pool their data to conduct 
secure and privacy-preserving inference analyses on 
shared OSN data. These users interact with their 
respective Social Networks from where data is 
collected. The setting at hand also include a Model 
Supplier (MS) responsible for providing the software 
and inference models required for analysis, and a 
Service Provider (SP) that manages the analytic 
server hosted on untrusted third-party infrastructure. 
In this paper, we build on previous work from (Simo 
et al., 2021) by adding a TEE to the analytic server. 
This addition ensures secure and privacy-preserving 
attribute inference quantification on shared data. As 
a result, the analytic server consists of two 
components: a trusted component and an untrusted 
component. The trusted component or TEE securely 
hosts the attribute inference model and performs the 
inference analysis. The untrusted component 
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encompasses all other server resources that lie 
outside the TEE and do not have access to sensitive 
computations or data. In the current design, we utilize 
Intel SGX to instantiate the TEE, providing strong 
hardware-backed isolation and security guarantees. 

3.2 Threat Model & Assumptions 

In this study, two realistic adversaries are considered: 
1) honest-but-curious adversaries, which may include 
SGX-PrivInfer clients, other users, or the model 
provider; and 2) malicious adversaries, which may 
include external hackers. While honest-but-curious 
adversaries permit the attribute inference process to 
proceed as intended, their primary objective is to 
compromise the privacy of users or participants, 
for instance, by identifying or tracking them. 
Malicious adversaries have complete control of the 
server used for inference analysis, including root 
privileges. In addition to seeking to derive sensitive 
details about the attribute inference model, such as 
the model weights, and training parameters, they 
may also seek to gain further insights into the 
model’s inner workings. Such details can then be 
exploited by the adversary to undermine the 
trustworthiness of the attribute inference model. 
Furthermore, the MS may not behave faith-fully, for 
example by deploying a corrupted inference model, 
which would result in skewed inference results. In 
light of the above, our primary concern is the 
preservation of the privacy of all involved users, and 
the integrity of the inference model. 

Assumptions. We assume that OSN users will 
provide correct and valid inputs to the server, as both 
parties share a mutual interest in producing accurate 
inference results. Similarly, we assume that the server 
will exchange only valid data with its TEE, ensuring 
proper and secure data flow in both directions. 
However, SGX-PrivInfer does not defend against the 
injection of false information by relevant 
stakeholders (e.g., users, the curious Service 
Provider, or the Model Supplier), nor does it offer 
protection against Denial-of-Service attacks caused 
by the server or TEE forwarding malicious or 
excessive data. Furthermore, we consider availability 
to be an orthogonal issue that lies beyond the scope 
of our current investigation. SGX-PrivInfer does not 
attempt to prevent the SP from halting the 
processing of client requests. However, our 
solution can be extended in future work to include 
concepts such as server/service replication 
(Kapritsos et al., 2012), which would address 
availability concerns. Additionally, we assume that 

the SGX-PrivInfer server is equipped with a 
sufficiently large TEE to handle the sensitive 
inference operations. This requirement can be 
fulfilled by leveraging one of the many TEE-enabled 
trusted containers specifically designed for such 
purposes (Paju et al., 2023). Furthermore, we 
assume that malicious adversaries do not have 
physical access to the TEE’s internal environment. 
This prevents invasive attacks, such as key extraction 
or tampering with the code running within the secure 
processor, as outlined in prior work (Nilsson et al., 
2020, Fei et al., 2021). Protecting against physical 
attacks, side-channel attacks, or potential 
exploitation of vulnerabilities in TEEs and their 
associated SDKs lies beyond the scope of this work. 
Instead, we rely on TEE developers to implement 
state-of-the-art protections against such threats, as 
outlined in (Nilsson et al., 2020, Fei et al., 2021). 
Consequently, we assume that the TEE provides 
robust integrity and confidentiality guarantees for its 
internal state, code, and data. 

3.3 Design Goals & Requirements 

The core concept of SGX-PrivInfer is to allow OSN 
users to securely upload their data to an untrusted 
remote server, where ego graphs are reconstructed 
and subsequently fed into an attribute inference 
model hosted within a TEE. Based on the system 
and threat models described earlier, SGX-PrivInfer 
is designed to satisfy the following three sets of 
requirements: 1) Functional Requirements: Ensuring 
the correct and seamless execution of attribute 
inference tasks, including data handling, graph 
reconstruction, and model processing, while 
maintaining usability for OSN users; 2) Privacy and 
Security Requirements: It is imperative that no 
entity is able to determine, extract or corrupt the 
input data transferred to the remote server, the 
output of the attribute inference model or other 
sensitive details about the inference model itself; and 
3) Performance Overhead and Extensibility 
Requirements: Minimizing computational and 
communication overhead to enable practical real-time 
processing, while ensuring that the framework is 
scalable and extensible to accommodate future 
enhancements or alternative TEE implementations. 

3.4 Architecture Overview 

To achieve the aforementioned goals, we designed 
SGX-PrivInfer as a client-server framework, with 
a central analytics server operating on Intel SGX-
enabled, untrusted third-party infrastructure. The 
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architecture is modular and scalable, allowing 
adaptability to various use cases and environments. 
At its core, our framework combines TEEs and 
advanced analytics to facilitate secure and privacy-
preserving attribute inference analysis. 

 

Figure 1: Architectural Overview of SGX-PrivInfer. 

3.4.1 SGX-PrivInfer Client Application 

The SGX-PrivInfer Client Application serves as the 
primary interface for user interaction, functioning as 
a dedicated client application or user agent. Each user 
agent comprises two main subcomponents: a Data 
Collector and a set of Data Visualization elements. 
Together, these components offer a comprehensive 
suite of features, including user registration, account 
and group management, and intuitive visualization of 
both user data and inference analysis results. 
Data Collector. This component allows users to 
efficiently retrieve their profile data from various 
OSNs. It supports two primary options for data 
collection: (1) data retrieval via the OSN’s official 
API using an access token and the required user 
permissions, and (2) a web scraper that directly 
extracts information from the user’s profile page(s). 
Additionally, the first option includes the ability 
to utilize ’Download Your Data’ tools offered by 
most OSNs, such as Facebook’s data download 
functionality (https://www.facebook. 
com/help/212802592074644) and LinkedIn’s 
equivalent tool (https://www.linkedin. 
com/help/linkedin/answer/a1339364/download-
your-account-data?lang=en). This dual approach 
ensures flexibility and robustness, accommodating 
diverse data collection scenarios and user 
preferences. Building on (Simo et al., 2021), SGX-
PrivInfer features a graphical user interface (GUI) 
enriched with advanced visualization elements to 
provide OSN users with greater transparency and 
control over their exposure to attribute inference 
attacks on social media. Specifically, SGX-
PrivInfer’s Visualization Elements allow users to 

explore their privacy-related online data, 
comprehend the inferences derived from it, and take 
appropriate actions to mitigate associated privacy 
risks. The client application offers a variety of 
visualization features to present results from the data 
analysis module. These features include an overall 
privacy score that presents and rates the user’s 
privacy level, a location map for visualizing 
location-based attributes of group members, an ego 
graph visualization that highlights connections and 
relationships, and a detailed overview of derived 
attributes along with the associated level of 
certainty for each inference. Additionally, the GUI 
serves as an interactive gateway for users to engage 
with other components of the SGX-PrivInfer 
framework. It provides access to essential 
functionalities such as user authentication and 
account management, remote server attestation, and 
inference control. These features ensure seamless 
operation, user-friendly interaction, and enhanced 
transparency throughout the system. 
Privacy Inference Indicator. SGX-PrivInfer offers 
users a comprehensive view of inference results 
derived from public information aggregated from 
their social graph. The Inference Indicator uses an 
intuitive gauge-based visualization, with scores 
ranging from 0 to 100. A score of 0 indicates no 
attributes have been inferred, while a score of 100 
reflects complete privacy exposure. To aid user 
understanding, the gauge is color-coded: green 
indicates low exposure, while red signifies high 
exposure. For deeper insights, the Inference 
Indicator also displays detailed information about 
the user’s input data, including attributes from each 
ego graph and the top inference results. These 
inference scores are securely computed within the 
TEE on the server side and leveraging WAPITI (Simo 
and Kreutzer, 2024). 

3.4.2 Analytics Server 

The SGX-PrivInfer analytics server consists of two 
main components: a trusted enclave and an 
unprotected server application. The trusted enclave 
hosts critical components that ensure security and 
confidentiality, including the User Authenticator 
Component for validating client credentials, the 
Remote Attestation Component for verifying the 
integrity of the enclave, the Sealing-Unsealing 
Component for secure data storage and retrieval, 
and the Inference Analysis Engine for performing 
attribute inference computations. Outside the 
enclave, the unprotected server application manages 
components such as Encrypted Storage for the 
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inference model, provided and encrypted by the 
Model Supplier, and databases for storing user 
records, group membership information, and other 
non-sensitive housekeeping data. Persistent 
storage, such as hard disks, is also part of the 
untrusted region and is primarily used for storing 
non-sensitive information. Interactions between the 
trusted and untrusted regions occur through OCALLs 
and ECALLs, ensuring controlled and secure 
transitions between the two components. Client-
server interactions in SGX-PrivInfer are conducted 
over a network using the HTTP(s) protocol, with 
the framework relying on TEE-supported TLS 
(Knauth et al., 2018) to ensure all communications 
are authenticated and encrypted, thereby 
maintaining confidentiality and integrity. 
Additionally, the SGX-PrivInfer server facilitates the 
modeling and aggregation of ego graphs (Simo et al., 
2021), performs attribute inference analysis on the 
aggregated graphs, and generates visual 
representations of the analysis results. These visual 
outputs are securely transmitted to the SGX-
PrivInfer Client Application, enabling users to 
effectively interact with and interpret the inference 
results. Inference Analysis Engine. SGX-PrivInfer 
provides attribute inference assessment as a service, 
using a probabilistic model to evaluate an 
adversary’s ability to infer sensitive profile attributes 
from observations of aggregated ego graphs. At its 
core, it leverages WAPITI (Simo and Kreutzer, 
2024), a model specifically designed to quantify the 
risk of attribute inference in aggregated OSN ego 
networks. 

The SGX-PrivInfer Web Server. The SGX-
PrivInfer server hosts a web server instance that 
provides multiple REST endpoints to serve client 
requests. These endpoints support a range of 
functionalities, including user and group registration, 
authentication and management, data analysis, 
secure communication, and data transfer. 

Visualization Engine (VE). The VE is a versatile 
component built on top of free and open-source data 
visualization libraries. It allows SGX-PrivInfer to 
create rich and meaningful visual representations of 
processed data and deliver them to the client for 
display within SGX-PrivInfer’s GUI. As previously 
described, the GUI serves as a modular and user-
friendly front-end interface, offering extensive 
options for menus, settings, and visualization. It 
provides users with detailed insights into their digital 
footprint across various OSNs, their aggregated ego 
graph, and the sensitive attributes that can be inferred 

from it, thereby enhancing transparency and 
empowering user control. 

3.5 SGX-PrivInfer’s Workflow 

We now describe the operational workflow of SGX-
PrivInfer, which consists of a four-phase interaction 
flow: 1) Groundwork Phase , 2) Bootstrapping Phase, 
3) User Onboarding Phase and 4) Secure Inference 
Analysis Phase. The workflow is as follows: 

Phase 1. Groundwork. The operational workflow 
begins with the Model Supplier (MS) specifying and 
provisioning essential, non-privacy-sensitive yet 
critical software or code to be executed inside the 
enclave. This software may include, for example, a 
parameterized Python environment required for 
running the inference model. To ensure the 
authenticity and integrity of the provided code, it is 
digitally signed using the Model Supplier’s private 
key. This allows both the users and the enclave to 
verify the origin and integrity of the code before 
execution. However, users may require additional 
assurances regarding the trust-worthiness of such 
critical code, particularly concerning potential risks 
like data leakage or the presence of backdoors. 
While these guarantees could be obtained through 
approaches such as crowdsourced security vetting 
processes, addressing such processes lies beyond the 
scope of this paper. 

Phase 2. Bootstrapping. As part of the Boot-
strapping Phase, the enclave is created, loaded, and 
initialized using the SGX-enabled server CPU and 
the code provisioned earlier by the Model Supplier 
(MS). Specifically, the enclave is instantiated from the 
supplier’s enclave code, which is copied into 
memory. During this process, a cryptographic hash 
of the initial memory content is generated and 
securely stored. Leveraging the hardware security 
features of the SGX-enabled CPU and the platform 
certificate issued by the device vendor, the creation 
process ensures both the confidentiality and integrity 
of the enclave code and its memory content. Once 
the enclave creation is complete, it is initialized, 
resulting in the generation of an asymmetric key pair 
for the enclave. The secret key is used, among other 
functions, to sign a proof of attestation. This proof 
serves as verifiable evidence to assure users and the 
Model Supplier that the correct, untampered enclave 
code is running on the SGX-PrivInfer server. The 
proof of attestation includes the cryptographic hash 
of the enclave’s initial memory content and the 
enclave’s public key. If needed, this proof is 
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securely transmitted to users and the Model Supplier 
through TLS-like secure channels, each originating 
directly from within the enclave. This process 
ensures that all entities involved can trust the 
integrity of the enclave and its operations. The final 
step of the Bootstrapping Phase involves the Model 
Supplier (MS) delivering its attribute inference 
model (Simo and Kreutzer, 2024), along with 
functions for ego graph generation and ego graph 
aggregation, to the SGX-PrivInfer server. Since this 
input is sensitive and constitutes the MS’s 
intellectual property, it must be encrypted to prevent 
unauthorized access or misuse, particularly by the 
untrusted Service Provider (SP). In the current 
design, the sensitive input from the MS is encrypted 
using a symmetric encryption key, which is securely 
derived from the enclave’s public key and a nonce. 
The encrypted data is then transmitted directly to the 
server through a secure communication channel. To 
address the constraints imposed by the limited 
enclave memory size, our solution allows the enclave 
to offload and store the Model Supplier’s (MS) 
encrypted data in the untrusted part of the SGX-
PrivInfer server. This design ensures that while the 
encrypted data resides in untrusted storage, it 
remains fully protected, as only the enclave can 
decrypt and access it when necessary. When needed, 
such as during inference analysis, the encrypted 
model can be securely retrieved from the untrusted 
storage and decrypted inside the enclave using the 
previously mentioned symmetric encryption key. To 
securely establish this key, the Model Supplier 
encrypts the symmetric encryption key with the 
enclave’s public key and transmits it to the enclave. 
Upon receipt, the enclave decrypts the message, 
ensuring that both the MS and the enclave share the 
same symmetric key. Because the symmetric key is 
derived using a unique nonce n, the Model Supplier 
retains full control over who can access and use its 
inference model. This mechanism guarantees that 
only authorized enclaves that meet the attestation 
requirements can utilize the model, thereby 
protecting the MS’s intellectual property and 
ensuring secure, controlled access to the inference 
process. 

Phase 3. User Onboarding. In this phase, each 
user registers with the platform using a dedicated 
client application, the SGX-PrivInfer Client 
Application, which enables the collection of ego 
graphs from the OSN platforms where the user is 
registered. The collected data is securely uploaded 
to the analytics server, though at this stage it is not 
yet loaded inside the enclave. A key component of 

the registration and sign-in process is Server 
Attestation and Key Provisioning, which relies on the 
remote attestation feature of Intel SGX (Barbosa et 
al., 2016). During this step, the client application 
verifies the trustworthiness of the analytics server’s 
enclave by checking that it is authentic and has not 
been tampered with. Upon successful attestation, the 
client and the enclave establish a secure 
communication channel, and the client securely 
provisions a symmetric key directly to the enclave. 
This symmetric key is persistently stored within the 
enclave for exclusive use in secure operations. The 
symmetric key serves multiple purposes. For 
example, the client application encrypts all input 
data, such as the user’s ego graphs, before 
forwarding it to the server. The data remains 
encrypted and can only be decrypted inside the 
enclave. Additionally, the symmetric key is used to 
encrypt sensitive data that needs to be securely 
transmitted and made accessible only to the 
respective user. After successfully joining the SGX-
PrivInfer platform, users can use the client 
application to create groups and invite their contacts 
on OSNs to participate. Contacts who accept the 
invitation are redirected to a website where they can 
download the client application. They then use the 
app to collect their individual public graph data from 
various social networks and upload it to the SGX-
PrivInfer server for further secure analysis. This 
collaborative workflow ensures a seamless 
aggregation of ego graph data from multiple users 
while maintaining strong privacy and security 
guarantees. 

Phase 4. Secure Inference Analysis. A 
registered user who wishes to analyze her data and 
assess her exposure to attribute inference risk can 
query the SGX-PrivInfer server by submitting the 
encrypted values of hidden attributes as key 
parameters. These inputs are encrypted using the 
user’s previously established symmetric key, 
ensuring that only the enclave can access and 
process this sensitive information. Inside the 
enclave, our solution reconstructs the querier’s 
aggregated ego-graph by combining all group 
members’ public data. This aggregated ego-graph is 
then combined with the querier’s private data to 
compute the probabilities of correctly inferring the 
values of each specified hidden attribute. To construct 
the aggregated ego-graph, the enclave securely loads 
the Model Supplier’s models and functions from the 
untrusted part of the server, decrypts them, and 
forwards the data to the Inference Engine. It is 
important to note that aggregated ego-graphs can be 
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generated either prior to an inference analysis 
request or on-demand, depending on the system’s 
configuration and user needs. To further protect 
against access pattern leakage, we incorporate 
techniques to randomize any observable information 
during the process of loading models and ego-graphs 
into the enclave, as outlined in (Chandra et al., 
2017). This mechanism mitigates the risk of an 
attacker inferring sensitive details based on access 
patterns. Once the analysis is complete, the results—
including the set of inferred attributes, attribute-
specific inference scores, and other voluntarily 
shared attributes—are encrypted with the user’s 
symmetric key and securely sent back to the SGX-
PrivInfer Client Application. To ensure seamless 
and secure communication, the SGX-PrivInfer client 
interacts with the analytics server and the respective 
OSN platforms through REST endpoints exposed 
over a secure communication channel, achieved using 
Transport Layer Security (TLS). This guarantees 
data confidentiality and integrity throughout the 
interaction workflow. 

4 PoC & EVALUATION 

To demonstrate the feasibility of our proposed 
approach, we present a Proof-of-Concept (PoC) 
implementation of SGX-PrivInfer along with its 
preliminary evaluation. 

4.1 Implementation Details 

The current prototype of SGX-PrivInfer is 
implemented natively using Intel SGX SDK 2.0, 
primarily in C++, with some C and JavaScript 
components. Our prototype leverages WAPITI 
(Simo and Kreutzer, 2024), a weighted Bayesian 
model tailored for attribute inference in social ego 
networks, and extends PrivInferVis (Simo et al., 
2021) a framework to provide OSN users with 
enhanced-transparency over attribute inference. We 
implemented our proposed framework with three 
key components. An application server as a 
Node.js-server, that stores and processes user 
account and content data across distinct databases. It 
serves as backend, handling the communication 
between users and the secure enclave. An Angular.js-
based client used to access, manage, and display 
data and analysis results. This component integrates 
a Chrome browser extension to retrieve profile 
information directly from the user’s OSN accounts. 

In addition to incorporating visualization elements 
from (Simo et al., 2021), the SGX-PrivInfer client 

application provides essential functionalities, 
including remote attestation and system 
initialization. These features are crucial for 
establishing the necessary keys during the 
Bootstrapping, User Onboarding, and Secure 
Analysis phases. Our implementation of the SGX-
PrivInfer server, built following Intel SGX 
developer guidelines, is partitioned into two main 
components: a trusted enclave and an unprotected 
server application, enabling secure and efficient 
operations. Transitions between the trusted and 
untrusted components are handled through OCALLs 
and ECALLs. While the server executes as a single 
binary, the enclave shares the same virtual address 
space as the unprotected application but maintains 
strict isolation of its stack and heap. The enclave is 
designed as a single trusted entity, avoiding inter-
enclave communication and thereby reducing the 
risk of secret leakage. The server consists of three 
layers: i) unprotected code for sensitive operations 
managed by SGX’s untrusted runtime system 
(uRTS), ii) trusted code protected by SGX 
guarantees and managed by the trusted runtime 
system (tRTS), and iii) EDL files to define transition 
functions between the two regions. To ensure secure 
and efficient operations, additional configuration files 
such as the enclave configuration and the signing key 
are included, alongside makefiles for building the 
enclave binary. Key components on the server-side 
such as the User Authenticator, the Access 
Controller, the Sealing-Unsealing Component, and 
the Inference Engine extensively uses the SHA512 
algorithm as hash function and the AES-GCM 
algorithm with a 256-bit key as the symmetric key 
encryption scheme. 

4.2 Evaluation 

Now, we report on SGX-PrivInfer’s initial 
performance results. 

Testbed Setup & Evaluation Methodology. We 
evaluated SGX-PrivInfer on a desktop machine 
equipped with an Intel i5 processor (2.50GHz core), 
32 GB of memory and running Ubuntu 16.04 LTS 
64-bit along with OpenEnclave (https://github. 
com/openenclave/openenclave/), an open-source 
SDK for building enclave-based applications on Intel 
SGX. To comprehensively evaluate the performance 
of SGX-PrivInfer, we compared it against 
PrivInferVis (Simo et al., 2021), which serves as a 
baseline framework. Unlike SGX-PrivInfer, 
PrivInferVis does not incorporate enhanced data 
protection mechanisms on the server side, nor does it 
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utilize TEEs. In PrivInferVis, ego graph aggregation 
and attribute inference are performed without the 
confidentiality and integrity guarantees provided by 
Intel SGX. Our evaluation primarily focused on 
quantifying the additional latency introduced by the 
TEE and associated security mechanisms in SGX-
PrivInfer. Specifically, we aimed to measure the 
runtime overhead incurred by performing 
computations inside the SGX enclave, compared to 
PrivInferVis. To this end, we recorded and 
compared the execution time for private attribute 
inference on the same dataset in both systems. This 
approach allows us to precisely determine the 
performance cost of integrating Intel SGX enclaves. 
For our experiments, we evaluated attribute inference 
on gender, leveraging the Weighted Bayesian 
attribute inference model from (Simo and Kreutzer, 
2024, Simo et al., 2021). To ensure a differentiated 
analysis, we measured execution times in two modes: 
Mode A and Mode B. In Mode A, users’ data is 
encrypted, allowing us to assess the potential cost of 
handling additional encrypted data on the server 
side. In Mode B, users’ data is provided in plain 
text, allowing us to evaluate potential performance 
overhead in a setting without an additional secure 
channel between the client and the server (or the 
enclave). In both modes, execution time was 
measured from the moment the server received the 
inference request to the completion of the analysis 
operation. This setup allowed us to capture the 
performance impact of Intel SGX-based operations 
and associated security mechanisms in SGX-
PrivInfer. 

Evaluation on Real Datasets. Our experiments 
were conducted using the Kaggle Social Circles 
dataset (Kaggle, n.d.), a widely utilized benchmark 
in the literature for social network analysis. The 
dataset comprises 27,520 ego graphs along with 
various profile attributes (features) derived from real 
Facebook users. Each user (ego) in the dataset is 
associated with a subset of up to 57 attributes, 
including location, birthday, gender, and other 
relevant personal details. 

Initial Performance Results. For our experiments, 
we partitioned the dataset into four clusters of 
selected ego graphs based on their sizes: C1 (31-45), 
C2 (138-151), C3 (215-238), and C4 (341-357). For 
example, C1 (31-45) refers to a subset of the dataset 
containing ego graphs, each with a size ranging from 
31 to 45 nodes. All experimental results presented 
below are averaged over 10 runs to ensure statistical 
reliability. The results, summarized in Figure 2, 

demonstrate that SGX-PrivInfer incurs a moderate 
runtime overhead when compared to PrivInferVis. 
Specifically, SGX-PrivInfer is, on average, 
approximately only 1.5 times slower than 
PrivInferVis in both evaluation modes. Indeed, while 
SGX-PrivInfer offers enhanced security, it 
consistently incurs moderate overhead in both 
modes, with the overhead being slightly higher in 
Mode A compared to Mode B. Such an overhead, as 
the cost of securing the attribute inference analysis 
process with Intel SGX enclaves and associated 
security mechanisms, is arguably justifiable. 

 
Figure 2: Runtime comparison (time in seconds). 

5 CONCLUSION 

We presented SGX-PrivInfer, a novel framework for 
collaborative and privacy-preserving attribute 
inference risk analysis in online social networks. By 
leveraging Trusted Execution Environments (TEEs), 
specifically Intel SGX, SGX-PrivInfer ensures the 
confidentiality of both user data and attribute 
inference models, effectively mitigating the risks 
posed by adversarial or curious actors in cloud 
environments. SGX-PrivInfer combines hardware-
assisted security features with the isolation 
guarantees of Trusted Execution Environments 
(TEEs). Its scalable architecture supports real-time 
analytics while ensuring robust privacy and security 
protections. Indeed, our framework offers a range of 
features that collectively enable collaborative and 
privacy-preserving attribute inference risk analysis, 
regardless of the entity controlling the server on 
which the analysis is performed. Key features of 
SGX-PrivInfer include user and group management, 
effective ego graph aggregation and weighted 
Bayesian attribute inference as introduced in (Simo 
et al., 2021), and server attestation based on Intel 
SGX’s remote attestation feature. Our preliminary 
evaluation demonstrates the feasibility of SGX-
PrivInfer and its practical performance on real 
datasets, showing minimal overhead compared to 
privacy inference detection technologies without 
TEEs. While this evaluation validates the core 
functionality and architectural design of SGX-
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PrivInfer, it also highlights several areas for future 
exploration. 

In future work, we plan to enhance the design 
of SGX-PrivInfer by exploring alternative hardware-
based security technologies and isolation mechanisms 
beyond SGX. This includes evaluating other TEEs, 
such as secure Linux containers (e.g., Scone (Arnau- 
tov et al., 2016) and LKL-SGX (Priebe et al., 2019)), 
to assess their suitability and performance for privacy-
preserving attribute inference tasks. Additionally, we 
aim to expand our evaluation of SGX-PrivInfer to 
account for potential end-to-end network overheads 
in distributed setups, as these could impact real-
world deployments. Future efforts will also focus on 
designing and conducting a user study to investigate 
user intentions, perceived usefulness, and attitudes 
toward SGX-PrivInfer. 
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