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Abstract: Modelling blood glucose and insulin dynamics using mathematical equations requires a deep understanding 

of individual physiology and relying on numerous predefined parameters necessitating extensive clinical and 

personal data, making direct use of these models for blood glucose prediction computationally intensive and 

inaccurate. Though data-driven models are more efficient and require no individual physiology, they produce 

predictions that are inconsistent with known glucose-insulin interactions. Thus, this study aims to investigate 

the potentiality of physiological models integrated with data-driven approach for predicting blood glucose 

level. It intends to extract simple physiological dynamics of blood glucose kinetics and incorporate them into 

a data-driven model, with less reliance on detailed individual data.  The result demonstrated that the model 

integrating physiological modelling of insulin and meal absorption significantly improved the performance 

particularly in larger window size that enabled the model to better capture longer-term trends and temporal 

dependencies. 

1 INTRODUCTION 

Type 1 Diabetes is a chronic metabolic condition 

characterized by disrupted blood glucose homeostasis 

due to the lack of endogenous insulin production 

(Georga et al., 2012). As a result, subjects with type 

1 diabetes must rely on exogenous insulin to 

compensate for this deficiency (Oviedo et al., 2017). 

To maintain blood glucose levels within the desired 

range and to reduce the risk of complications such as 

hypoglycaemia or hyperglycaemia, one must follow 

a dietary guideline, administer insulin in right 

amount, and proper exercise regimen (Zhu et al., 

2022). One promising technology for managing 

blood glucose is continuous glucose monitoring 

(CGM), which tracks glucose levels in real time and 

is often integrated into automated insulin delivery 

systems (Della Cioppa et al., 2023). These automated 

systems, known as closed-loop control systems or 

artificial pancreas, use predictive models to forecast 

future blood glucose levels and adjust insulin delivery 

accordingly.   

Thus, accurate prediction of blood glucose levels 

is vital for management of blood glucose. The use of 

mathematical equations that represent the body’s 

blood glucose dynamics to make accurate predictions 

require detailed knowledge of individual physiology, 

such as a person’s glucose absorption rates, insulin 

sensitivity, and how their body handles glucose 

during activities like eating or fasting (Oviedo et al., 

2017) (Woldaregay et al., 2019). They also depend on 

a large number of pre-set parameters, requiring 

extensive clinical and personal data about the 

individual. On the other hand, data-driven models 

focus more on self-monitored historical data such as 

past glucose levels, insulin doses, and food intake and 

not require as much detailed physiological 

information (Woldaregay et al., 2019). While this 

approach is easier to implement as it requires less 

knowledge about the individual’s specific 

physiology, it has limitations. These models are often 

less consistent with actual physiological processes 

and are of a black box nature. Also, many tend to lose 

accuracy over longer timeframes (Ghimire et al., 

2024).  

Previous study (Pawar et al., 2021) suggests that 

combining simplified physics-based models with 

neural network architecture can lead to improved 
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predictive accuracy and reduced uncertainty. In line 

with this principle, this paper investigates a hybrid 

modelling paradigm. The hybrid model integrates the 

subcutaneous insulin absorption kinetics and the meal 

absorption dynamics within the predictive model for 

blood glucose levels, as opposed to relying on 

complex and data intensive full mathematical models. 

It combines the strengths of physiological models 

(which reflect real glucose dynamics) with machine 

learning (ML) techniques (which can handle large 

amounts of historical data). The primary aim is to 

obtain more accurate blood glucose predictions that 

remain consistent with physiological principles and 

can be interpreted. Additionally, it intends to provide 

a better understanding of its potential strength for 

future expansion. 

The remainder of this article is organized as 

follows. The existing works are discussed in section 

2. The description of the proposed method is 

presented in section 3. Section 4 covers the data sets 

used, data processing, and experiments setup, 

including the evaluation metrics. In Section 5, 

experimental results and analysis are provided. 

Finally, the article is concluded in Section 6. 

2 RELATED WORKS 

Several studies (Bertachi et al., 2018; Contreras et al., 

2018; Contreras et al., 2017; Erdős et al., 2023; Georga 

et al., 2012; Mougiakakou et al., 2006; Sun et al., 2020) 

have developed models, integrating mathematical 

models of blood glucose dynamics with data-driven 

models. Study (Georga et al., 2012) enhanced 

performance of the Support Vector Regression (SVR) 

model by incorporating additional features such as the 

rate of glucose appearance from meal intake (Ra), 

plasma insulin levels (Ip), and cumulative glucose 

appearance over a specific period (SRa). These 

features, obtained from meal and insulin models of 

blood glucose dynamics, serve as inputs, provide a 

straightforward way to incorporate domain knowledge 

into learning models. In a similar approach, study 

(Mougiakakou et al., 2006) included plasma insulin 

and glucose appearance rate from meals as input 

features through insulin kinetics and meal models, 

respectively. Additional features such as insulin on 

board i.e., the remaining active insulin, carbohydrates 

on board i.e., remaining carbs yet to be converted to 

glucose, glucose appearance rate from carbs, rate of 

glucose appearance in the blood from guts, and activity 

on board were employed in studies (Bertachi et al., 

2018; Contreras et al., 2018; Contreras et al., 2017; Sun 

et al., 2020) to refine ML models. Additionally, study 

(Erdős et al., 2023) proposed a hybrid method that 

sequentially combines predictions from both 

mathematical and ML models, where the ML model 

predicts residuals based on phenotypic features, which 

are then subtracted from the predictions made by 

mathematical model. The results demonstrated that the 

personalized physiological models consistently 

outperformed the data-driven and the hybrid model 

approaches. Personalized physiological models may 

inherently capture individualized critical processes and 

features that data-driven models struggle to 

individualize or interpret effectively. Although these 

studies have shown improvements in performance 

through the integration of various physiological 

knowledge, they fail to analyse the potential of 

integration across different contexts, a gap that is 

addressed in this study. 

3 PROPOSED METHOD 

To explore the potential of the physiological inputs, a 

straightforward model architecture was designed, 

consisting of two Long short-term memory (LSTM) 

layers with 64 units each, followed by a fully 

connected layer with 64 neurons as the final layer, as 

illustrated in Figure 1. LSTM networks are a 

specialized type of recurrent neural networks (RNNs) 

designed to effectively capture long-term temporal 

dependencies in sequential data (Aliberti et al., 2019), 

comprising memory cells, input, forget, and output 

gates that dynamically manages information flow, 

preserving the essential patterns and insights over 

long sequences, enhancing their effectiveness for 

time series prediction (Afsaneh et al., 2022).  

 

 

Figure 1: System architecture of the proposed hybrid 

model. 
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Different configurations of this model are used to 

assess their potential performance. Predictive model 

incorporating physiological inputs (insulin plasma (IP) 

and carb on board (COB) including glucose (G)) is 

labelled as PM, while the model without physiological 

input is referred to as W-PM, that includes bolus (Bo), 

basal (B), and carb (C) including G. The models are 

further divided into input mode and output mode: in 

input mode, the final layer receives no additional 

inputs, while in output mode, an additional input 

feature, IP, is included in the final layer. 

When bolus insulin is administered, it doesn’t 

instantly lower blood glucose; rather, it enters the 

bloodstream, peaks after a certain time, and gradually 

dissipates (Lehmann & Deutsch, 1992). Based on 

similar physiology, the assumption is that if ML 

model incorporates insulin dynamics that provides a 

temporal representation of insulin’s effect, reflecting 

how insulin concentration changes over time as is 

seen in the body’s physiological process, it allows for 

a more nuanced understanding of how blood glucose 

will respond. For a simple bolus-only ML model that 

considers only the dose and the timing of insulin 

administration, however, is challenging to capture 

how insulin gradually influences blood glucose. 

Figure 2 depicts the bolus administered dose (Marling 

& Bunescu, 2020) and its timing curve along with the 

insulin dynamics following the insulin dose, where 

administered bolus is observed at a specific time step, 

while the insulin dynamics profile exhibits a gradual 

decay of insulin over time. It illustrates how insulin 

levels rise and fall, giving a clear indication of how 

glucose levels might influence. Additionally, giving a 

second bolus dose before the previous dose has fully 

dissipated results in cumulative insulin effects in the 

bloodstream. By modelling plasma insulin, it is 

possible to track these overlapping, enabling precise 

predictions with increased insulin activity. 

 

Figure 2: Insulin decay curve given by the physiological 

insulin model. 

Thus, based on this physiology, the proposed 

model architecture incorporates the insulin dynamics 

to provide a temporal representation of insulin’s 

effect on how insulin concentration changes over 

time, where we utilized the Lehmann model 

(Lehmann & Deutsch, 1992) that aligns with the 

physiological process of insulin absorption dynamics 

as given in equation (1): 

       𝑑𝐼(𝑡)

𝑑𝑡
=  

𝑠.𝑡𝑠.𝑇50
𝑠 .𝐷

𝑡[𝑇50
𝑠 +𝑡𝑠]2

𝑉𝑖
− 𝑘𝑒𝐼(𝑡)            (1) 

where, 𝐼(𝑡) is plasma insulin concentration, 𝑘𝑒 is the 

first-order rate constant of insulin elimination, and 𝑉𝑖 

is the volume of insulin distribution, 𝑡  is the time 

elapsed from the injection, 𝑇50
𝑠  is the time at which 

50% of the dose, D, has been absorbed and 𝑠  is a 

preparation-specific parameter defining the insulin 

absorption pattern of the different types of insulin. 

The insulin dynamics that give plasma insulin is 

based on rapid-acting insulin, which is known to have 

an immediate effect on reducing blood glucose levels 

with fast absorption and action. This makes it 

particularly relevant for scenarios where quick 

glucose adjustments are needed after a meal. 

In addition to this, instead of using the discrete 

carbohydrate data into the model, the carbohydrate on 

board based on the meal intake is estimated to convert 

it to a time action profile of absorption, similar to the 

insulin dynamics as given by (2) (Dave et al., 2021). 

It estimates the amount of carbs not yet appeared in 

blood glucose. The curves in Figures 3 show how the 

carbs decay over time.  

𝐶𝑂𝐵𝑇 = 𝑀𝐴𝑋(0, 𝐶 − 𝑅𝐶𝑂𝐵 ∗ (𝑡 − 𝑡𝐶 − ∆𝐶𝑂𝐵))    (2) 

 

Figure 3: The carbohydrate decay curve is given by the 

physiological meal model. 
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Here, 𝑡𝐶  denote the time at which 𝐶  amount of 

carbohydrates taken. 𝑅𝐶𝑂𝐵  is the carbohydrate 

absorption rate, which is 0.5g/min after initial delay 

(∆𝐶𝑂𝐵) of 15min and 𝑡 is the current time. These time 

action profiles of insulin and carbs are fed into the PM 

model as additional inputs along with glucose in 

initial or final layer as shown in Figure 1. The plasma 

insulin in the output mode is included in the final 

layer of the model as shown in Figure 1, to act as a 

corrective mechanism for the model to correct the 

prediction at the last minute. This architecture implies 

that the model first makes the prediction using input 

features and then applies correction based on the 

amount of insulin present or absorbed. 

4 EXPERIMENTS 

4.1 Datasets 

The models were trained and tested using OhioT1DM 

(Marling & Bunescu, 2020) dataset that encompasses 

eight weeks of data from twelve patients with type-I 

diabetes. It involves seven males and five females 

within the age range of 20 to 80 years. The dataset 

contains blood glucose measurements recorded every 

five minutes, comprising total 166532 samples, using 

Medtronic Enlite CGM sensors, along with bolus and 

basal insulin administered via Medtronic 530G 

insulin pumps at regular intervals. Also, the dataset is 

supplemented by other daily events such as meal and 

exercise info reported by the patients via a 

smartphone app or fitness band. The proposed study 

explores the data on blood glucose levels, insulin and 

carbohydrate intake. The OhioT1DM dataset was 

originally provided with separate training and testing 

data for each of the 12 patients, which were directly 

used for model training and evaluation. The training 

data was further divided into an 80% training subset 

and a 20% validation subset. The model, trained on 

the training subset, was evaluated on the test set, 

which consisted of new, unseen data. 

4.2 Experimental Setup 

To address missing data and standardize it, 

resampling and normalization were applied. The 

dataset was resampled to align all signals to a uniform 

5-minute sampling grid. Data with consecutive gaps 

exceeding 30 minutes were excluded to prevent 

inaccuracies in prediction trajectories. Missing values 

were imputed using linear interpolation; however, no 

imputation was performed on the test set. 

Standardized normalization was applied to scale the 

data to a mean of zero and a standard deviation of one. 

Additionally, to investigate the relationship 

between blood glucose levels and their prior values 

and to find the right window size, the autocorrelation 

function (ACF) (Semmlow, 2012) was utilized. As 

ACF describes how well a signal correlates with 

adjacent part of itself, the plot of the ACF on blood 

glucose levels revealed a strong correlation between 

the current glucose levels and glucose levels from the 

previous day as shown in Figure 4.  Based on this 

analysis, a sliding window of 24 hours was used 

instead of a 2-hour historical data window to predict 

blood glucose levels 30 minutes in advance, as 

opposed to the literatures (Cui et al., 2021; Ghimire 

et al., 2024; Oviedo et al., 2017). The model was 

trained for 100 epochs with 10 repetitive runs using 

Huber loss (Tong, 2023) as the cost function. The 

adaptive moment estimation (Adam) optimizer was 

employed to minimize the loss function. 

Optimization parameters included a learning rate 

decay of 0.1, a decay patience of 10, and early 

stopping patience of 30. 

 

Figure 4: Auto-correlation function of blood glucose with 

its previous values of 24hrs. 

4.3 Evaluation Metrics 

Model performance was assessed using the root mean 

square error (RMSE), a standard metric that 

quantifies the similarity between predicted and actual 

blood glucose levels, defined as follows: 

RMSE =  √
1

𝑁
∑ (𝐺(𝑡 + 𝑃𝐻) −  𝐺̂(𝑡 + 𝑃𝐻))2𝑁

𝑡=1     (3) 

Here, 𝑁 represents the number of test samples, 𝐺 

denotes the actual blood glucose levels, 𝐺̂  is the 

predicted glucose level, and PH stands for the 
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prediction horizon—the time frame for which blood 

glucose levels are forecasted. A lower RMSE value 

indicates better model performance in glucose 

prediction. For validation, we employed a 30-minute 

prediction horizon (PH), implies that the model 

predicts blood glucose levels 30 minutes ahead. 

5 EXPERIMENTAL RESULTS 

AND DISCUSSION 

Table 1 presents the results for the proposed model 

with a 30-minute PH across various input feature 

combinations, both with and without a physiological 

model. The results indicate that the PM model 

attained a lower RMSE than the W-PM model, 

demonstrating the significance of the use of 

physiological inputs. While adding insulin plasma in 

the final layer did not reduce RMSE in either 

approach, it enhanced the prediction certainty 

compared to models without plasma insulin, as is also 

illustrated in Figures 5 and 6 with highlights. No 

significant difference in RMSE was observed 

between input and output modes within the PM 

model. Overall, incorporating physiological 

dynamics led to a performance improvement of over 

10%, and adding physiological dynamics in the final 

layer contributed further to prediction certainty. 

Table 1: Summary of the RMSE(Std) result for different 

combinations of input features. 

Predictive 

Models Input Mode (in features) RMSE(Std) 

W-PM 

(24hrs) 
Output (G, BO, C, B) (IP) 20.154 (1.32) 

Input (G, BO, C, B) 20.142 (2.08) 

PM (24hrs) Output (G, CO) (IP) 17.606 (0.13) 

Input (G, CO, IP) 17.526 (0.159) 

W-PM (2hrs) 

Input (G, BO, C, B) 

19.235 (0.135) 

 

PM (2hrs) 

Input (G, CO, IP) 

19.437 (0.233) 

 

PM: Physiological Model, W-PM: Without Physiological 

Model, G: Glucose level, BO: Bolus insulin, C: 

Carbohydrate, B: Basal insulin, CO: Carbohydrate on 

Board and IP: Plasma Insulin 

From the results, it is evident that using 

physiological models offers no significant 

improvement when a shorter 2-hour window is 

employed. The potential reason for this is the 

continuous data sampled at 5-minute intervals using 

physiological modelling for insulin and meal, 

successfully created smoother transitions between 

data points, allowing the models to see gradual 

changes rather than abrupt shifts. With a 24-hour 

window, this continuous representation enabled the 

model to better capture longer-term trends and 

temporal dependencies. In contrast, for the discrete 

insulin and carbs data, model struggled to identify 

patterns over longer windows due to the limited 

number of data points within each window, which 

constrained the model’s ability to learn these trends 

effectively. However, with a 2-hour window, the 

difference between the continuous and discrete is 

minimal and there is enough overlap between the 

neighbouring data points within the window, making 

the abrupt changes in the discrete insulin and carbs 

data less impactful on model performance.   

 

Figure 5: Uncertainty prediction plot of input mode of W-

PM model. 

 

Figure 6: Uncertainty prediction plot of output mode of PM 

model. 

To further explain the output of the predictive 

model, Shapley additive explanation (SHAP), a 

model agnostic explainability approach is utilized. 

SHAP plots as shown in Figures 7 and 8 for both 

models highlight that blood glucose is the most 

influential feature in driving the model's decisions, 

with carbs (or COB in the case of the PM model) 
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being the second most important. Bolus and basal 

have a minimal to no impact on the output 

predictions, though bolus shows a slightly higher 

influence. A higher SHAP value for COB compared 

to carbs indicates that the PM model assigns 

significant importance to COB in predicting future 

blood glucose levels. This also suggests that COB has 

a notable positive effect on predictions, aligning with 

the physiological process where an increase in COB 

leads to an increase in future blood glucose levels, 

demonstrating the prediction to be consistent with the 

physiology. This observation supports the superior 

performance of the PM model, which benefits from 

the inclusion of physiological inputs compared to the 

W-PM model. 

 

Figure 7: Summary plot of SHAP analysis of PM model. 

 

Figure 8: Summary plot of SHAP analysis of W-PM model. 

6 LIMITATIONS 

Despite potential results, this study has some 

limitations.  The study modelled the physiological 

process using only bolus insulin, excluding basal 

insulin, which plays a crucial role in blood glucose 

regulation. Also, as the study focused on a simplified 

physiological model, incorporating more complex 

physiological processes could provide deeper insights 

and improve prediction accuracy. In addition, the 

SHAP analysis highlighted which input features 

contribute most to the model’s predictions, revealing 

associations identified by the model, but cannot 

provide the underlying causal mechanisms. 

Therefore, for drawing causal conclusions additional 

analysis such as counterfactual analysis can 

potentially be beneficial. 

7 CONCLUSIONS 

This study introduced a straightforward integration of 

a physiological model with a data-driven approach for 

predicting blood glucose levels. The findings 

demonstrated that this hybrid model, incorporating a 

simple physiological model, has the potential to 

enhance predictive performance, also increase 

certainty when integrated into the final layer. 

Moreover, the analysis highlights that incorporating 

the physiological process of gradual change 

demonstrates its significance with larger window 

sizes. This inclusion notably improved model 

performance by preserving temporal dynamics that 

would otherwise be lost in discrete data lacking a 

physiological basis. Additionally, blood glucose is 

identified as the most influential contributor for 

prediction output, followed by COB, demonstrating 

the importance of physiological dynamics.  

Given the study's demonstrated potential for 

physiological integration, future work could focus on 

incorporating complex physiological modelling into 

the model to enhance its representation of 

physiological processes, predictive accuracy and 

explainability. 
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