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Abstract: Dementia is a progressive neurological condition affecting millions worldwide, posing significant challenges 
for patients and caregivers. Wearable technologies integrated with artificial intelligence (AI) provide 
promising solutions for continuous activity monitoring, supporting dementia care. This study evaluates the 
performance of various AI models, including tree-based methods and deep learning approaches, in 
recognizing activities relevant to dementia care. While the first excelled in handling class imbalances and 
recognizing common activities, deep learning models demonstrated superior capabilities in capturing complex 
temporal and spatial patterns. Additionally, a comprehensive analysis of 30 datasets revealed significant gaps, 
including limited representation of elderly participants, insufficient activity coverage, short recording 
durations, and a lack of real-world environmental data. To address these gaps, future work should focus on 
developing datasets tailored to dementia care, incorporating long-duration recordings, diverse activities, and 
realistic contexts. This study highlights the potential of AI-powered wearable systems to transform dementia 
management, enabling accurate activity recognition, early anomaly detection, and improved quality of life for 
patients and caregivers. 

1 INTRODUCTION 

Dementia encompasses a range of neurological 
disorders characterized by memory loss and cognitive 
decline (Winblad et al., 2016). Currently, over 55 
million people worldwide live with dementia, and this 
number is projected to double by 2050, posing 
significant challenges for healthcare systems and 
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families (World Health Organization, 2023). With 
aging populations and no cure available, the 
prevalence of dementia continues to rise. 

As the condition progresses, symptoms may 
include disorientation, mood swings, confusion, 
severe memory loss, behavioural changes, and 
difficulties with speaking, swallowing, or walking 
(Lindeza et al., 2024). These challenges place a 
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significant emotional and physical burden on both 
individuals and their caregivers, requiring substantial 
support from an early stage.  

The role of caregivers is fundamental in 
supporting elderly individuals with dementia. 
However, it often presents significant challenges, 
including high rates of depression and stress, physical 
strain, and social isolation (Lavretsky, 2005). To 
address these challenges, enhancing caregiver 
support and implementing effective dementia 
monitoring are crucial. 

Dementia monitoring offers numerous benefits. It 
helps prevent accidents by tracking movements and 
reducing risks associated with wandering. Enables 
long-term health tracking, providing valuable data for 
caregivers and healthcare professionals to make 
informed care and treatment decisions. Furthermore, 
monitoring reduces family anxiety by promptly 
alerting caregivers to potential issues and facilitates 
patient independence, allowing individuals with 
dementia to engage safely in activities both indoors 
and outdoors (Lin et al., 2008). 

Wearable technology plays a pivotal role in 
monitoring individuals with dementia by providing 
non-invasive, continuous, and objective data on 
various physiological and behavioral parameters. 
These devices are generally well-accepted by both 
patients and caregivers, making them a practical 
solution for continuous monitoring (Husebo et al., 
2020).  

One notable application is GPS-enabled 
wearables, which help monitor mobility patterns and 
locate missing individuals with dementia, offering a 
non-intrusive way to track movements and prevent 
wandering (Cullen et al., 2022). Additionally, these 
devices can report detailed mobility outcomes, such as 
activity duration, out-of-home movements, and 
trajectory patterns (Cullen et al., 2022). They also 
provide insights into health indicators specific to 
dementia, including lower daily activity levels, 
decreased sleep efficiency, and greater circadian 
rhythm variability compared to controls(Cote et al., 
2021).  

For patients and caregivers, the comfort, 
convenience, and affordability of wearable devices 
are key priorities. Essential features include long 
battery life, water resistance, and an emergency 
button, which enhance usability and reliability 
(Stavropoulos et al., 2021).  

The work presented in this paper is part of a larger 
project focused on developing a wearable device 
tailored to the unique needs and challenges of 
individuals with dementia. A study from this project 
highlights a significant gap in the availability of 

comprehensive devices, as most existing wearables 
fail to provide an integrated solution that includes 
activity monitoring (daily activities, daytime and 
nighttime patterns, activity and movement trends), 
real-time location tracking, fall detection, and SOS 
alert systems (Rocha et al., 2024). 

The primary objective of this paper is to describe 
the available datasets obtained from wrist-worn 
wearables and evaluate the best AI architectures for 
predicting activities based on this data. This analysis 
provides critical insights into selecting and 
developing effective solutions for activity 
monitoring, which is an essential step toward 
enhancing the functionality of wearable devices for 
dementia care.  

This paper is organized in seven sections. Section 
2 presents the state-of-the-art advancements in AI and 
wearable technologies for dementia care, focusing on 
activity recognition and the challenges of developing 
effective models. Section 3 outlines the methodology 
employed, including dataset selection, preprocessing 
steps, and the AI models evaluated. Section 4 
discusses the datasets analysed in this study, 
emphasizing sensor types, participant demographics, 
recording durations, and recorded activities. Section 
5 provides a detailed analysis of model performance 
across various datasets, highlighting the strengths and 
limitations of different AI approaches. Section 6 
discusses the implications of the findings, challenges 
encountered, and recommendations for future 
research. Finally, Section 7 concludes the paper, 
summarizing key insights and proposing directions 
for advancing AI-powered wearable technologies in 
dementia care. 

2 STATE OF THE ART 

In the field of dementia care, wearables and Artificial  
Intelligence (AI) are becoming increasingly 
significant, offering solutions for monitoring (Husebo 
et al., 2020), early diagnosis (Godfrey et al., 2019; 
Sashima, 2022), and improved quality of life 
(Wilmink et al., 2020). 

2.1 Activity Recognition in Dementia 
Care 

Activity Recognition are crucial in improving care for 
individuals with dementia. Through the use of 
wearable sensors and machine learning algorithms, 
these systems provide valuable insights into patients’ 
daily activities, supporting caregivers in addressing 
deficits and improving care delivery (K. J. Kim et al., 
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2009). For instance, deviations from typical behaviour 
can be identified by analysing parameters such as 
time, location, and activity duration (Gayathri et al., 
2015). 

2.2 AI in Activity Recognition 

AI plays a pivotal role in processing sensor data, 
identifying patterns, and recognizing activities. By 
extracting both spatial and temporal features, AI 
enhances the accuracy and efficiency of activity 
recognition systems (Khan et al., 2022).  

AI algorithms can process streaming data in real-
time, enabling dynamic recognition of human 
activities. For example, sliding window-based 
approaches combined with time-decay factors have 
been shown to improve recognition accuracy in 
dynamic environments, ensuring reliability even in 
complex, real-world scenarios (Krishnan & Cook, 
2014).  

One key advantage of AI-driven systems is their 
ability to identify new or unexpected activities not 
encountered during training. This adaptability 
enhances the system’s relevance to real-world 
conditions, making it better suited for the 
unpredictable nature of dementia care (Leite et al., 
2021).  

Different AI techniques offer unique benefits, and 
their applicability depends on factors like the 
complexity of activities, the nature of sensor data, and 
the amount of labelled data available. 

2.2.1 Machine Learning Techniques 

Machine learning (ML), a subset of AI, is widely used 
in activity recognition systems for its ability to learn 
patterns from data and generalize them to new 
scenarios.  

Among traditional ML approaches, Support 
Vector Machines (SVMs) are particularly effective 
for tasks involving well-separated classes, achieving 
high accuracy in identifying activities such as 
walking, running, and sitting from wearable data (L. 
Cheng et al., 2017). Similarly, Random Forest (RF) is 
known for its resilience to noise and ability to classify 
multiple activities (Badawi et al., 2019), while K-
Nearest Neighbors (KNN) is most suitable for 
datasets with fewer classes, working by comparing 
feature similarity (Murad & Pyun, 2017). Logistic 
Regression, with its computational efficiency and 
interpretability, is commonly used in binary 
classification tasks such as distinguishing between 
active and inactive states in wearable systems(Rabbi 
et al., 2021). 

When it comes to Deep Learning approaches, 
Convolutional Neural Networks (CNNs) are effective 
in learning complex patterns from raw data, ideally 
for special feature extraction from sensor data (Khan 
et al., 2022). Recurrent Neural Networks (RNNs) 
such as Long Short-Term Memory (LSTM) networks 
can capture temporal dependencies in sequential 
activity data (Murad & Pyun, 2017). Gated Recurrent 
Units (GRUs), a variation of RNNs, are particularly 
effective for wearable time-series data, as they can 
predict transitions between complex activities, such 
as alternating sitting and standing, based on 
accelerometer and gyroscope readings (Erdaş & 
Güney, 2021). 

Boosting algorithms like Extreme Gradient 
Boosting (XGBoost) and Light Gradient Boosting 
Machine (LightGBM) have also proven effective for 
wearable data. XGBoost is optimized for speed and 
scalability, making it suitable for identifying key 
sensor contributions and managing missing data in 
activity monitoring applications (Ge, 2023). On the 
other hand, LightGBM is particularly advantageous 
for processing large datasets and handling real-time 
data streams, making it an excellent choice for 
latency-critical tasks like fall detection and abnormal 
movement tracking (S. T. Cheng, 2017). 

Each of these techniques offers unique benefits, 
and their applicability depends on factors like the 
complexity of activities, the nature of sensor data, and 
the volume of labelled data available. 

2.2.2 Challenges 

Wearable devices collected data is often noisy due to 
movement artifacts, environmental interference, or 
device misplacement. To address this, techniques 
such as feature disentanglement are employed to 
separate meaningful activity patterns from irrelevant 
noise (Su et al., 2022).  

While deep learning methods like CNNs and 
LSTMs networks have proven effective for activity 
recognition, the integration of data from multiple 
sensors, such as accelerometers, gyroscopes, and 
heart rate monitors, introduces significant 
complexity. This fusion increases computational 
demands, posing challenges for both model training 
and deployment (Nweke et al., 2018). 

Another limitation is the difficulty in generalizing 
activity recognition models across users with varying 
physical characteristics or across different 
environmental contexts. This often leads to reduced 
performance in real-world applications, highlighting 
the need for models that are adaptable to diverse 
scenarios (Lara & Labrador, 2013). 
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Wearables are limited by battery life and 
processing power, making energy-efficient AI 
models essential for real-time activity recognition, 
hybrid ensemble models and feedback-based 
adaptive sampling have been proposed to balance 
energy efficiency with recognition accuracy (Min & 
Cho, 2011).  

3 METHODOLOGY 

To train AI models for activity recognition, suitable 
datasets are essential. For our study, the ideal dataset 
includes data from accelerometers, gyroscopes, and 
heart rate sensors, as these sensors provide crucial 
insights into movement, orientation and physiological 
responses. The dataset should feature labelled activity 
data to facilitate supervised learning and encompass 
range of activities – such as walking, running, laying, 
sleeping, eating, and hygiene – that are particularly 
relevant to dementia care. Additionally, it is crucial 
for the dataset to include diverse participants, 
specifically older adults of both genders, as dementia 
predominantly affects this demographic. The selected 
datasets were used to train various AI models, 
including Support Vector Machines (SVM), Random 
Forest (RF), K-Nearest Neighbors (KNN), 
Convolutional Neural Networks (CNN), Recurrent 
Neural Networks (RNN), Long Short-Term Memory 
(LSTM), Extreme Gradient Boosting (XGBoost), 
Logistic Regression, Light Gradient Boosting 
Machine (LightGBM), and Gated Recurrent Units 
(GRU). Model performance was evaluated using 
metrics such as precision, recall, and F1-score for 
each class, along with overall accuracy, macro-
average, weighted-average, and a confusion matrix to 
analyse classification outcomes. 

4 DATASETS 

To develop and evaluate AI models for activity 
recognition in dementia care, this study analysed 30 
publicly available datasets commonly used in 
wearable activity and health monitoring research. 
These datasets were selected to explore their 
applicability in detecting activities relevant to 
dementia, such as walking, eating, sleeping, and fall-
related movements. 
 
 
 

4.1 Sensors 

In this study, a total of 30 datasets were analysed to 
examine the types of sensors utilized for wearable 
activity and health monitoring systems.  

Among these datasets, the most used sensors were 
accelerometers (ACC), which appeared in 22 datasets 
when combining data from wrist-mounted, chest-
mounted, and general-purpose accelerometers. 
Accelerometers are foundational in wearable systems 
due to their ability to capture motion data, making 
them versatile for applications such as activity 
detection, fall monitoring, and posture analysis. 

Gyroscopes (GYR) were the second most frequent 
sensor type, featured in 16 datasets. These sensors 
provide rotational motion data, complementing 
accelerometers in capturing more detailed movement 
patterns, especially for activities involving complex or 
rotational motions.  

Heart rate (HR) sensors were present in 8 datasets, 
often used for applications requiring cardiovascular 
activity tracking. 

Other sensors, such as temperature (TEMP) 
sensors and electrocardiograms (ECG), were found in 
6 datasets each, highlighting their role in physiological 
and health monitoring. Electrodermal activity (EDA) 
sensors, which measure skin conductance changes and 
are used for stress detection, were utilized in 5 
datasets. Additionally, respiration (RESP), oxygen 
saturation (SpO2), and photoplethysmography (PPG) 
sensors were included in a smaller number of datasets, 
primarily focusing on health monitoring and specific 
physiological applications. Figure 1 provides a visual 
representation of the number of datasets utilizing each 
sensor type. This analysis underscores the importance  

 
Figure 1: Frequency of Sensor Types Used in the Datasets 
- Accelerometer (ACC, m/s²); Gyroscope (GYR, rad/s); 
Heart Rate (HR, bpm); Temperature (TEMP, °C); 
Electrocardiography (ECG, mV); Electrodermal Activity 
(EDA, μS); Photoplethysmogram (PPG); Respiration 
(RESP, bpm); Oxygen Saturation (SpO2, %). The vertical 
axis represents the count of datasets containing each sensor 
type. 
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of accelerometers and gyroscopes as fundamental 
components in wearable systems for activity 
detection. However, the integration of physiological 
sensors, such as HR combines physical and health data 
to develop more comprehensive monitoring systems.  

4.2 Participants Demographics 

The demographic composition of participants in 
wearable datasets is crucial for developing activity 
recognition models tailored to elderly individuals 
with dementia. Since dementia predominantly affects 
older populations, datasets used for model training 
must reflect the physiological and behavioural 
characteristics of this demographic. Discrepancies in 
age, gender, or participant diversity can lead to 
models that fail to generalize effectively to real-world 
applications in dementia care.  

The total number of participants across datasets 
varies significantly. Larger datasets such as the 
Parkinsons Disease Smartwatch dataset (PADS) 
(Julian et al., 2024), with 469 participants, and the 
Sleep Health and Lifestyle Dataset (Tharmalingam, 
2023), with 374 participants. In contrast, smaller 
datasets like the OPPORTUNITY Activity 
Recognition (Roggen, Alberto, et al., 2010), and the 
Smartwatch Heart Rate Data Dataset (Biswas & 
Ashili, 2023), involve only a single participant.  

The age range of participants varies, with most of 
the datasets focus on adults with a median age of 20-
30 years, some of them being the Physical Activity 
Monitoring Dataset PAMAP2 (Attila, 2012), 
Objectively Recognizing Eating Behaviour and 
Associated Intake (OREBA) (Rouast et al., 2020), 
and Annotated Wearable Multimodal Biosignals 
recorded during Everyday Life Activities in 
Naturalistic Environments (ScientISST MOVE) 
(Saraiva et al., 2024), Figure 2.  

Datasets targeting specific populations, like the 
elderly, include an older demographic. For example, 

the Wrist Elderly Daily Activity and Fall Dataset 
(WEDA-FALL) (Marques, 2022) has participants 
with a mean age of 50.48 years, while the Long-Term 
Movement Monitoring Database (Ihlen et al., 2015) 
includes participants aged 65–78 years. 

Several datasets report near-equal gender 
representation. For example, the Sleep Health and 
Lifestyle Dataset (Tharmalingam, 2023) has a 51% 
male and 49% female split, enhancing model fairness 
and applicability across both genders. While others, 
such as the Wearable Stress and Affect Detection 
(WESAD) (Schmidt et al., 2018), are male 
dominated, with only 20% female participants, such 
biases may lead to models that underperform for 
underrepresented groups. 

4.3 Duration of Recordings  

To accurately model and monitor daily routines, 
datasets must capture a representative snapshot of an 
individual's activities throughout the day. Short 
recordings may only provide fragmented insights, 
while longer recordings enable a view of patterns, 
deviations, and anomalies. Extended datasets are 
particularly important for identifying changes in 
routines, such as prolonged inactivity, increased 
wandering, or disruptions in sleep patterns, which are 
critical indicators for dementia care.  

For example, the Long-Term Movement 
Monitoring Database (Ihlen et al., 2015) provides 3 
days of continuous data, the Smartwatch heart rate 
data (Biswas & Ashili, 2023), includes 1 month of 
data, and the Clemson All-day Dataset (CAD) 
(Hoover, 2020) spans for 354 days, making these 
datasets ideal for tracking routine behaviours over 
multiple days. 

In contrast, the remaining 25 datasets in the 
review capture data for durations shorter than 24 
hours, limiting their applicability for in-depth routine 
analysis, Figure 3.  

 
Figure 2: Age Distributions in Research Databases. 
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Figure 3: Duration Breakdown of Data Recordings. 

4.4 Recorded Activities   

Monitoring daily routines requires datasets that 
contain a wide range of activities typically performed 
throughout the day. This includes basic activities like 
walking, sitting, sleeping and eating, as well as more 
complex or irregular behaviours such as hygiene 
routines, wandering, or falling movements, as seen on 
Table 1. 

Walking is the most frequently recorded activity 
across the datasets, appearing in 40% (12 datasets) of 
the reviewed datasets. Eating activities, essential for 
monitoring nutritional health and independence, are 
labelled in 20% (6 datasets). Sitting and sleeping 
activities are recorded in 13.3% (4 datasets) each, 
highlighting a focus on sedentary and rest-related 
behaviours.  

In addition to these activities several datasets (11) 
include labels for miscellaneous activities that 
provide unique insights into daily routines and 
specific behaviours. For instance, the 
OPPORTUNITY dataset (Roggen, Alberto, et al., 
2010) includes activities like "opening a door" and 
"drinking water," used for recognizing fine-grained 
motor skills. The PAMAP2 dataset (Attila, 2012) 
features labelled activities such as "ascending stairs", 
“descending stairs”, “watching TV”, “standing” and 
"house cleaning," capturing more dynamic and 
context-specific movements, particularly useful for 
training models that aim to recognize household 
activities. The WEDA-FALL dataset (Marques, 
2022) focuses on fall-related activities and recovery 
movements, critical for fall detection systems, 
similarly, the Long-Term Movement Monitoring 
Database (Ihlen et al., 2015)focuses on prolonged 
activity tracking, offering continuous movement data 
collected over several days from older adults. Other 
datasets, like the ScientISST MOVE dataset (Saraiva 

et al., 2024), include transitions between activities 
such as "standing-to-sitting" and "sitting-to-lying," 
relevant for understanding changes in posture or 
transitions that may indicate health issues. The 
OREBA dataset (Rouast et al., 2020) targets eating 
behaviours by providing multimodal data for 
recognizing eating gestures and associated intake, 
contributing to dietary monitoring. The Sleep Health 
and Lifestyle Dataset (Tharmalingam, 2023) on the 
other hand, focuses on sleep patterns and lifestyle 
habits capturing detailed sleep metrics such as 
duration, efficiency, and disruptions, which are vital 
for understanding circadian rhythm irregularities 
often observed in dementia patients. 

The WESAD (Schmidt et al., 2018), are focused 
on stress recognition, providing labelled data for 
different emotional states, including stress, 
amusement, and neutral conditions. These datasets 
often integrate physiological signals, such as heart 
rate variability (HRV), electrodermal activity (EDA), 
and respiratory patterns, alongside motion data. 

Each of these datasets provides unique insights 
and data characteristics that enrich the development 
of AI models, enabling more comprehensive and 
accurate activity recognition systems tailored to 
dementia care. 

5 MODEL PERFORMANCE 
ANALYSIS 

To evaluate the effectiveness of machine learning 
models in activity recognition, we analysed the 
performance of multiple algorithms across various 
datasets. This section summarizes the results obtained 
for each dataset. Performance metrics, including 
precision, recall, and F1-score, were evaluated for 
models like Random Forest, K-Nearest Neighbors 
(KNN), and Gradient Boosting. 

5.1 MMASH Dataset 

The MMASH (Multimodal Activity Recognition in 
Smart Home Environments) (Rossi et al., 2020) 
dataset is a comprehensive dataset designed for 
activity recognition research. It includes data from 
multiple sensor types such as accelerometers, 
gyroscopes, magnetometers, and physiological 
sensors. Covering a wide range of activities, including 
basic actions like sitting, walking, and lying down, as 
well as complex activities such as eating or 
performing household tasks. 
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Table 1: Activity Types Captured in Wearable Activity Recognition Datasets. 

Ref./ Activity Walk Sit Sleep Eat Fall Miscellaneous 

(Saraiva et al., 2024) x     x 
(Guy et al., 2024)      x 
(Nicoomanesh, 2024) x  x    
(Julian et al., 2024)       
(Godzwon, 2024)       
(Tharmalingam, 2023) x  x   x 
(Grimaldi et al., 2023) x x   x  
(Mehrgardt et al., 2022)       
(Amin et al., 2022)       
(Marques, 2022) x    x x 
(Karas et al., 2021) x     x 
(Rossi et al., 2020) x x x x  x 
(Fuller, 2020) x x    x 
(Hoover, 2020)    x   
(Rouast et al., 2020)    x   
(J. Kim, 2020)     x x 
(Walch, 2019) x  x    
(Kyritsis et al., 2019)    x   
(Schmidt et al., 2018)       
(Jafarnejad, 2018)       
(Bhogal & Mani, 2017)       
(Jarchi & Casson, 2017) x     x 
(Kyritsis et al., 2017)    x   
(Ihlen et al., 2015)     x  
(Banos et al., 2014) x x  x x x 
(Attila, 2012) x     x 
(Roggen, Calatroni, et al., 2010)       
(Jager et al., 2003)       
(Moody & Mark, 2001)       

 
Both the XGBoost and LigthGBM models 

consistently achieved higher accuracy, and F1-scores 
compared to other models. For instance, the 
XGBoost, demonstrated strong generalization with 
higher overall accuracy and consistently balanced 
precision and recall across activities, including 
underrepresented classes. With the LightGBM 
outperforming in handling imbalanced data, 
particularly for rare activities.  

The Random Forest and Gradient Boosting 
models performed best for the generalized activities 
with large support values, such as sitting. However, 

the model struggled with specific or underrepresented 
activities such as large screen usage and sleeping.  

Comparing to other models, the KNN 
underperformed, presenting low precision and recall 
values for most activities, due to the class imbalance.  

5.2 ScientISST Dataset 

The ScientISST Dataset (Saraiva et al., 2024) is a 
comprehensive and multimodal dataset designed for 
human activity and gesture recognition. It is 
particularly valuable for developing and evaluating 
machine learning models in scenarios requiring high 
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precision and robustness, such as healthcare, 
wearable technology, and human-computer 
interaction. 

The KNN and Random Forest models 
outperformed the other models, achieving nearly 
perfect results across most activities for accuracy, 
precision and F1-score, apart from the less frequent 
activities. 

The CNN and GRU models performed well in 
recognizing frequent and sequential activities. CNN 
excelled at extracting spatial features, achieving high 
F1-scores for structured tasks like "Run" (0.95) and 
dynamic movements like "Jumps" (0.74). GRU 
effectively captured temporal dependencies, making 
it ideal for activities with transitions, such as "Lift" 
(F1-score: 0.83) and "Run" (F1-score: 0.93). The 
SVM model showed strong performance for well-
separated and frequent activities. The MLP model 
demonstrated consistent performance for frequent 
and distinct activities, achieving an F1-score of 0.97 
for "Run." 

All models, however, struggled with nuanced 
gestures like "Greetings" and “jump” presenting 
reduced precision and recall. 

5.3 PAMAP2 Dataset 

The PAMAP2 (Physical Activity Monitoring for 
Aging People 2) (Attila, 2012) dataset is a collection 
of data designed to facilitate the development and 
evaluation of activity recognition algorithms. This 
dataset is widely utilized in the field of wearable 
computing and health monitoring, particularly for 
applications involving elderly care and fitness 
tracking. 

The Random Forest and XGBoost models exhibit 
stellar performance, with nearly perfect precision, 
recall, and F1-scores close to 100% across a wide 
range of activities. This performance indicates their 
robust predictive capabilities and adaptability in 
managing diverse data types, particularly in complex 
activity scenarios such as 'nordic walking' and 
'cycling'.  

In a similar way, LightGBM, a gradient boosting 
model optimized for speed and reduced memory 
usage, offers substantial advantages for real-time 
activity recognition applications. Combining the 
robust framework of gradient boosting with 
enhancements designed to improve processing speed 
and efficiency, making it competitive for applications 
where quick response times are crucial. 

The KNN model showed moderate performance 
with an overall accuracy of 91%. While it performed 
well on frequent activities like "Sitting" (F1-score: 

0.98) and "Cycling" (F1-score: 0.96), its performance 
dropped for more complex and underrepresented 
activities, such as "Ascending Stairs" (F1-score: 0.74) 
and "Descending Stairs" (F1-score: 0.72). 

The Logistic Regression model shows varying 
performance across different activities, reflecting 
some fundamental limitations in handling complex, 
multiclass problems. While it performs commendably 
in activities with clear distinctions, such as 'lying' and 
'ironing', it faces challenges in activities requiring 
nuanced differentiation, such as 'standing' versus 
'sitting'. This variation highlights the need for 
sophisticated feature engineering or advanced data 
preprocessing to bolster its effectiveness in more 
complex scenarios. 

6 DISCUSSION  

The findings of this study provide important insights 
into the development and optimization of AI models 
and wearable technologies for activity recognition in 
dementia care. However, a significant challenge is the 
lack of comprehensive datasets tailored to the unique 
requirements of this domain. Current datasets 
predominantly feature younger adults, offering 
limited representation of older individuals who are 
most affected by dementia, thereby reducing the 
applicability of AI models to the intended population. 
Additionally, existing datasets often fail to cover the 
full range of activities relevant to dementia care, such 
as hygiene routines, eating behaviors, wandering, and 
fall-related movements. This lack of comprehensive 
activity coverage limits the ability of AI systems to 
monitor the complex behaviors associated with 
dementia effectively. 

Another limitation is the prevalence of short-
duration recordings, which are insufficient for 
analyzing long-term activity patterns and deviations 
that are critical for dementia monitoring and detecting 
changes in routine or health status. Furthermore, most 
datasets are collected in controlled environments, 
which fail to capture the complexity and variability of 
real-world settings, such as homes or assisted living 
facilities where dementia patients typically reside. 
This discrepancy reduces the robustness and 
generalizability of models trained on such data. 
Additionally, many datasets suffer from significant 
class imbalances, with underrepresented activities 
leading to poor model performance for these specific 
behaviors. Addressing these limitations is essential to 
develop AI-driven wearable solutions that are 
accurate, robust, and capable of meeting the practical 
needs of dementia care. 
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Future datasets should prioritize the inclusion of 
elderly participants representing diverse genders and 
cognitive stages, ensuring that the data accurately 
reflects the population most affected by dementia. 
These datasets should aim to capture a comprehensive 
range of activities, including eating, hygiene routines, 
wandering, fall recovery, and activity transitions, as 
well as nighttime behaviours. To enable a deeper 
understanding of daily routines and their variations, it 
is essential to include long-duration recordings 
spanning multiple days or even weeks. Collecting 
data in naturalistic environments, such as homes or 
care facilities, will further enhance the validity of the 
datasets and significantly improve the robustness and 
generalizability of AI models developed for dementia 
care. 

The performance evaluation of the AI models in 
this study highlights the strengths and limitations of 
different approaches for activity recognition in 
dementia care. Models such as Random Forest (RF), 
XGBoost, and LightGBM consistently demonstrated 
robust performance, excelling in handling class 
imbalances and accurately recognizing well-defined 
activities like walking, running, and sitting. Their 
resilience to noisy data and ability to generalize 
across common activity classes make them reliable 
choices for general activity monitoring. 

However, despite these promising results, all 
models faced challenges in identifying less frequent 
and more nuanced activities, such as eating or 
transitions, due to limitations in dataset quality and 
class imbalances. The underrepresentation of these 
critical activities in the datasets hindered model 
performance, leading to reduced precision and recall 
for these classes. Moreover, the prevalence of short-
duration recordings further constrained the models' 
ability to analyze long-term activity patterns, limiting 
their effectiveness in detecting behavioral trends and 
anomalies essential for dementia care. 

These findings underscore the necessity of 
selecting and tailoring models based on specific 
application requirements. For general activity 
recognition tasks, tree-based models like XGBoost 
and LightGBM offer strong performance and 
efficiency. In contrast, deep learning approaches, 
such as CNNs and GRUs, are better suited for tasks 
that require detailed temporal and spatial analysis, 
particularly when handling complex or transitional 
activities. Addressing dataset limitations, including 
activity coverage, class balance, and recording 
duration, will be critical for enhancing model 
performance and ensuring their practical applicability 
in real-world dementia care scenarios. 

7 CONCLUSION 

This study highlights the potential of AI models and 
wearable technologies for activity recognition in 
dementia care, demonstrating the strengths of tree-
based models like Random Forest, XGBoost, and 
LightGBM in handling class imbalances and 
recognizing common activities, as well as the 
capabilities of deep learning models such as CNNs 
and GRUs in capturing complex patterns and 
transitions. However, significant challenges remain, 
including the lack of comprehensive datasets that 
adequately represent the elderly population, 
encompass a diverse range of activities, and provide 
long-duration recordings in real-world environments. 
These limitations reduce the generalizability and 
effectiveness of AI models in detecting nuanced 
behaviors and long-term activity patterns critical for 
dementia monitoring. 

To address these gaps, future research should 
focus on developing tailored datasets with enhanced 
demographic diversity, extended recordings, and 
realistic environmental contexts. Combining 
traditional and deep learning models into hybrid 
approaches can further optimize performance, while 
energy-efficient AI solutions will ensure real-time 
monitoring capabilities for wearable devices. By 
overcoming these challenges, AI-powered wearable 
technologies can play a transformative role in 
dementia care, enabling accurate activity recognition, 
early intervention, and improved quality of life for 
patients while reducing the burden on caregivers. 
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