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Abstract: The use of Large Language Models (LLMs) for autonomously generating code has become a topic of interest in
emerging technologies. As the technology improves, new possibilities for LLMs use in programming continue
to expand such as code refactoring, security enhancements, and legacy application upgrades. Nowadays,
a large number of web applications on the internet are outdated, raising challenges related to security and
reliability. Many companies continue to use these applications because upgrading to the latest technologies is
often a complex and costly task. To this end, we proposed LLM based multi-agent system that autonomously
upgrade the legacy web application into latest version. The proposed multi-agent system distributes tasks
across multiple phases and updates all files to the latest version. To evaluate the proposed multi-agent system,
we utilized Zero-Shot Learning (ZSL) and One-Shot Learning (OSL) prompts, providing the same instructions
for both. The evaluation process was conducted by updating a number of view files in the application and
counting the amount and type of errors in the resulting files. In more complex tasks, the amount of succeeded
requirements was counted. The prompts were run with the proposed system and with the LLM as a standalone.
The process was repeated multiple times to take the stochastic nature of LLM’s into account. The result
indicates that the proposed system is able to keep context of the updating process across various tasks and
multiple agents. The system could return better solutions compared to the base model in some test cases.
Based on the evaluation, the system contributes as a working foundation for future model implementations
with existing code. The study also shows the capability of LLM to update small outdated files with high
precision, even with basic prompts. The code is publicly available on GitHub: https://github.com/alasalm1/
Multi-agent-pipeline.

1 INTRODUCTION

Generative Artificial Intelligence (GAI) has advanced
rapidly in the previous years. With the network model
transformer proposed in (Vaswani, 2017), the previ-
ous computational limitations related to neural net-
works has been passed. Compared to earlier ar-
chitectures like Recurrent Neural Networks (RNNs),
transformers are capable of being parallelized, allow-
ing tokens to be processed simultaneously in a self-
attention mechanism (Vaswani, 2017). This allows
efficient scalable computation of generative models in
a graphical/tensor processing units, leading their pos-
sible size to grow greatly.

Generative models performance improves when
their size is increased as demonstrated in language
models by (Kaplan et al., 2020). Large Language

Models (LLMs) with advanced transformer architec-
tures, such as Generative Pre-trained Transformers
(GPTs) (Radford and Narasimhan, 2018) and Bidi-
rectional Encoder Representations from Transformers
(BERTs) (Devlin et al., 2018), have emerged as siz-
able and influential models in natural language pro-
cessing.

With LLM’s improving as larger and better trained
models are introduced, the question arises as to
whether the models could be used to update exist-
ing applications. The internet hosts a huge number of
websites that contain deprecated components, which
may affect their functionality and compatibility with
modern standards. According to (Demir et al., 2021),
95% of the analyzed 5.6 million web applications had
at least one deprecated component. Updating an ap-
plication takes notable resources which grows with
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the technical debt and eventually it becomes depre-
cated. The application owners are often stuck with the
application as it is crucial to the business and updat-
ing is not possible without a big investment (Ali et al.,
2020). Challenges arise in safety (Smyth, 2023; Sami
et al., 2024), usability (Ali et al., 2020), (Rasheed
et al., 2024b), and compatibility (Antal et al., 2016)
of the web applications due to companies’ hesitation
to undertake complex and potentially cost-ineffective
operations.

In this study, we propose a multi-agent system
to conduct a complex set of operations in phases for
updating legacy application files. Each agent is as-
signed specific tasks, working collaboratively to ac-
complish the overall objective. For instance, a verifi-
cation agent gives feedback for every executed imple-
mentation phase to ensure that phase’s validity. The
results of the proposed system were then tested us-
ing Zero-Shot Learning (ZSL) and One-Shot Learn-
ing (OSL) prompts (Brown et al., 2020) to assess the
system’s suitability for the process and the overall ca-
pability of current LLMs to implement the update.

We conducted the comparison and evaluation of
the system by using it to update six view files’ web
framework compatibility in a legacy web application.
We used A ZSL prompt in comparison with five files
and an OSL prompt with two files against the system.
We counted the same error once during the evaluation,
giving a suitable metric to evaluate the performance of
the operation. In more complex tasks, we counted the
completed requirements to evaluate problem-solving
in more challenging scenarios. The results show that
the system updated a file with 0.46 different errors
higher when compared against the best prompt imple-
mentation, on average. The results regarding require-
ments were varied with one task completed better by
the system and one task completed with a lower per-
formance than the compared prompt. The evaluation
results are publicly available for validating the study
(Tampere University and Rasheed, 2025).

Below our contribution can be summarized as fol-
lows:

• The proposed system is designed to autonomously
update legacy web applications to the latest ver-
sion using a multi-agent system.

• The system was evaluated using an existing legacy
web application and updating view files belonging
to it. Then depending on the task, errors or ful-
filled requirements were counted. The system had
0.406 more errors on average and varying perfor-
mance in the requirements depending on the task.

• The system was compared to the standalone
prompts giving perspective of the systems func-

tionality and overall capability of LLM to imple-
ment code updating tasks.

• We publicly released the evaluation results dataset
to access all the collected data for validating our
study (Tampere University and Rasheed, 2025).

The rest of the paper is organized as follows: Sec-
tion 2 presents a background study on code generation
using LLMs. Section 3 explains the methodology of
this paper, followed by the results in Section 4. Sec-
tion 5 discusses the implications and future directions
of the results, and the study concludes in Section 6.

2 BACKGROUND

2.1 Code Generation Using AI Agents

Lately, various studies have implemented different
agent systems to improve code generation in LLM’s
(Rasheed et al., 2023), (Rasheed et al., 2024c). This
subsection investigates different implementations and
their observed benefits compared to baseline code
generation using LLM.

The ability of using a self-feedback loop to im-
prove code output has been observed in Madaan et
al. (Madaan et al., 2024) with implementation of
SELF-REFINE. It consists of a base prompt, a feed-
back prompt and a refiner prompt in which feed-
back system gives feedback of the base result and re-
finer improves it iteratively. SELF-REFINE had 8.7%
improvement in GPT-4 model in code optimization
(Madaan et al., 2024).

In another implementation called Reflexion stud-
ied in Shinn et al. (Shinn et al., 2024) an agent was
connected to an evaluator which gave numeric evalu-
ation of the agent output in the given operation. This
was then processed in a self-reflection system which
added textual reflective analysis in the agents mem-
ory to be used in the next outputs. Reflexion could
perform in the HumanEval benchmark, a dataset con-
taining Python programming, with the result of 91.0%
(Shinn et al., 2024).

One way of improvement has been testing the pro-
duced code to get a real feedback whether the pro-
duced code works. In Huang et al. (Huang et al.,
2023) system called AgentCoder was proposed. In
the system one agent was tasked to produce code, the
second one was tasked to invent test cases to the code
and the last agent executed the test cases and pro-
vided results from the test to other agents. A feedback
loop based on a real testing data achieved 32.7% bet-
ter compared to ZSL prompt of GPT-4 (Huang et al.,
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2023). In HumanEval it obtained similar result as Re-
flexion, resulting in 91.5% score (Huang et al., 2023).

Another implementation based on testing was cre-
ated in Zhong et al. (Zhong et al., 2024) named Large
Language Debugger (LDB). In the system an agent
generated program was divided into control blocks
and then individual test cases were created and exe-
cuted to each block by the agent-model. With LDB
connected to Reflexion framework the resulting Hu-
manEval percentage was measured in 95.1% (Zhong
et al., 2024).

Based on these studies, both self reflection of an
agent and testing of the produced code did result in
a remarkable rise of quality in code output in LLMs.
The combination of both in the same system did give
the highest result, making them possibly mutually re-
inforcing in code generation quality.

2.2 Challenges in LLM Generated Code

The code generated by LLM has challenges that have
been recognized in the literature. During background
study, following challenges were found in three stud-
ies focusing on recognizing them:

Challenges in code generation using LLM

• The quality of the produced code decreases with the length
of the code and the difficulty of the task (Liu et al., 2024b;
Dou et al., 2024; Chong et al., 2024).

• LLM does not always consider the requirements of the user,
or those which are needed for reliable and safe code (Liu
et al., 2024b; Dou et al., 2024; Chong et al., 2024).

• LLM can find problems in the code that do not exist when
asked to give feedback from it (Liu et al., 2024b; Chong
et al., 2024).

The quality decrease of the LLM code by length
and difficulty was found in two studies. In (Liu et al.,
2024b) LLM’s ability to solve different Python and
Java coding tasks was tested. Based on the study
findings the probability of returned code working cor-
rectly decreases with harder code tasks and the length
of the produced code. In another study (Dou et al.,
2024), different programming tasks were generated
by different LLMs and evaluated by syntax, runtime,
and LLM’s functionality errors. The study found an
increased failure rate with more code lines, code com-
plexity, and required API calls to produce code. In
(Chong et al., 2024) the security of LLM-generated
code was evaluated. The findings show that creating a
memory buffer correctly in complex tasks, for exam-
ple, the multiplication of two floats had a much lower
success rate of 1.5% than in an easier task like sub-
tracting a float from an integer with a success rate of

50.1% (Chong et al., 2024).
LLM also has problems producing reliable,

safe code and occasionally failing the user request
(Rasheed et al., 2024d), (Sami et al., 2025). In Liu
et al. errors found in the code were mostly related
to wrong outputs (27%) and badly styled and lowly
maintainable code (47%) while runtime errors were
much lower (4%) (Liu et al., 2024b). The badly styled
and lowly maintainable code included categories like
a redundant modifier, ambiguously named variables,
and too many local variables in a function or method.
Dou et al. found that the LLM’s functionality is the
most notable reason for bugs in the code, particu-
larly misunderstanding of the provided problem and
logical errors in the code (Dou et al., 2024). This
included, for example, failed corner case checking,
undefined conditional branches, and a complete mis-
understanding of the provided problem. Chong et
al. compared LLM code to human-generated code in
220 files. The study found that while LLM generates
fewer lines of code, the code lacks defensive program-
ming that exists in the human-written code (Chong
et al., 2024). Additionally, an SHA generation algo-
rithm was provided by LLM as a faulty version while
AES and MD5 succeeded, making the completion of
similar tasks unreliable (Chong et al., 2024).

The studies found that while a feedback loop can
improve code generation it can also cause additional
errors to the code. Liu et al found that giving feed-
back improves produced code up to 60% but with a
possibility of additional errors added to the code (Liu
et al., 2024b). Chong et al. found that the LLM can
generate new security problems in the code by a feed-
back loop and not just remove them, especially if the
file does not contain problems in the first place.

When compared to the studies of multi-agent sys-
tems, it seems that observed challenges can be im-
proved with the help of a multi-agent system. The
observed improvement of self-feedback (Liu et al.,
2024b; Chong et al., 2024), has been implemented
in (Madaan et al., 2024; Shinn et al., 2024; Huang
et al., 2023; Zhong et al., 2024), resulting in im-
provement in the code evaluation metrics despite the
risks of additional errors. Additional improvement
using test results in (Huang et al., 2023; Zhong et al.,
2024), can also be seen as a way to solve LLM’s
problems in functionality as observed in (Dou et al.,
2024). As multi-agent systems have been shown to
add value to code generation in LLM by being able
to address some of its challenges, the proposed multi-
agent pipeline is expected to add value in updating
code in software.
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2.3 Challenges in Upgrading Legacy
Applications

Legacy systems are outdated implementations by
used technologies and programming languages with
hardware, software, and other parts of the system be-
ing possibly obsolete (Sommerville, 2016). When it
comes to strategies for dealing with legacy systems
the possibilities are disposing of the system, keep-
ing the system as such, and re-engineering or replac-
ing components in the legacy system (Sommerville,
2016). In this study, the focus is on re-engineering
and replacing components on the application side
with the help of a multi-agent system. Below is a
summary of found challenges in legacy applications
based on case studies:

Challenges in updating legacy applications

• The programmers can have knowledge gaps in either old or
new technologies of a legacy application (De Marco et al.,
2018; Fritzsch et al., 2019).

• Identifying updated components’ input, output, and code
functionality is a demanding, time taking task in legacy ap-
plications (De Marco et al., 2018; Vesić and Laković, 2023).

• Breaking the updating process down into smaller parts and
successfully managing them is a challenge in legacy appli-
cations (De Marco et al., 2018; Fritzsch et al., 2019).

First, programmers might have knowledge gaps in
technology either in the original legacy application or
the new version. As mentioned by (De Marco et al.,
2018), a legacy mainframe application was migrated
to Linux servers with changes to the database and a
transition in programming language from COBOL to
Java. With feature development, the paper mentions
that the COBOL team has challenges with Java pro-
gramming language and vice versa, causing a knowl-
edge gap between the teams (De Marco et al., 2018).
In Fritzsch et al. 14 legacy applications in different
stages of migration to microservices were analysed
(Fritzsch et al., 2019). When it came to the recog-
nized challenges in the migration, the lack of exper-
tise was the shared first cause as knowledge of mi-
croservice architecture was not high enough with the
developers (Fritzsch et al., 2019).

Second, a component of a legacy application has
a challenging task to correctly recognize correct in-
put, output, and code functionality. In De Marco et
al. the testing phase of the migration caused one-year
delay for the project. The reason for this included
a lack of high-level tests that made recognizing in-
put, output, and inner functionalities of a component
a time-taking task (De Marco et al., 2018). Addi-
tionally, obsolete code took time to correctly identify

its functionality inside a component (De Marco et al.,
2018). In (Vesić and Laković, 2023) a framework for
legacy system evaluation was presented with an anal-
yse of an existing legacy system. During the analysis
the studied information system of water and sewerage
disposal company showed multiple problems. The
system lacked proper documentation, lack of person-
nel and people with knowledge of the whole system,
and poor software architecture (Vesić and Laković,
2023). These problems shows that if the software side
were updated, identifying of the component’s behav-
ior would be a complex task as in the (De Marco et al.,
2018).

Lastly, breaking the legacy system update into
smaller tasks and managing them is a recognised chal-
lenge. In Fritzsch et al. decomposition of the ap-
plication was the second shared first reason for tech-
nical challenges in studied projects (Fritzsch et al.,
2019). In De Marco et al. the decomposited work
packets were tried to be used to successfully forecast
the project duration but failed due to differences in
batch-orientation (De Marco et al., 2018).

As stated in section 1, at least one component
is considered obsolete in 95% of web applications
(Demir et al., 2021), making the problem relevant in
the industry. The recognized challenges found in up-
dating legacy systems could be solved with the help
of an LLM. As LLM can be trained to have knowl-
edge of various technologies (Brown et al., 2020), it
could help with the knowledge gap of project devel-
opers. Additionally, LLM could analyse application
components and save time by understanding the com-
ponent’s functionality. LLM could be used to divide
and manage tasks of the project at different levels.
Combined with the findings of the previous subsec-
tions, a multi-agent system that could provide solu-
tion to these challenges is a relevant option to conduct
upgrades in legacy applications.

3 RESEARCH METHOD

3.1 Research Questions

In this study we propose following two Research
Questions (RQs):

RQ1. How to utilize multi-agent system to up-
date legacy project into latest by refactoring
deprecated code?

The aim of RQ1 is to test the capability of a multi-
agent system to autonomously upgrade legacy web
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Figure 1: Proposed system: Multi-agent pipeline for updating existing code.

applications. This objective focuses on assessing how
effectively the system can modify and enhance out-
dated functionalities by refactoring deprecated code
without manual intervention.

RQ2. How to validate the proposed multi-
agent system?

The aim of RQ2 is to define a suitable met-
ric to validate a multi-agent system meant for au-
tonomously update deprecated code. This objective
focuses on creating a metric and then using it to vali-
date the proposed system.

3.2 Proposed Multi-Agent System

The proposed multi-agent system is referenced
from the CodePori multi-agent system described in
(Rasheed et al., 2024a). In the CodePori system, soft-
ware operating in Python code are generated based
on a given project description instructing the system,
for example, creating a simple game or a face recog-
nizer (Rasheed et al., 2024a). The outcome is gener-
ated by a six agent-framework tasked to operate dif-
ferent software development team roles including a
manager, developers, finalizer, and a verifier.

In the proposed system illustrated in figure 1 the
multi-agent system is designed to modify already ex-
isting code based on the user requirements. The sys-
tem receives an original codebase and the require-
ments from the user as input. In the requirements the
user specifies, what type of operations they want to
commit to the code. For example, updating the code

compatibility from version X to version Y or chang-
ing the libraries that the code uses. The system is
composed of four units which are explained below:

Manager Agent: The manager agent receives the
updating requirements from the user and is tasked to
write them into manageable operations in a chrono-
logical execution order. The tasks are written in
abstract level, which are later defined by the task
pipeline where the list of tasks is send. The manager
agent is asked once before sending the tasks to ensure
that the tasks are in chronological order and overall
related to the requirements.

Task Pipeline: The task pipeline consists of
prompt makers and execution agents illustrated in fig-
ure 1 inside multi-agent pipeline. For every task the
prompt maker agent creates an OSL prompt which is
executed by execution agent. This creates a pipeline
of OSL prompts that are executed sequentially to the
given code. After every task the code is send for the
verification agent for reviewing the completion of the
task. When every task is completed in the pipeline it
will give the updated code as an output for the user.

Verification Agent: The role of the verification
agent is to ensure that a task has been completed. It
will analyse the new version of the code and estimate
whether it satisfies the requirements. If the verifica-
tion agent accepts the task, it will return the code for
the new task in the pipeline. If there is something left
in the task, it will send the code to the finalizer agent.

Finalizer Agent: The finalizer agent makes
changes to the updated code if the verification agent
notices that the tasked operation has not been com-
pleted successfully. After executing changes, the fi-
nalizer agent returns the modified code back to verifi-

Autonomous Legacy Web Application Upgrades Using a Multi-Agent System

189



cation agent for the next analyze. If the feedback loop
between the verification agent and the finalizer agent
exceeds a certain amount of interactions, the finalizer
agent will send the code back to the task pipeline.
This might happen, for example, if the verification
agent starts to hallucinate and find problems that does
not exist.

Expected improvements of the system compared
to ZSL/OSL prompts when updating existing code are
based on the following features:

1. Self-division: The division of code update into
smaller tasks avoids particularly long prompts. As
observed in (Liu et al., 2024a) information in long
prompts is hard to access by LLM’s especially
in the middle of the prompt. As the whole task
prompt contains instructions, the instructions in
the middle will not be necessary completed, caus-
ing task to partially fail.

2. Self-feedback: The output of every task is anal-
ysed on the verifier agent and then possibly im-
proved by the finalizer agent iteratively, generat-
ing a self-feedback loop. As found in the back-
ground studies, self-feedback improves results in
code generation (Liu et al., 2024b; Chong et al.,
2024). As updating the code to a new syntax and
improving it’s functionality keeps code logically
same, the improvement is expected in the output.

3. Self-instructive: Manually writing complex
prompts to instruct LLM for updating existing
code is a hard task for people that are not fa-
miliar with prompt engineering. In (Zamfirescu-
Pereira et al., 2023) non expert prompt writers
were studied, which found problems with over
generalization and human interactive style of writ-
ing prompts resulting in bad performance. With
self-instruction an user needs only to write the
needed task without adding detailed instructions
or examples.

3.3 Evaluation Subjects and Goal

The evaluated legacy web application is built on
CakePHP 1.2, which is a PHP based web framework
with development started in 2005 (CakePHP, 2022).
During this evaluation the main goal was to update
files to version 4.5 of the web framework (CakePHP,
2023) with additional challenges that are related to
each updated file. CakePHP 1.2 was released on
2008 (Koschuetzki, 2008) and CakePHP 4.5 on 2023
(CakePHP, 2023), making the version gap between
the versions 15 years.

CakePHP is built based on Model-View-
Controller (MVC) architecture (CakePHP, 2022)

which is a software design pattern with controller
acting as a mediator between a model and a view.
Between versions 1.2 and 4.5 CakePHP has got
a multiple changes in the design and syntax. For
example, in CakePHP 3.0 the Object–Relational
Mapping (ORM) was re-built (CakePHP, 2024a) and
the required version of PHP was raised to 7.4 in the
version 4.x of CakePHP (CakePHP, 2024b) from the
original PHP version of 4 and 5 (CakePHP, 2022).

We conducted a comparison between the proposed
system and the alternatives with a module consisting
of six view files, which files B-F belonging to the
functionalities of an already updated controller file in
a legacy web application. The web application in this
study is an electronic dictionary described in (Norri
et al., 2020). The dictionary is a search and editing
tool for a Postgres database, which contains infor-
mative data on medieval medical English vocabulary.
The component of five files form a part of the dictio-
nary where medieval medical variants can be searched
based on different features like name, original lan-
guage and wildcards (Norri et al., 2020). The files,
their size and any recognized challenges are seen in
the table 1.

Table 1: Evaluated files.

File LOC Challenges
View A 35 Changed name to access to data
View B 25 Array syntax access
View C 57 Array syntax access
View D 190 Contains JavaScript and PHP
View E 19 Ajax form to be updated to JQuery
View F 118 Four helper functions must be re-

placed

View A is a simple reference list that shows a ref-
erence and terms related to a certain reference iden-
tifier and works as the first test in study. Challenge
related to file update is changed access to data with
different name. View B is tasked to show quotes that
are connected to a specific variant. View B shows
searched variants that are part of a certain quote and
uses the functionalities of View D and E. In both View
B and C, a requirement is to take changed data format
into account as the Controller in the version 4.5 uses
ORM resultsets introduced in CakePHP 3 (CakePHP,
2024c). However, unlike in the normal case where
reference is done by object syntax, the reference must
be done by array syntax with first field-name starting
in a capital letter.

View D is a dynamic list that shows variants based
on their first letter and the language of origin. View C
contains both PHP and JavaScript code to add chal-
lenge to updating process. Unlike in View A and
B, the ORM objects are accessed in a normal nota-
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tion. View E is an Ajax form used in View C which
is needed to be remade with jQuery. Therefore, the
architecture needs to be updated as well along with
updating the CakePHP syntax. View F file is an el-
ement view file which is made to highlight a search
world of the search results in View C file. Besides
of the highlight functionalities, four helper functions
were wanted to be replaced with modern library im-
plementations.

3.4 Evaluation Process

We tested the proposed system against a ZSL and,
when needed, against an OSL prompt to update the
view files. In ZSL, the prompt is defined to not
include any examples of the task, whereas a OSL
prompt includes exactly one example of the given task
(Brown et al., 2020). An OSL prompt is typically
used when a task requires a custom example to guide
the model’s behavior, especially in cases where a ZSL
prompt does not produce the desired results. The use
of prompts as a metric to evaluate LLM techniques
was explored by Ouedraogo et al. (Ouédraogo et al.,
2024), where ZSL and OSL prompts were compared
with different reasoning methods for LLMs.

In a ZSL prompt the GPT-model was asked to
update a view file without any examples. An OSL
prompt included instructions for updating the file with
an example given. The loopback in the system was set
with the maximum of two iterations. We ran the sys-
tem and the compared alternatives with the ChatGPT
4o-mini model (OpenAI, 2024a).

The test was repeated ten times for every
prompt/file to take the stochastic nature of the LLM’s
into account (Brown et al., 2020). When a view file
was tested, the connected controller file was in the
new version of the web framework.

The View files A, B, C, and D were evaluated by
different errors in the code. The evaluation was done
manually with both static and dynamic testing used
to find errors from the updated file. The errors found
were divided into following categories:

1. Fatal Errors: Errors that causes the file to not run,
for example, syntax errors.

2. Runtime Errors: Errors that do not prevent run-
ning the file but are encountered during the usage
of the file.

3. Content Errors: The feature works but its func-
tionality is different than in the original file.

4. Missing/Additional features: The updated file is
missing or have additional features not existing in
the file

5. Failed generation: If the updated file has more
than 7 different type of errors or the answer does
not contain the code the generation is considered
as failed and the evaluation is stopped.

The same error caused by the same mistake was
counted only once to ensure that recurring syntax er-
rors do not disproportionately affect the comparison
with other types of errors. From the results we calcu-
lated Standard Deviation (SD) to measure similarity
of the code generation errors across the repetitions.
The duration of the request was counted along with
the Lines of Code (LOC) in the updated files. The
reasoning behind counting LOC is to analyse whether
there is difference with the length of produced code
between a OSL/ZSL prompt and the system.

For View E and F we refactored entire code based
on complex requirements. The evaluation process
was decided to be ranked based on the requirements it
passes. For every correctly working requirement, we
gave a value of 1 and 0 for incorrect ones. The eval-
uation was conducted manually as the error counting.
The features for View E and F are following:

Requirements for View E and F update

Requirements of View E updated form:

• The form sends data and receives results as expected.

• Dropdown menus show correct suggestions.

• The send button and dropdown objects work as intended.

Requirements of View F highlighting feature:

• The highlighting works in normal case with no special char-
acters or wildcards.

• Highlighting words with special medieval English letters.

• Highlighting works with wildcards with the highlight only
to the part of word where the wildcard was placed in the
search query.

Referring to jQuery file as a URL or a local file
were both accepted. Also data name sent to controller
was slightly different this was also disregarded from
error evaluation. Besides these, no additional errors
were fixed in the evaluation. The results of View F
were evaluated similar to the View E along with the
number of replaced functions with library implemen-
tations. Not replaced functions were used in the file
with added guard to not re-declare them in the testing
process, but otherwise left as they were in the output.

4 RESULTS

In this section, we present the results of our proposed
system. The results of systems suitability are pro-
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vided in Section 4.1, and validation in Section 4.2.

4.1 Suitability of Proposed System for
Updating a Deprecated File (RQ1)

We updated View A file with a following ZSL prompt:

Update whole cakePHP view file from version
1.2 to version 4.5. Change $mainreference
to $bookReference while removing [’Refer-
ence’] between wanted objects, access it ORM
style. Write $term lowercase.

The prompt was added to a framework that in-
cluded the updated code and a request to only return
the updated code. With ZSL the file was returned each
time without errors in average of 7.7 seconds. With
the system the first sentence and remaining sentences
were each a one requirement. The system returned the
file five times correctly with avarage of 0.5 errors in
the file with avarage of 56.8 seconds.

We first attempted to update View B with a ZSL
prompt. The prompt to address this problem was writ-
ten in the following format:

Update CakePHP view file from version 1.2
to version 4.5. Requirement: $quotes is an
ORM\ResultSet made of arrays accessed with
[’Fieldname’][’fieldname’] and must be ac-
cessed so in the updated file.

The prompt returned the updated file in the av-
erage of 1.6 different errors and in average of 2.3
seconds. The prompt failed in all ten times to
use [’Fieldname’][’fieldname’] instead using format
[’fieldname’][’fieldname’]. In a total of six times the
prompt failed to access correctly to the ORM object
resulting in a fatal error. Based on these remarks an
short OSL prompt was created trying to address the
resulted problems in the following format:

Update CakePHP view file from version 1.2
to version 4.5. Requirement: $quotes are
ORM\ResultSets made of arrays accessed
with [’Fieldname’][’fieldname’] and must be
accessed so in the updated file. Example: old
syntax: [’apple’][’lemon’] new syntax: [’Ap-
ple’][’lemon’]. Use function first() instead of
[0] to the ORM object.

Used in the same framework, the results showed
improvement with 0.4 of average amount of errors
in the file. The file was updated correctly in total
of seven times out of ten. As this is a relatively
low average, the prompt was kept such with the ex-
ception of the last sentence removed and tested with
a more complex View C file. The results with the

OSL prompt were once again impressive with aver-
age amount of errors being 0.7 with the file correctly
updated four times.

The ZSL and OSL prompt were next compared
with the proposed system. Based on the testing of the
prompts, the requirement file was written into follow-
ing format:

Requirement1: Update whole CakePHP view
file from version 1.2 to version 4.5.
Requirement2: ORM Arrays must be ac-
cessed with array style syntax [’Field-
name’][’fieldname’] with the first fieldname
starting with a capitalized letter and the sec-
ond only with lowercase letters. Use first()
when referring to first member in the array.

With View C the last sentence was removed. The
system returned view B with an average of 53.2 sec-
onds and 0.6 different errors. One of the runs was a
statistical outlier with the return time of 165 seconds.
The system succeeded four times to return the file cor-
rectly. With View C the system returned it with aver-
age return time of 60 seconds and 1.0 different errors
on average. The system returned the file correctly in
three times.

View D was updated using the system and a ZSL
prompt. As the ORM objects are now accessed with
the normal notation, therefore, prompt could be sim-
plified notably and ZSL was determined to be enough
for the comparision. Following ZSL prompt were
used in the updating process:

Update whole cakePHP view file from ver-
sion 1.2 to version 4.5. Use ORM access with
$variant with direct access to name and id.

The file was returned with an average of 10.7 sec-
onds and an average of 0.3 different errors. In total
of seven times the prompt returned a fully correct file.
With the system, the updating process was conducted
with same prompt with added requirement identifier
for each sentence. The system performed poorer than
a ZSL prompt with an average of errors 1.22 in 67.8
seconds. One generation did fail with the full code
not being generated and is not included in the error
averages.

The values of the evaluation has been collected in
the Table 2. Based on the results, the proposed system
and OSL/ZSL prompt are both capable of updating an
deprecated code file with a high precision. However,
OSL/ZSL prompt seems to perform slightly better in
the evaluated files, especially in the View A and D.
Average lines of code (ALOC) between methods were
similar in size.

During the evaluation we counted the different er-
ror types which are shown in figure 2. Only fatal and
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Table 2: Evaluation of updated View files A, B, C and D.

File Method Different errors SD ALOC Time (s)

View A ZSL 0 0.000 35 7.7

View B ZSL 1.6 0.490 22 2.3

View B OSL 0.4 0.663 22 5

View C OSL 0.7 0.640 57 7.4

View D ZSL 0.3 0.459 160 10.7

View A Syst. 0.5 0.500 36 56.8

View B Syst. 0.6 0.490 24 53.2

View C Syst. 1.0 0.850 60 60.4

View D Syst. 1.22 0.786 164 70.9

runtime errors were found from the generated files.
In View A errors were only encountered in the sys-
tem with around same level of each errro category.
Changing from ZSL to OSL lowered both the fatal
and runtime errors average in View B. Using the sys-
tem the number of fatal errors did decrease further,
but the amount of runtime errors did increase slightly.

In View C changing from OSL to system did
slightly increase the amount of both observed errors.
In View D ZSL did produce only fatal errors but when
switched to system the files did contain runtime er-
rors with notably higher rate than fatal errors observed
in the files using ZSL. Overall, in View B and D the
system did decrease fatal errors and increase runtime
errors while in View A and C both types where in-
creased slightly.

Figure 2: Found error types by method and file.

4.2 Validation of the Proposed System
(RQ2)

We conducted the validation process for the harder
tasks View E and F with a ZSL prompt and the sys-
tem. Following ZSL prompt was made to task the
update in View E:

Update CakePHP version 1.2 ajax form into

CakePHP 4.5 version with jQuery architec-
ture including jquery-3.6.0.min file. Make the
jQuery implementation fully functional ver-
sion with dropdown updated every time the
letter is written to it

With the system the prompt was split into two re-
quirements by sentences. The files were evaluated
based on the requirements and added to Table 3. The
ZSL was able to fulfill the request with a value of 0.5
with once correctly providing completely functional
form. The system had value of 0.9 with the view,
twice giving the fully correct form. The system cre-
ated on average twice as large code file compared to
the ZSL implementation.

Table 3: Passed requirements by average of View E.

Method Regt 1 Regt 2 Regt 3 Total ALOC

ZSL 0.2 0.1 0.2 0.5 42

Syst. (2 tasks) 0.5 0.3 0.2 0.9 86

The ZSL prompt for View F was formed as fol-
lowing with the model divided into two requirements
by sentences:

Update CakePHP element view file from 1.2
to 4.5. Replace functions in the element view
file by ready made PHP libraries or update
them if not found

The results are collected in the table 4. The ZSL
prompt had average requirement value of 1.8 and av-
erage of 3.2 replaced functions (RF) with five files
passing all requirements. With the system dividing
the prompt in the two tasks resulted average require-
ment value of 0.5 with 2.7 RF with no completely
passing version. This was repeated with the system
running with only one task resulting total requirement
value of 1.6 and value of 1.7 in RF with four files pass-
ing the requirements fully.

Table 4: Passed requirements and replaced functions by av-
erage of View F.

Method Regt 1 Regt 2 Regt 3 Total RF ALOC

ZSL 0.7 0.6 0.5 1.8 3.2 42

Syst. (1 task) 0.6 0.6 0.4 1.6 1.7 57

Syst. (2 tasks) 0.3 0 0.2 0.5 2.7 52

The results show that the system performed much
weaker compared to the ZSL prompt when divided
into two subtasks. When the system was run on a sin-
gle task, the results closely aligned with the require-
ments; however, the ZSL prompt successfully re-
placed more functions with library alternatives. Most
issues encountered during file updates were related to
references to non-existent CakePHP functions, high-
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lighting hallucinations commonly found in code gen-
erated by LLMs (Dou et al., 2024).

Based on these tests, the proposed system does
not perform notably better compared to ZSL in more
complex problem solving tasks but in some set-
tings might perform much worse compared to a ZSL
prompt. Overall, the results indicates ability of LLM
to solve complex coding tasks like library replace-
ments and transforming code to work in different li-
brary architectures. The evaluation results are pub-
licly available for further validation (Tampere Univer-
sity and Rasheed, 2025).

5 DISCUSSION

During this study, we updated files belonging to an
existing deprecated web application using GAI. The
results shows that multi agent systems are capable
of updating small deprecated web application files
with a high precision with low rates of error and a
low mean deviation of errors between the genera-
tions. The multi-agent system could provide com-
pletely working versions of code in every studied task
that required, for example, library replacements.

The observed ability of LLM to generate not only
new code but to update existing one has an potential
impact for the software industry. As notable part of
the industry is related for upkeeping existing applica-
tions, the possibility of automatising the upkeep pro-
cess by at least partially by artificial intelligence, will
result in much faster and cheaper process of the appli-
cation updating. Estimations of code maintenance has
been ranged, for example, at 85-90% (Erlikh, 2000)
and 40-80% (Davis, 2009). Automation of mainte-
nance can be expected to lower the percentage con-
siderably, freeing resources of software companies.

The question also rises for LLM’s capability of
transforming existing code across coding languages.
If the context can be kept enough, a system designed
to such task could translate code across coding lan-
guages similar to human languages. This already have
studies (Pan et al., 2024; Eniser et al., 2024), that
shows different methods to translate code in various
languages. However, the translation percentage did
not in either of those studies rise above 50%, indi-
cating that more advancements are still needed in the
field to reach necessary level of quality.

We proposed a multi-agent system called multi-
agent pipeline for completing a code update in se-
quences with a self-feedback loop. The results shows
that ZSL/OSL prompt produces usually better results
compared to the proposed system. There are possible
multiple reasons for this:

Telephone Game: Telephone game is a play
where information is passed in a chain for one player
to another. The longer the game continues more dis-
torted the original message becomes. With a chain of
agents the possibility of code logic starting to cumu-
latively change is a possible reason for lower results.
Despite the verifier agent checking the results com-
pared to the original code, the possibility of distorted
code is still existing if it goes undetected by the ver-
ifier agent. Another risk is the hallucinations which
added to the codebase can create faulty code which
was encountered when updating View F file.

LLM Reasoning Skills: The system used in test-
ing 4o mini might not have the reasoning skills re-
quired to fulfill the tasks of more complex agents like
the verifier or the manager agent. Testing of complex
multi-agent roles needs to be repeated in a more ad-
vanced system and compare results to this study. For
example, new LLM specialised for problem solving
like GPT o1 (OpenAI, 2024b) could make verifica-
tion agent better performing with the potential ability
in problem solving.

Prompt Following: As found in (Dou et al.,
2024) the LLM has challenges to understand the given
task from the prompt. With the proposed system the
prompt following capabilities did not have notable
improvement compared to the tested short prompts
as seen with the fulfilled requirements. The given
prompt might be needed to be sent further processed
with agents before sent to the task-pipeline to lower
risk of task misunderstanding.

Based on these hypothesis for the systems under-
performance, alternative versions of the system are
needed to be explored to investigate their effect on
the performance. Overall the system ability to up-
date files correctly and sometimes better than the
OSL/ZSL makes the system as a foundation for better
refined versions in the future.

Besides of the system improvement other possi-
ble future work are recognized. Based on the back-
ground studies (Huang et al., 2023; Zhong et al.,
2024), having a test bench for code evaluation can
have a positive impact on the outputted code. As fu-
ture work evaluating a multi-agent system with a test
bench might provide way to improve the results.

5.1 Threats to Validity

This paper recognizes limitations and risks associated
with the methods used in this study. First, the eval-
uation being limited to six files due to manual evalu-
ation, risks incomplete comparison between methods
and possible mistakes with the classification of differ-
ent errors. Also validating the results in other stud-
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ies is more challenging without a recognized metric
like HumanEval in studies (Shinn et al., 2024; Huang
et al., 2023; Zhong et al., 2024).

When it comes with the used prompts in this
study, it is important to take into account that different
prompts could give potentially different results. As
prompt engineering with multi-agent models is not a
subject in this study a differently crafted prompt could
give a better result. This is also a possibility with the
OSL/ZSL prompts.

There are also risks with the validity of the pro-
posed system. A possible error in the system could
give false results, for example, if one of the agents
has poor instructions to operate. Lastly, it is impor-
tant to note that the results of the studied files can not
be generalized in other use scenarios and more exten-
sive survey is needed to evaluate code updating abil-
ities across different frameworks, coding languages
and use cases.

6 CONCLUSION

We investicated the capabilities of LLM for updating
existing code using an GPT model in a deprecated
web application. The results shows that LLM’s are ca-
pable of updating small files with high precision using
short ZSL and OSL prompts. This study proposed an
multi-agent system called multi-agent pipeline to im-
prove code to update results of the LLM code output.

The evaluation of the system showed that while
the system is capable of mostly update files like the
alternative ZSL/OSL prompts, it did not offer increase
for performance and, in some cases, under performed
compared to the alternatives. The proposed system
however offers a foundation for future multi-agent
systems designed for code updating. For the future
improvements multi-agent system needs to address
challenges related in updating of existing code.
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