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Abstract: A relatively large proportion of fatalities on our roads are due to sudden illness in drivers, with the majority 

of these cases attributed to cardiovascular disease. Being able to detect and manage these sudden events could 

save many lives. This paper consolidates results from a literature review and three small-scale studies that 

investigated and developed the possibilities of detecting sudden driver illness by measuring physiological 

signals from cardiac activity with unobtrusive sensors including single-lead Electrocardiogram (ECG), 

consumer-grade pulse sensors, and research grade radar technology. In general, the experiments have shown 

that there is potential for the evaluated technologies to help detect and quantify cardiac illness events, but 

significant development is needed to implement the technologies in real-world driving. It is challenging to 

succeed in detecting driver states with high accuracy based on measurements of cardiac activity alone due to 

both individual variations in heart activity patterns and an environment that complicates measurements, and 

additional data from other sensors is probably needed. Physiological monitoring of drivers is challenging due 

to vehicle vibrations, the driver's movements and thick clothing. There is a need for further research and 

development of unobtrusive measurement technologies to detect driver states. 

1 INTRODUCTION 

A non-negligible number of deaths that occur during 

driving are caused by sudden illness of the driver 

(Halinen & Jaussi, 1994; Sjögren et al., 1996; Tervo 

et al., 2013). Therefore, striving towards the vision of 

zero traffic fatalities, the health of the driver and any 

sudden loss of ability to control the vehicle is an 

important factor to address. In most cases, the 

underlaying cause is related to cardiovascular disease 

(CVD), but other sudden pathologies such as syncope 

and diabetic reactions may also be of importance.  

Investigations of real crash data have shown that 

medical conditions are a contributing factor in crash 

causation. In-depth at-scene investigation of 298 road 

crashes in the Adelaide metropolitan area in which at 

least one person was transported to hospital or fatally 

injured as a result of injuries sustained in the crash 
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showed that a medical condition was the main causal 

factor in 13% of the crashes investigated (Lindsay & 

Baldock, 2008). Close to a third of these were 

cardiac-related (Lindsay & Baldock, 2008).  

Moreover, studies have reported that medical 

conditions can be the direct cause for between 1.5 and 

24.7% of all road fatalities (Halinen & Jaussi, 1994; 

Sjögren et al., 1996; Tervo et al., 2013). Some of 

these deaths are due to the disease itself and in other 

cases the medical condition causes a crash where the 

crash impact is the cause of death. Tervo et al. (2008) 

reported that in fatal crashes caused by medical 

conditions, 43% of the deaths were caused by the 

crash impact and 57% were caused by the disease. An 

in-depth study of road fatalities in older drivers in 

Sweden showed that 29% of all road fatalities in 

drivers 50 years or older were attributable to acute 

disease and in 9% of acute disease-triggered crashes, 
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another road user was injured (Skyving et al., 2023). 

Almost all disease related deaths (97.5%) in this study 

were caused by a cardiovascular event. In most 

studies, cardiovascular related conditions are the 

dominating medical conditions related to road 

fatalities (Halinen & Jaussi, 1994; Lindsay & 

Baldock, 2008; Tervo et al., 2008). Other medical 

conditions include aortic rupture, cerebral circulatory 

conditions and epilepsy. Studies have shown that less 

than half of the drivers can stop the car on their own 

in this situation (Büttner et al., 1999; Tervo et al., 

2008).  

By continuously measuring the driver's vital signs 

while driving, it would be possible to take necessary 

safety measures in case a sudden deterioration is 

detected. Survival from a cardiovascular event is in 

some cases possible with fast, appropriate medical 

care. Being able to monitor the onset of sudden 

cardiovascular disease (CVD) in drivers could thus 

save lives by providing valuable information about 

the condition of the driver to first responders, helping 

them to prioritize and allocate resources. Driver 

assistance systems or automatic stop manoeuvres 

triggered by detection of driver incapacitation could 

also limit the effects of a disease episode by 

preventing collisions with other road users. Various 

types of driver monitoring systems already exist in 

new vehicles, and organizations like the European 

New Car Assessment Programme (Euro NCAP) 

emphasize that the next generation of driver 

monitoring systems should be able to detect and 

manage sudden sickness in drivers (Fredriksson et al., 

2021). However, only a limited number of studies 

have examined the detection of critical medical 

conditions in vehicles to date. 

Clinically, cardiovascular conditions such as 

myocardial infarction and cardiac arrest are detected 

by 12-lead Electrocardiogram (ECG) (Lee & Kim, 

2023). From a twelve-lead ECG, where the electrodes 

are placed at standardized positions, very 

comprehensive diagnoses of cardiac infarction as 

well as diagnoses of other cardiopathies can be 

deduced. The morphology of the ECG is then an 

important feature of the signal. Ischemia is typically 

most clearly reflected in changes in ST-segment and 

the T-wave. Depending on the localization of the 

infarction in the cardiac muscle, the signs are more or 

less visible in different leads, thus the need for several 

leads for a good detection of local 

ischemia/infarction. Cardiac arrythmias are seen as 

irregular R-R-intervals and/or as lost synchronization 

between P-wave and R-wave, and they are important 

clues to cardiac problems. Arrythmia detection 

depends less on many leads but put other restrictions 

on the ECG. Assuming an absence of cardiac 

arrythmia, heart rate (HR), sometimes referred to as 

pulse rate or just pulse, can be derived easily from a 

good quality single ECG signal from an arbitrary 

lead, but there are also several other ways of 

recording HR and short term, beat-to-beat variations 

in HR, often referred to as Heart Rate Variability 

(HRV). As HR and HRV are influenced by a 

multitude of factors they alone are poor indicators of 

cardiac distress, but they can provide complementary 

information to other signs.  

Measuring 12-lead ECG is not feasible in vehicles 

during everyday driving. Driver monitoring is 

therefore dependent on measurements of vital signs 

using technology that does not disturb or affect the 

driver, for example via electrodes in the steering 

wheel, sensors in the seatbelt or driver seat, or 

elsewhere in the vehicle (Arakawa, 2021). There are 

different types of sensors that are suitable for use in 

vehicles, it can be via electrodes that measure single 

lead ECG or HR (pulse) when in contact with the 

skin, via light (photoplethysmography), via radar 

sensors, cameras, or other technologies. Another 

challenge is to be able to handle shorter interruptions 

in the measurements and disturbances such as noise 

or artifacts due to non-optimal measurement 

conditions that may occur during driving. 

The aim of this paper is to explore the possibility 

of detecting signs of sudden cardiovascular disease in 

drivers by measuring HR or ECG via sensors in the 

vehicle. This paper consolidates results from a 

literature review and three small-scale exploratory 

studies performed at the Department of Electrical 

Engineering at Chalmers University of Technology to 

provide a comprehensive view of the feasibility of in-

vehicle cardiovascular event detection. The work 

focused on various aspects of cardiovascular disease 

(CVD) detection technologies, including how to 

1) measure HR and/or ECG unobtrusively in vehicles 

2) handle noise and disturbances in physiological 

measurements taken in vehicle environments and 

3) detect specific CVDs in single-lead ECG 

measurements. The rationale being that HR 

measurements were regarded as more likely to be 

implemented for continuous monitoring in vehicles. 

However, one-lead ECG, for instance via steering 

wheel electrodes, might be possible to implement for 

assessment of suspected CVD when an abnormal HR 

has been detected. Results from these studies 

combined with the review of what has already been 

done and is currently being done in the field forms the 

basis for a general assessment of feasibility and 

direction for further research and development. 
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2 SMALL-SCALE STUDIES 

2.1 In-Vehicle HR Measurement Using 
Commercial Wearables 

This study tackled the problem of measuring vital 

data reliably in vehicles (Andersson et al., 2024). 

Vital data was collected in a vehicle during driving 

using different types of measuring equipment 

including ECG with gel electrodes (which was used 

as the gold standard), ECG via chest strap, and HR 

measurement with photoplethysmography (PPG). 

The sensitivity to noise and disturbances was 

compared between different technologies. The 

measurements taken in the car were carried out under 

different conditions; stationary, driving on asphalt, 

and driving on gravel roads. On the gravel road, 

measurements were carried out driving through 

bumps and during hard braking. Reference 

measurements were carried out in stationary vehicles 

with and without the engine running. 

The measurements were carried out with 

commercially available equipment; a Movesense 

chest strap with electrodes and an Inertial 

measurement unit (IMU) integrated in the strap 

(Movesense Oy, Vantaa, Finland), a wrist-worn Polar 

Vantage M (Polar Electro Oy, Kempere, Finland), 

which measures HR using PPG, and a Vitaport II 

single-lead ECG which measures a lead-II ECG using 

gel electrodes placed on the chest (Temec 

Technologies, Heerlen, Netherlands).  

The signals were visually inspected to identify 

when noise, artifacts and other disturbances occurred. 

Signal processing was then performed to reduce noise 

and extract relevant information from the signals. 

Basic filtering was done using bandpass, notch and 

Savitzky-Golay filters. This was tested on signals 

from all sensors to investigate how well different 

types of noise can be handled. The Pan-Tompkins 

algorithm was applied to calculate HR by detecting 

the peaks of the QRS complex in ECG signals (Pan & 

Tompkins, 1985). The method uses bandpass filtering 

and derivation, followed by squaring and integrating 

the signal. 

Baseline drift and noise from the car's vibrations 

were evident in the signals. Baseline drift was 

reduced by signal processing with bandpass filters 

with successful noise reduction in all cases. High 

frequency noise and vibrations could be reduced by 

Savitzky-Golay filtering with a reduced amplitude in 

the signals after filtering. The R-peaks of the ECG 

were easy to identify in the filtered signals, showing 

that the noise is not problematic to reduce, and that 

pulse identification can be easily done. Motion 

artifacts were also present in all measurements. They 

were difficult to filter out and problematic because 

they can distort the signals and make it difficult to 

correctly identify the HR and arrhythmias.  

The chest strap and wrist worn PPG sensor gave 

the same average HR but there were differences in 

individual HR values. The wrist worn PPG sensor 

showed greater variability and was consistently 

deficient in measuring the HR correctly in shorter 

time intervals. Thus, wrist worn PPG is less reliable 

for detection of short-term abnormal HR. 

2.2 Unobtrusive HR Measurement 
Using Radar Technology 

The aim was to investigate the potential for detecting 

signs of sudden illness in the form of arrhythmia 

using radar technology by measuring HR (Björkman 

et al., 2022). This included determining the 

appropriate position of the radar, developing the 

signal processing for both high and low HRs to be 

detected, and investigating whether it was possible to 

measure HR when the subject was wearing a jacket 

and performed movements that mimic driving. 

The radar sensor was the AWR1642BOOST 

manufactured by Texas Instruments. The 

AWR1642BOOST is a Frequency Modulated 

Continuous Wave (FMCW) radar that operates at 77 

GHz and supports a bandwidth of 4 GHz. Three 

different radar sensor positions were examined: in 

front of the chest, next to the left side of the chest and 

behind the left side of the back (Figure 1). For each 

position, measurements were performed at normal 

HR and at high HR (> 100 beats per minute) created 

by physical exertion. Measurements with normal HR 

and high HR were conducted under stationary and 

moving conditions (steering wheel movements). In 

addition, two different jackets were used, a thinner 

and a thicker jacket.  

To study how accurately the radar could detect the 

heart rhythm, a lead-II ECG measured with gel 

electrodes on the chest was used as a reference 

(PLUX Biosignals, Lisbon, Portugal). Signal 

processing was then used to extract information about 

the HR from the radar signal.  

HR detection had the highest accuracy when the 

radar sensor was placed behind the left side of the 

back. In a car, this corresponds to the radar being 

implemented in the driver’s backrest. Regular HR in 

the range of 55-140BPM could be detected with an 

overall accuracy of 91% when the radar was placed 

behind the back and the subjects sat still without a 

jacket.  

 

Feasibility of Driver Monitoring for Sudden Cardiac Illness Detection

1119



 

Figure 1: Experimental setup with the radar sensor placed 

behind the participant. 

The result also showed that it is possible to use the 

FMCW radar to measure the HR even though the 

subject is wearing a jacket. However, the results 

indicate that different materials can affect the 

accuracy. The results from measurements with 

steering wheel movements showed that the radar 

follows the HR from the ECG poorly when automatic 

filtering is used. With manual filtering it was possible 

to achieve a higher accuracy of 82%. 

2.3 CVD Detection Based on  
Single-Lead ECG 

The study by Widengård et al. (2024) focused on 

developing algorithms to detect CVD using databases 

of physiological data (ECG) with signals from patients 

affected by cardiovascular disease. With recent 

advances in machine learning, many studies have 

shown that computerized algorithms can perform 

ECG-based detection of CVD with high accuracy 

(Ansari et al., 2023; Feng et al., 2019; Gibson et al., 

2022; Kora, 2017; Liu et al., 2018; Martin et al., 2021). 

In this study, existing algorithms were further 

developed to work with single-lead ECG, which is 

more realistic to implement in vehicles. 

The ECG data used in this work were taken from 

the database "Physikalisch-Technische Bundesanstalt 

(PTB) Diagnostic ECG Database", abbreviated PTB 

(Bousseljot et al., 1995), as well as "PTB-XL, a large 

publicly available electrocardiography dataset", 

abbreviated PTB-XL (Wagner et al., 2020) both via 

PhysioNet (Goldberger et al., 2000). These open 

datasets contain ECG data from healthy subjects as 

well as subjects with various cardiovascular diseases. 

The recordings were divided into training, validation 

and test data. To avoid data leakage, the division was 

made so data from the same patient did not end up in 

both training and test data. 

Two different types of deep learning models were 

tested: Convolutional Neural Network (CNN), and 

Recurrent Neural Network (RNN). Several versions 

of the algorithms were developed with the starting 

point in the structure described in the report by Liu et 

al. (2018). To validate the algorithms, four different 

measures were used; accuracy, sensitivity, 

specificity, and F1 measures. In addition, the 

generalizability of the best performing algorithm was 

evaluated by training it on the PTB-XL dataset and 

then evaluating with test data from another dataset, 

the PTB dataset.  

CNN Version 2 showed the best results of the 

algorithms developed (Table 1). The algorithm also 

had good performance when trained with one dataset 

and evaluating with another. This suggests that the 

algorithm is robust against different types of datasets, 

and not overfitted or subject to data leakage. 

The results for CNN version 2 are relatively 

similar to the results of previous studies that used 

neural networks for heart attack detection (Feng et al., 

2019; Gibson et al., 2022; Liu et al., 2018). All 

algorithms were tested with single-lead data from 

ECG lead I, but the algorithms were also tested with 

data from ECG lead II, with no significant difference 

in performance. The position of the myocardial 

infarction determines the propagation of the changes 

in the ECG signal, which allows localization of the 

myocardial infarction (Morris & Brady, 2002). This 

also means that some heart attacks do not cause 

changes in all ECG leads. By only using one lead 

there is a risk of missing out on information that 

would have been visible in another lead. 

3 DISCUSSION AND  

STATE-OF-THE-ART 

Driver monitoring systems for the detection of driver 

Table 1: Results from the algorithm evaluation. 

Algorithm Accuracy Sensitivity Specificity F1 

CNN Version 1 (training and evaluation using PTB) 0,839 0,80 0,86 0,845 

CNN Version 2 (training and evaluation using PTB-XL) 0,92 0,95 0,90 0,93 

CNN Version 2 (training using PTB-XL, evaluation using PTB) 0,83 0,97 0,76 0,81 

RNN 0,49 0,50 0,42 0,668 
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incapacitation require the ability to unobtrusively 

monitor the driver's condition. Systems for the 

detection of sudden cardiovascular disease in drivers 

are based on monitoring vital signs linked to the 

activity of the heart, mainly ECG and pulse. Driver 

health monitoring systems are thus dependent on the 

ability to measure these vital parameters reliably in 

vehicles. Any available technique will be a 

compromise of many aspects such as usability, 

sensitivity, specificity, latency of detection, etc. 

Being able to detect a specific condition at a specific 

time is one of the biggest challenges with driver 

monitoring in general. From the vehicle 

manufacturers' perspective, it is not always the 

detection of a specific condition that is the most 

important, but the ability to handle an incapacitated 

driver, regardless of the cause. New vehicles are 

already equipped with many sensors, such as 

cameras, radar for passenger detection, etc. It can 

therefore be a challenge to bring in additional sensors, 

but also an opportunity to use sensors that already 

exist. 

The results from the small-scale studies show that 

there is potential for continuous monitoring of driver 

vital signs for CVD detection in the future, but 

substantial further development of in-vehicle HR and 

ECG monitoring technologies is needed. Andersson 

et al. (2024) showed that commercially available 

wearable sensors can be used to monitor mean HR in 

real-world driving. However, wrist worn PPG was not 

able to detect sudden changes in HR and may thus be 

less suitable for arrhythmia detection. Furthermore, in 

all measurement technologies, noise and disturbances 

that do not occur periodically and that arise from 

sudden events were difficult to handle. Björkman et 

al. (2022) showed that it is possible to measure HR in 

a wide frequency range with radar technology in a 

laboratory setting, which suggests that there is good 

potential to detect arrhythmia. However, there are still 

several challenges with signal processing before radar 

can be implemented in a vehicle. Among other things, 

it is necessary to develop the method further so that it 

becomes more robust and can measure continuously. 

Widengård et al. (2024) showed that if a single-lead 

ECG of good signal quality is available, it is possible 

to detect CVD (myocardial infarction) with high 

accuracy in ECG data from lead I with a machine 

learning algorithm. Furthermore, a CNN was 

considered the most appropriate machine learning 

algorithm for this purpose. 

In a controlled environment and without 

restrictions on how to apply sensors, there are 

excellent methods for rapid detection of 

cardiovascular disease states. ECG recordings offer 

the possibility to detect CVD based on the 

morphology of the signal, whereas HR sensors limit 

the possibilities for CVD detection to detection of 

abnormalities in the heart rhythm. Recent studies 

show that it is possible to detect myocardial infarction 

with single-lead ECG (Gibson et al., 2022; Hannun et 

al., 2019). Abnormalities in various vital parameters 

are common hours before a heart attack and clear 

deteriorations can be found before cardiac arrest 

(Andersen et al., 2016; Churpek et al., 2012; Kang et 

al., 2016; Oh et al., 2016). With access to HR only or 

lower quality data, there are still opportunities to 

detect cardiovascular problems, but likely with lower 

sensitivity and specificity. Additional difficulties in 

the vehicular environment are the fact that in real-

world driving, the measurement must be carried out 

in an unobtrusive manner. The collected signals are 

often plagued with various types of disturbance and 

noise that make further analysis very difficult. For 

example, motion artifacts are of great importance for 

the quality of the signals (Kawasaki & Kajiwara, 

2023) and the traffic environment can influence 

signal quality (Leicht et al., 2022). Wearable sensors 

often provide more robust measurements of HR than 

remote sensing in a vehicle environment (Arakawa, 

2021; Leicht et al., 2022), although with the 

disadvantage that it requires the driver to put on the 

equipment.  

Leonhardt et al. (2018) published an extensive 

review of different methods for unobtrusive vital sign 

monitoring in an automotive environment. The most 

explored monitoring technologies were ECG 

(conductive, capacitive or hybrid), 

ballistocardiography, optical methods (PPG, PPG 

imaging, far infrared imaging, other camera-based 

methods), magnetic induction, and radar-based 

methods. Some of the techniques have been more 

extensively studied than others and the review 

provides a thorough comparison between methods. A 

general conclusion was that all methods were fragile 

and sensitive to disturbances. Relatively few of the 

methods have been tested in environments close to 

realistic conditions. Most early tests were in 

laboratory settings and without the influence from 

movement.  

Previous studies have shown that it is possible to 

detect HR with remote sensing, including radar 

technology (Qiao et al., 2022; Schires et al., 2018; 

Tang et al., 2017). However, few studies have used 

radar technology to investigate the possibility of 

detecting CVD. Radar-based systems can be used to 

detect both breathing rate and HR, but they tend to be 

very sensitive to both body and vehicle motion. Tang 

et al. (2017) proposed a method using two radar 
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sensors, one in front of the person and one at the back. 

Utilizing the fact that movements of the entire body 

tend to give an out-of-phase signal whereas 

movements of heart and lung give an in-phase signal. 

In a review article by Arakawa (2021), different 

approaches to measuring drivers' HR were analyzed. 

A steering wheel sensor with electrode measurement 

and steering wheel sensor with LED sensor managed 

to measure HR accurately when both hands were on 

the wheel. Steering wheel electrodes have the 

potential to be used for single-lead ECG measurement 

but with the disadvantage that the hands must always 

be kept on the steering wheel. Another method was a 

car seat with a 24 GHz doppler sensor and 

accelerometer. This car seat was able to measure HR 

accurately within 5-10 beats per minute depending on 

the type of driving. Arakawa (2021) found that 

wearables such as rings and watches could measure 

HR with good reliability with the disadvantage that 

the driver have to wear them. Finally, it was reported 

that several studies used video cameras to measure 

HR by measuring color changes in people's faces. 

However, this method has not been tested in vehicles. 

Arakawa (2021) also states that pulse measurements 

alone today are not enough to assess the driver's state 

of health. 

Ultimately, the goal of the sensors is to provide 

signals that can be processed into information 

pertinent to the detection of driver health status. 

Signal processing including preprocessing, 

parametrization/information enhancement, and 

finally information extraction/disease detection is 

key. Preprocessing is primarily necessary to increase 

the signal-to-noise ratio (SNR). Low SNR is clearly 

one key obstacle in all the reviewed methods. Few of 

the sensors described in the literature have been tested 

in a car during driving; and those that have been 

subjected to realistic conditions have demonstrated 

unsatisfactory performance. Parametrisation is based 

on the notion that some specific aspect or aspects of a 

signal carries relevant information. For instance, HR, 

HRV or ECG morphology as potential indicators of 

cardiac problems. The intended parametrization may 

put requirements and limitations on the 

preprocessing. If the sought parameter is HR only a 

narrow band filtering may be a good component in 

the preprocessing, but such filtering may extinguish 

all possibilities to capture ECG morphology. 

Maximizing the SNR in the sense signal power 

divided with noise power is counterproductive as the 

maximum power of the signal does not necessarily 

coincide with power of the morphology alterations. 

All good signal processing is therefore based on a 

clear idea of the information bearing part of the signal 

and knowledge of the interfering signal components. 

A powerful method to reduce noise from the 

signal is adaptive filtering which is based on the idea 

of placing a second transducer, a reference 

transducer, in close proximity to the original, signal 

transducer (Eilebrecht et al., 2012). The purpose of 

the reference sensor is to get a signal that mainly 

registers noise, and no signal. Ideally, the difference 

between the signals from the two sensors would give 

a clean signal. In reality, an appropriate filter will be 

inserted after the reference transducer; whose task is 

to adjust the amplitude and phase of the reference 

signal to mimic the noise from the signal transducer. 

The filter is adaptively adjusted to changes in 

transmission characteristics during recording 

(Widrow et al., 1975). 

Sensor fusion is a potential method that can be 

applied to deal with poor signal quality. Future 

research may benefit from including several vital 

parameters to obtain a more complete understanding 

of the physiological processes. Combining more vital 

parameters can create a stronger basis for identifying 

CVD. For instance, if abnormal vital signs are 

detected the driver could be asked to put both hands 

on the steering wheel to enable a single-lead ECG 

measurement for more detailed health assessment. 

Another possibility is to connect mobile devices to 

the vehicle, in this way measurements from smart 

watches or other wearables can be used in the 

assessment. The focus of this report is on 

cardiovascular events, but it is worth noting that both 

epileptic seizures and strokes can affect HR and HRV 

(Chen et al., 2014; Nei, 2009; van Elmpt et al., 2006; 

Zangróniz et al., 2017; Zijlmans et al., 2002). This 

opens for the possibility that also some cases of 

severe cerebral attacks could be detected via heart 

signals. 

The way forward is therefore to use physiological 

signals that contain as much information as possible 

and that can realistically be acquired routinely during 

driving. The diagnostic qualities of any single one of 

these signals will likely be too low, and in periods the 

signal-to-noise will be very poor. However, 

combining several signals from different sources may 

compensate for the shortcomings of individual 

technologies. Suggested next steps are to test and 

evaluate sensor tools allowing detection of 

morphological changes in single lead ECG, HR 

recording, analysis of HRV, and recording of 

respiration rate. In parallel, the types of interference 

that affect the different sensors should be studied to 

look for means of acquiring a good reference signal, 

allowing adaptive noise cancelling. When the sensor 
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data acquisition is optimized for each individual 

sensor, sensor fusion algorithms can be developed 

that extract the physiologically relevant parameters. 

Lastly, the decision system that can provide the final 

decision whether the driver is in full health or actions 

are required needs to be developed.  

A major challenge for the development and 

evaluation of sensors and algorithms is that sudden 

illness events while driving are rare and they cannot 

be manipulated experimentally for validation of the 

systems as is done, for example, when testing fatigue 

warning systems. Early development must rely on 

data measured under other conditions or simulated 

data. An important limitation is that the studies by 

Andersson et al. (2024) and Björkman et al. (2022) 

use only measurements from healthy individuals, 

which limits the possibility to generalize to real 

disease situations. Future studies should include data 

from people diagnosed with arrhythmia to assess 

whether these conditions can be detected in the 

signals.  Another challenge is to minimize the number 

of false positives as well as false negatives. Vehicle 

support systems such as automatic stop maneuvers or 

automatic alarms should not be activated unless it is 

a real emergency. This underscores the need to 

carefully consider the pros and cons of different 

detection methods to ensure proper interpretation and 

management of CVD events.  

The traffic safety and societal benefit of being 

able to detect sudden CVD onset in drivers is mainly 

linked to two scenarios. The first is to integrate driver 

monitoring with support systems into the vehicle so 

that the vehicle can take control and perform a safe 

stop. This would reduce the risk of collisions with 

other road users and the risk of single-vehicle 

accidents. The second aspect is about being able to 

inform emergency responders about the driver’s 

condition to allocate appropriate resources to the 

scene. A recent project called TEAPaN (Traffic Event 

Assessment, Prioritizing and Notification) explored 

how such traffic incident information could be used 

for prioritization of emergency resources 

(Söderholm, 2023). The project designed and 

explored an IT-infrastructure and incident alert 

handling solution directly interfacing with 

prehospital care resources. Detecting a medical 

condition before the driver is completely 

incapacitated can provide the opportunity to handle 

the medical emergency at an early stage. Early 

detection would also increase the possibility of 

survival if the right care can be given more quickly. 

Both actions, stopping the vehicle and calling for 

emergency care, can have far-reaching consequences. 

It is not possible to achieve 100% sensitivity and 

100% specificity for this type of detection. False 

CVD detection can potentially lead to the vehicle 

making unnecessary and dangerous maneuvers 

and/or sending false alarms to dispatch centers. False 

alarms are costly and can mean that resources that 

could have saved lives elsewhere are blocked.  

In the study by Widengård et al. (2024), the 

recordings in the PTB and PTB-XL databases were 

often taken several days after the onset of CVD, 

which is important to take into account when 

analyzing and drawing conclusions about the 

performance of the algorithm. Moreover, the datasets 

were recorded in a clinical environment, i.e. not in 

vehicle environment which is the intended 

environment for the practical implementation of the 

algorithm. For further development of a machine 

learning algorithm with the aim of detecting acute 

CVD, a large amount of new data is required. 

Optimally, this data would contain real-time infarcts 

and be collected in a vehicle environment where 

characteristic noise and motion artifacts occur. 

However, such data collection is very difficult to 

implement. 

Privacy and regulatory issues are other 

important areas to consider when handling health 

data. Health monitoring would involve the storage of 

sensitive personal data. Therefore, all data will 

probably need to be processed locally in the vehicle 

to reduce the risk of exposing (sensitive) personal 

data. The ability to turn off or deny monitoring can 

also be a solution to privacy issues. Diagnostic tools 

are regarded as medical devices and the regulations 

surrounding medical devices are extensive. If a 

detection system in a vehicle makes a medical 

decision, the device needs to be tested and approved 

as a medical device. Whether a detection system that 

warns of abnormal vital parameters in a driver is a 

medical device has not been investigated here. 

4 CONCLUSIONS 

The results showed that there are significant 

challenges in building a functional system to detect 

sudden cardiovascular disease in drivers, and 

substantial development work remains. Provided 

there is a high-quality ECG signal, the prospects for 

detecting heart attacks are promising, and a high-

quality pulse signal enables the detection of 

arrhythmias in drivers. Further development work is 

required to ensure sufficiently high sensitivity and 

specificity in real cases of illness. However, the 

biggest obstacle is that reliable unobtrusive 

technologies for measuring ECG morphology and HR 
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in the vehicle environment are not yet available. 

Arrhythmias can be detected using wearables such as 

chest straps whereas sensors not worn by the driver 

but integrated into the vehicle are sensitive to noise 

and interference. To enable the detection of sudden 

illnesses in vehicles, more vital parameters need to be 

examined, and multiple measurement systems need to 

be integrated to provide sufficient and reliable data. 

The results indicate that there is a need for further 

research and development of unobtrusive 

measurement methods to detect driver states. 
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