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Abstract: Falls are one of the leading causes of injuries and deaths for U.S. adults ages 65 and older. People can fall 
because of imbalance and leg weakness. Fall risks are evaluated by standardized tests, including the 30-
Second Chair Stand Test (30CST) and 5x Sit-to-Stand Test (5xSST). These tests are conducted by visual 
observation of the participant and manual counting, which can be inaccurate and tedious. This study clinically 
tested an Internet of Things Chair (IoT) on how well it performed on the 30CST and 5xSST. A clinical study 
was performed on 224 participants. The results of the IoT Chair were found to be similar to the traditional, 
visually observed method. The IoT Chair required less manual work and provided information that was not 
obtainable with the observer method. The IoT Chair was able to calculate the weight exerted on the individual 
chair legs, rate of weight change, lag time between each sit-stand cycle, the amount of time spent standing 
during each cycle, and the amount of time each sit-stand cycle required. This additional information can allow 
for a better understanding of a person's leg strength and improves the prediction for falls, which can save lives 
and lower healthcare costs. 

1 INTRODUCTION 

Falls in adults over 65 years old are the leading cause 
of injury-related deaths in the United States (CDC, 
2020). The rate of age-adjusted deaths due to falls has 
increased by 41% from 2012 to 2022 (CDC, 2024). In 
a 2016 National Study of Long-Term Care Providers 
conducted by the National Center for Health 
Statistics, they found that 22% of adults living in an 
assisted-living facility or residential care 
communities had fallen in the prior 90 days. Of the 
individuals who fell, 19% had to go to the hospital, 
and 15% had sustained injuries (Harris-Kojetin & 
Sengupta, 2018).  

Impairments in vision (Jin et al., 2024), hearing 
(Riska et al., 2021), muscle strength (Rodrigues et al., 
2023), reflexes (Marigold et al., 2005), cognition 
(Chantanachai et al., 2021), balance (Papalia et al., 
2020), side effects of medications (Hartikainen et al., 
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2007), and environmental hazards can all cause falls 
(Campani et al., 2020), (National Institute on Aging, 
2022). Preventing these falls is critical in keeping 
older adults healthy and active. The 30-Second Chair 
Stand Test (30CST) (Jones et al., 1999) (Chan-Mei 
Ho-Henriksson et al., 2024), and 5-Time Sit-to-Stand 
Test (5xSST) (Muñoz-Bermejo et al., 2021), (Albalwi 
& Alharbi, 2023) are well-established tests that 
objectively evaluate lower extremity strength, 
balance, and fall risks. In the 30CST, patients are 
evaluated on how many times they can change from 
sitting to standing in 30 seconds, with the observer 
visually counting. Their arms are crossed across the 
chest and cannot be used during the test. If the person 
performs less than what is established for their age 
group and gender, then they are at higher risk for falls 
(CDC, 2017). The 5xSST is performed in the same 
manner as the 30CST with the participant's arms 
crossed at the chest and cannot be used during the test. 
For the 5xSST, the longer the person takes to 
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complete the test, the higher their fall risk (5 Times 
Sit to Stand Test (FTSST), n.d.). There are no 
standardized cut-off ranges published by the Center 
for Disease Control (CDC) for the 5xSST. Buatois et 
al. studied 1,618 community-dwelling people over 
the age of 65 and found that if they took longer than 
15 seconds to complete their 5xSST, their risk of falls 
would double. This study is cited in many tests as the 
cut-off number (Buatois et al., 2010).  

Experimental studies have evaluated the use of 
electronics applied to the sit-to-stand test. For 
instance, a study by Collado-Mateo et al. used an 
automatic chronometer developed by Chronopic to 
evaluate the patient during the 30CST trial (Collado-
Mateo et al., 2019). The participant had to wear a vest 
with metallic tape. That metallic tape would have to 
come into contact with the Chronopic device attached 
to the chair seat. The Chronopic device could detect 
the time the tape was in contact, thereby establishing 
the amount of time the patient was sitting or standing. 
If the person was not sitting correctly and the metallic 
tape on the vest did not come into contact with the 
Chronopic device, the change to the sitting position 
would not be recorded. 

Yeh et. al. (Yeh, C. et al., 2022) developed an 
Internet of Things (IoT) Chair designed to evaluate 
patient movement from the chair. A pressure pad 
placed on the chair could detect the movement of 
patients changing from a sitting position on the chair 
to a standing position by detecting pressure and 
motion changes. This data would then be transmitted 
to a cellular phone app. A significant limitation of that 
study was that the chair was not tested for accuracy. 
Another problem was that the pressure pad on the 
chair could shift with use, decreasing the accuracy of 
the measurements. The shifting pad could also cause 
patients to slip out of the chair and injure themselves. 
The chair only detected whether or not the person was 
sitting on the chair. No sensors were detecting the 
amount of pressure placed on the chair. 

Lee et al. (Lee et al., 2024) improved upon Yeh et 
al.'s chair and developed a novel Internet-of-Things 
(IoT) Chair utilizing built-in sensors to evaluate fall 
risks in adults. This type of sensor technology has 
been previously applied to other medical devices (Lee 
et al., 2023), (Lee & Yeh, 2022), (Yeh, C. et al., 
2022), (Yeh, C. et al., 2022), (Yeh. K. et al., 2021) 
including the measurement of human body movement 
(Yeh H.J. et al., 2020), and to computer networking 
(Yeh. H.-J. et al., 2019). 

Lee et al. designed the entire system as a single 
unit so that no sensors were attached to the patients 
and no sensors needed to be set up external to the 
chair. The participant also did not need to sit in a 

particular position in order for the chair to measure 
the amount of force exerted on the chair. There were 
built-in sensors in the chair which transmitted the data 
to a cloud-based server. The chair was designed to 
perform the Fullerton Functional Tests, which 
included the 30CST and the 5xSST. The technical 
aspects of the devices used and their integration into 
the chair are detailed in the paper by Lee et al.   

This paper examined how well Lee et al.'s IoT 
Chair (Lee et al., 2024) performed in test participants 
with both the 30CST and the 5xSST. We chose to test 
the chair on the 30CST and 5xSST because studies 
have shown that they are highly reliable across 
different adult populations (Figueiredo et al., 2021), 
(Gill et al., 2012), (Goldberg et al., 2012). Prior to 
conducting the clinical trials, we received IRB 
approval #23-130 from Azusa Pacific University. A 
total of 224 people participated in the study. Testing 
was conducted over a period of 12 months, from 
November 2023 through October 2024. 

2 MATERIALS AND METHOD 

The use of strain-gauge force sensors for the 
measurement of dynamic human weight distribution 
is novel and presents significant advantages over 
other sensing technologies. Strain gauges are 
commonly used to measure static human weight 
distribution and are the sensing element in many 
commercial and most electronic consumer scales. 
Because of their widespread use, economies of scale 
in their design and manufacturing have been 
achieved, leading to broad availability and low cost. 
Designing with these components leads to decreased 
end-user costs that offset high equipment costs that 
beset the healthcare industry. 

The use of weight sensors that are mounted on the 
chair provides significant improvements over 
previous automatic chair-stand measurement 
apparatus. Many of the previous devices, such as 
accelerometers or contact sensors, require the 
attachment of sensors on the body of the subject 
(Cobo et al., 2020), (Hellmers et al., 2019), (Millor et 
al., 2013). This can lead to significant complications 
during the trial process, increasing preparation time 
for each patient and reducing participation. 
Additionally, other previous devices using distance 
sensors (Takeshima et al., 2019), (Cobo et al., 2020), 
(José Gonçalves et al., 2015) require a more 
complicated setup, which limits their portability.  

Two designs were created for the placement of the 
strain gauge weight sensors. Four weight sensors 
were integrated into the four corners of common 
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chairs. For human body scale applications, the four 
sensors are typically wired into a single Whetstone 
bridge that provides a single reading, which is the 
sum of the four weights. In this application, the four 
sensors were wired into four separate bridges to 
provide four separate channels – right front, right 
back, left front, and left back. 

For the initial design, the four strain gauges were 
mounted on the frame of the chair directly under the 
four corners of the seat of the chair. This design had 
issues in securing the seat on the chair while 
providing accurate measurements. A second design 
solved the issue by mounting the sensors under the 
four legs of the chair. Since the diameters of typical 
chair legs are smaller than the sensors, the chair is 
first mounted on a rigid board, and the sensors are 
secured to the bottom of the board directly under the 
legs (Figure 1). 

 
Figure 1: This picture shows the chair that was designed for 
this clinical study. 

The completed apparatus directly measures 
dynamic weight distribution on the four separate chair 
legs as the subject performs each trial. This is not 
available with other sensing methodologies. Distance 
sensors and accelerometers will be able to provide 
velocity data but not measure the weight distribution.  

Another improvement over previous work is the 
use of a novel network infrastructure that uses cloud 
computing. This system architecture provides user-
friendly control and data flow, storage, and retrieval 
during data collection and processing. The benefit of 
this architecture is that the data collection is highly 
scalable and portable; because existing and popular 
network protocols are used, migrating or duplicating 
the system to different or multiple servers is 
extremely simple – often with the simple copying of 

the relevant scripts with little or no setup or 
provisioning. This design greatly simplifies the 
deployment of new systems. 

Commands to the system (inputting the patient 
number or id, tuning the data collection parameters 
such as the collection period or sample rate, and 
starting the data collection after the patient is ready) 
are done on a web interface that runs on any browser 
(Figure 2). The browser runs standard HTML 
(hypertext markup language) and JavaScript. The 
commands issued from the browser to the chair (red 
arrows) and the responses and messages from the 
chair to the browser (orange arrows) utilize MQTT 
(message queuing telemetry transport), which is the 
de facto standard for IoT devices. This allows the user 
interface to run on virtually any device – personal 
computers, laptops, cell phones, etc. 

After data from a trial has been collected, it is sent 
to the cloud-based server via a standard HTML POST 
request (blue arrow). The server runs standard PHP 
(hypertext processor) to receive, store, and provide 
access to the patient trial data. PHP is supported on 
virtually all servers without customization, which 
provides excellent system portability. The stored data 
on the server can be accessed from the browser 
interface (green arrow) if the proper permission is 
granted. This is important for the confidentiality of 
the patient data. The stored data can be graphed, and 
various statistics, such as the times of sit-to-stand 
transitions, can be computed. 

 
Figure 2: This diagram displays the data and command flow 
for the IoT Chair.  

We recruited male and female adults ages 18 
years and older. Any participants in a wheelchair or 
regularly used assistive devices, including canes and 
walkers, were excluded from this study. If they had 
good leg strength and only occasionally needed the 
use of canes or walkers, they were included in this 
study. If the participant appeared fatigued, struggling, 
or imbalanced, the test was immediately stopped to 
prevent a fall. If needed, a walker was also placed in 
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front of the chair for the participants to hold onto if 
they felt fatigued or might fall. Once the participant 
required the assistance of the walker, the trial was 
immediately ended. The participants could also 
voluntarily end the study if they felt tired or unable to 
continue by verbally informing us or by raising either 
their right or left hand.  

A questionnaire was given to all participants, who 
recorded their age, use of the assistive walking 
devices, history of falls, and any musculoskeletal 
pain. Vital signs, including height, weight, body mass 
index (BMI), blood pressure, and heart rate, were 
measured in all participants.  

Participants were given instructions on the 30CST 
and the 5xSST. The participant needed to have their 
feet flat on the floor, sit in the middle of the chair, and 
have their hands on the opposite shoulder with their 
arms against the chest. When instructed to “Go,” the 
participant needed to go from sitting to a full standing 
position and then sit back down again. Data collection 
was initiated by clicking a “Start” button on the 
custom-designed, secure IoT Chair browser (website) 
hosted by the web server. The IoT Chair 
programming automatically recorded the number of 
sit-stand-sit cycles in 30 seconds. For the 30CST test, 
the participants needed to repeat this cycle as many 
times as they could in 30 seconds. During the 30CST, 
the time required to do the first five sit-stand-sit 
cycles was used to record the 5xSST. In essence, the 
30 CSST and 5xSST tests were done simultaneously 
for efficiency and participant convenience. Besides 
automatic recording by the IoT Chair programming, 
we manually recorded how long it took to do the first 
five sit-stand cycles (5xSST) and the number of sit-
stand cycles completed in 30 seconds (30CST). 

3 RESULTS 

There were 224 participants in this clinical study. 
Fifty-six participants occasionally used assistive 
walking devices such as walkers and canes. Seventy-
three participants had fallen within the past year. Two 
hundred and eight participants described either some 
joint or back pain.  

The IoT Chair programming default setting (on 
the browser) allowed 30 seconds to complete the 
30CST and 5SST tests. Thirty seconds was chosen 
because that is the time needed for the 30CST. The 
slowest 5xSST completion time cut-off is 10.8 
seconds (for people 70 years and above). That means 
anyone taking longer than 10.8 seconds is considered 
to have failed the 5xSST. Thirty seconds would be 
more than sufficient time to test the 5xSST. Test 

Figure 3 shows the results of a typical 30CST and 
5xSST trial. An important note was that the IoT Chair 
could automatically record, with a precision of 12.5 
milliseconds, how long it took for the person to do 5x 
sit-stand cycles. In contrast, the human observer 
recordings only measured the 5xSST to the seconds. 

 
Figure 3: A typical example of a completed IoT Chair 
clinical trial, with the orange dot recording a "stand" and 
the green dot recording a "sit". The blue graph showed the 
patient's total weight sitting (140 lb) and at full standing (0 
lb). The total time elapsed is 30 seconds (i.e. 30,000 ms), 
and 8 sit-stand cycles were completed for the 30 CST. The 
cursor is on the fifth completed sit-stand cycle, displaying 
the amount of time (18.55 seconds) needed to complete the 
5xSST test.  

In the 30CST trials, the mean in observer-
recorded sit-stand cycles was 7.72 cycles (median 
7.0, SD 3.74, 95% CI 0.53) compared to the mean IoT 
Chair-recorded sit-stand cycles was 6.93 cycles 
(median 7.0, SD 3.76, 95% CI 0.56). This data is 
displayed in a box plot analysis in Figure 4, showing 
that the two different methods have overlapping 50% 
quartiles. 

 
Figure 4: The 30CST Observer (visually) recorded method 
and IoT Chair (automatic) recorded method have an 
overlapping 50% quartile range.  

For the 5xSST, the mean time to complete the test 
recorded by the observer was 19.83 seconds (median 
18.03, SD 8.83, 95% CI 18.03) compared to the IoT 
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Chair mean time of 21.33 seconds (median 20.95, SD 
6.41, 95% CI 0.98). This data is displayed on a box 
plot diagram in Figure 5, showing that the two 
different measuring methods are not statistically 
different.  

 
Figure 5: The Observer (visually) recorded method and IoT 
Chair (automatic) recorded method for the 5xSST have 
medians within the comparison 50% quartile box plot, 
meaning the difference between these two methods is not 
statistically significant. It is important to note that the IoT 
Chair was programmed to not record after 30 seconds, 
affecting the difference in the IoT Chair vs Observer box 
plot range. 

4 DISCUSSION 

By using the Box Plot analysis, the 50% quartiles for 
the observer method and the IoT Chair overlapped on 
both the 30CST and 5xSST, meaning that the IoT 
chair results were not statistically different compared 
to the observer method. That means both methods had 
similar results, and the IoT Chair results were just as 
reliable as the standard observer method for the 
30CST and 5xSST. 

Being able to analyze each sit-stand cycle and its 
characteristics is very useful. For instance, the IoT 
Chair browser displays the sit-stand cycles as a graph, 
showing time on the X-axis and weight on the Y-axis. 
Thus, the IoT Chair programming can calculate how 
long each sit-stand cycle takes. Patients who are 
slower with the first or last sit-stand cycle may 
indicate leg weakness. Initially, these participants 
may need to build momentum going from sitting to 
standing. They may initially sit longer or stand 
longer. Figure 6 shows an example of a person with 
difficulty in the first sit-stand cycle, with a pause in 
the standing phase. At the end of the trial, if the 
participants are slower in a sit-stand cycle, this may 
also indicate increasing fatigue (Figure 7). Increasing 
fatigue would be a risk for falls. Again, this nuanced 
data would not be recorded via the human observer 
method. 

 
Figure 6: In this trial, the graph clearly depicted the initially 
slower first sit-stand cycle compared to the other sit-stand-
sit cycles, with a pause in the standing phase. 

 
Figure 7: This graph shows a prolonged sit-stand cycle near 
the end, at about 20 seconds.  

Since the chair measures the weight placed on 
each chair leg, we can make inferences about a 
participant's balance issues. For instance, in Figure 8, 
the person consistently placed higher pressure on the 
left front and left back chair leg. This difference in 
chair leg pressure may indicate that the person has a 
right-sided weakness and favors his left leg. Some 
possibilities for favoring one side may be due to a 
history of stroke, vestibular, or balance issues. This 
type of information is not available with the 
traditional observer counting method. A physician or 
physical therapist can use this additional information 
to diagnose leg weakness or imbalance better and 
improve patient treatments and outcomes.  
 
 
 
 
 
 
 

Measuring Fall Risk Using the Internet-of-Things Chair

357



 
Figure 8: The different color lines indicate the weight 
exerted on each chair leg. As the legend describes RB (blue 
line)= weight on right back IoT Chair leg, RF (orange line)= 
weight on right front leg, LF (green line)= weight on left 
front leg, LB (red line)= weight on left back leg, Total 
(purple line)= weight on all four legs. 

As seen in Figure 9, the IoT Chair also calculated 
and displayed the rate of change in weight or weight 
velocity of each sit-stand and stand-sit curve. The 
weight velocity measures the weight change placed 
on the chair over time, which can be a proxy for how 
fast the person goes from sitting to standing and from 
standing to sitting. These values can help predict if a 
person is at a greater risk of falling. For instance, 
participants with a faster change in weight exerted on 
the chair indicate they can sit or stand quickly due to 
greater lower extremity strength. A slower change in 
weight exerted on the chair indicates a slower speed 
in sitting or standing, suggesting that the person may 
be weaker or have more instability and, thus, are at a 
greater risk for falls. Figure 9 shows an overall 
decreasing rate of weight change amplitude over 
subsequent sit-stand cycles starting at about the 
halfway point (15 seconds) of the 30CST. This 
decreasing rate of weight change can indicate that the 
patient has increasing leg muscle weakness and may 
be at higher risk of falls compared to a person with a 
consistent rate of weight change amplitudes 
throughout the trial.  

 
Figure 9: This graph shows a 30-CST trial with the rate of 
weight change (orange line) or weight change rate.  

The graphs in the IoT Chair sit-to-stand trials 
(Figure 10) even have an interesting pattern 
reminiscent of an electrocardiogram (EKG) of the 
heart. In reading an EKG, the physician looks at the 
rhythm, rate, and type of electrical pattern peaks and 
troughs to determine different heart conditions 
(Hockstad, n.d.). The IoT Chair data can be viewed 
similarly. Each person has a different rhythm, rate, 
and pattern of sitting and standing. Future studies can 
see if the IoT Chair graph patterns can be used to help 
determine the patient's leg strength and fall risks. 

 
Figure 10: This figure shows the pattern of a participant 
performing 15 total sit-stand cycles (sit-stand-sit again) and 
shows a particular, repetitive pattern. 

More clinical tests can be done on the IoT Chair 
to gather data that can be applied to a broader patient 
population, including patients with certain comorbid 
conditions such as pain, obesity, heart disease, and 
lung disease. Machine learning has been widely used 
in various applications (Yeh & Khan, 2022) and can 
be applied to the IoT Chair data. Machine learning 
can help determine normal or abnormal rates of 
weight changes placed on the chair and how much 
uneven pressure on the four different chair legs can 
indicate leg weakness. Algorithms can also be 
developed to determine how much standing or sitting 
time is normal or abnormal. 

5 CONCLUSION 

Clinical testing for the 30CST and the 5xSST on the 
IoT Chair developed by Lee et al. showed that the 
chair not only provided automatic data collection and 
freed up the work of the observer, but the chair was 
easy to use for both observer and participant, just like 
a manual chair. Furthermore, the measurements were 
accurate and reliable, as shown by the box plot 
analysis. The chair also produced additional data that 
was unavailable using the manual observer method. 
The IoT Chair displayed the completion time for each 
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sit-stand cycle, the amount of time spent sitting and 
standing, the amount of weight placed on each chair 
leg, and the rate of weight change placed on the chair. 
This additional data, along with the traditional 
measurements of time and the number of sit-stand 
cycles, can more precisely help doctors give earlier 
and better predictions of fall risks and leg weakness 
in patients. In turn, preventing falls would improve 
quality of life, increase life expectancy in older 
Americans, and save on the enormous annual 
healthcare costs. 
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