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Abstract: This article proposes an ontology alignment approach that combines supervised machine learning models and
schema-matching techniques. Our approach analyzes reference ontologies and their alignments provided by
OAEI to extract ontological data matrices and confidence vectors. In addition, these ontological data matrices
are normalized using normalization techniques to obtain a coherent format for enhancing the accuracy of the
alignments. From the normalized data, syntactic and external similarity matrices are generated via individual
matchers before being concatenated to build a final similarity matrix representing the correspondences be-
tween two ontologies. This matrix and the confidence vector are then used by six machine learning models,
such as Logistic Regression, Random Forest Classifier, Neural Network, Linear SVC, K-Neighbors Classifier
and Gradient Boosting Classifier, to identify ontological similarities. To evaluate the performances of our ap-
proach, we have compared our results with our previous results (Abbassi and Hlaoui, 2024a). The experiments
are performed over the reference ontologies of the benchmark and conference tracks based on their reference
alignments provided by OAEI.

1 INTRODUCTION

The heterogeneity of information representations in
computer science results from the use of different vo-
cabularies, concepts and structures, which makes in-
teroperability between systems complex, particularly
on the Internet. To overcome these challenges, on-
tologies have been proposed as a solution. An ontol-
ogy is a formal and explicit specification of a shared
conceptualization (Gruber, 1993; Gruber and Olsen,
1994). They unify different points of view by re-
ducing or eliminating conceptual and terminological
confusion (Uschold and Gruninger, 1996). Indeed,
the same ontology conceptualizes the same knowl-
edge that could be specified by different ontologies.
The management of ontological diversity relies on
ontology alignment, which aims to unify heteroge-
neous entities while conserving the coherence of in-
formation. An ontology alignment process consists
of computing similarity measures between the differ-
ent classes and links of a pair of ontologies (Euzenat
et al., 2007). This process is performed by schema
matching techniques, which calculate similarities at
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different levels of ontology granularity (Rahm and
Bernstein, 2001; Euzenat et al., 2007; Shvaiko and
Euzenat, 2005): element level (classes and individu-
als), internal structure level (data properties) and ex-
ternal structure level(subclasses, disjoint classes and
relationships). Each of these techniques is imple-
mented by individual matchers that compute similar-
ity measures at different levels of ontology granular-
ity (Rahm and Bernstein, 2001; Euzenat et al., 2007;
Shvaiko and Euzenat, 2005) . In addition, the differ-
ent individual matchers depend on how they generally
interpret the input information(Rahm and Bernstein,
2001; Euzenat et al., 2007; Shvaiko and Euzenat,
2005). Each of them calculates similarity measures
according to syntactic interpretation criteria, where
labels are treated as character strings, and/or external
interpretation criteria, where labels are perceived as
linguistic objects through external resources, such as
a thesaurus. Schema-matching techniques are based
not only on individual matching matchers but also
on composite matchers. In fact, composite match-
ers combine ontology similarity measures obtained
by different individual matchers to determine the fi-
nal ontology alignment decision for a given pair of
ontologies(Rahm and Bernstein, 2001; Euzenat et al.,
2007; Shvaiko and Euzenat, 2005). We have opted
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to use machine learning algorithms to automate com-
posite matchers. This choice is justified by the effi-
ciency and the potential of these algorithms, to en-
hance the accuracy of this task, presented in (Abbassi
and Hlaoui, 2024a; Abbassi and Hlaoui, 2024b; Xue
and Huang, 2023). Since we manipulate labeled data
as well as continuous data representing the values of
ontological similarity measures defined in the inter-
val [0,1], we have developed an approach based on
supervised machine learning algorithms dedicated to
classification.

Despite the large number of ontology alignment
approaches based on supervised machine learning in
the literature (Abbassi and Hlaoui, 2024a; Abbassi
and Hlaoui, 2024b; Xue and Huang, 2023), these ap-
proaches have several limits, including:

• The use of a limited number of similarity measure
techniques and machine learning models.

• Partial exploitation of the ontology structure in
the alignment process reduces the accuracy of ob-
tained results.

• Use of incorrect values for similarity measures,
leading to erroneous results.

• Aligning classes separately from their subclasses,
disjoint classes, data properties, object properties,
individuals and comments, which has a negative
impact on the accuracy of the alignment process.

To overcome these limits, we propose a new on-
tology alignment approach that extends our previ-
ous work (Abbassi and Hlaoui, 2024a) by integrat-
ing other ontological information, exploring new su-
pervised machine learning models and comparing our
results with our previous approach.

Given the current state of the literature, the contri-
bution of the present work consists of :

• Testing a large number of supervised machine
learning techniques to ensure better ontology
alignment.

• Enrichment of the alignment approach by adding
new ontological information.

• Alignment of entities according to ontology struc-
ture.

The remainder of this paper is structured as fol-
lows. Section 2 provides a review of related works.
Section 3 presents our alignment approach in de-
tail. Section 4 presents the experimentation and qual-
ity evaluation of our alignment approach. Section 5
presents a discussion of this paper. Finally, Section
6 concludes this paper and proposes future perspec-
tives.

2 RELATED WORKS

In this study, we are particularly interested in ap-
proaches based on machine learning and schema-
matching techniques (Abbassi and Hlaoui, 2024a;
Abbassi and Hlaoui, 2024b; Xue and Huang, 2023).
The approach proposed by (Abbassi and Hlaoui,
2024b) uses several machine learning models such
as LogisticRegression, GradientBoostingClassifier,
GaussianNB, and KNeighborsClassifier to perform
ontology alignment. It uses 21 string-based similarity
measures and three language-based similarity mea-
sures. These techniques are applied to class labels,
data property labels and labels of relationships be-
tween classes. However, this approach has certain
limits, notably (i) limited exploitation of the global
ontological structure and (ii) lack of precision in some
cases. The authors in (Abbassi and Hlaoui, 2024a)
have developed an approach using 30 similarity mea-
sure techniques based on string and language as-
pects. These techniques are applied to class labels,
sub-classes, data properties, relationships between
classes and individual labels. It uses five machine
learning models: LogisticRegression, RandomForest-
Classifier, Neural Network, LinearSVC and Gradi-
entBoostingClassifier. However, this approach has
certain limits. It lacks precision for some ontology
pairs and does not exploit the integral structure of
ontologies. The approach described in (Xue and
Huang, 2023) is based on syntactic similarity mea-
sure techniques such as the Levenshtein distance, the
Jaro distance, the Dice coefficient, the N-gram and the
WordNet language technique. It combines an unsu-
pervised machine learning model, the Generative Ad-
versarial Network, with the Simulated Annealing Al-
gorithm (SA-GAN). However, this approach has an
important limit: a lack of accuracy, mainly due to
the non-respect of ontology structure. Specifically,
the alignment process treats entities independently of
their properties and subclasses, which reduces align-
ment accuracy.

3 PROPOSED APPROACH

According to figure1, this approach is mainly com-
posed of five steps, namely Ontology and Refer-
ence Alignment Parsing Step, Ontology Normaliza-
tion Step, Ontology Similarity Value Computing Step,
Final Similarity Matrix Construction Step, Ontology
Training and Testing Step and Quality Evaluation of
Ontology Alignment Step.
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Figure 1: Proposed Approach.

3.1 Step 1: Ontology and Reference
Alignment Parsing

As Figure1 shows, this phase takes as input a pair of
reference ontologies in the form of two OWL 1 files
and their corresponding reference alignment in the
form of an RDF 2 files, which are provided by OAEI.
As output, it produces a matrix and a vector, which are
essential for the next step in our alignment approach.
The construction of the matrix consists of the extrac-
tion of ontological data from the input ontologies,
while the construction of the vector is based on the ex-
traction of the confidence values associated with these
ontological data, calculated by the OAEI from the cor-
responding reference alignment file. The extracted
ontological data includes class labels, sub-class la-
bels, disjoint class labels, data property labels (dat-
aProperty), relationship labels between classes (ob-
jectProperty), individual labels and class comments.
This phase is implemented by Data Construction al-
gorithm 1, which generates the following results:

• The Ontology Data Matrix, where each row rep-
resents an instance of a VData Ontology vector.
Each VData Ontology vector contains the onto-
logical data extracted from the input ontology
pair.

• The Reference Alignment Vector, which con-

1https://www.w3.org/OWL/
2https://www.w3.org/RDF/

tains the confidence values (calculated by OAEI)
associated with the data in the ontology data ma-
trix from the reference alignment file.

Thus, each of the product matrix and the vector has
a number of rows equal to |ClassesO1×ClassesO2|.
Where |ClassesO1×ClassesO2| represents the cardi-
nality of the Cartesian product of ontology classes O1
and ontology classes O2.

3.2 Step 2: Ontology Normalization

The objective of this step is to clear and transform
the ontological data extracted in the first phase into
a common format, in order to enhance the alignment
results. This step takes as input the ontological data
matrix (Ontology Data Matrix) produced in the pre-
vious step and generates, as output, a normalized
data matrix ( Normalized Ontology Data Matrix)
required for the next step. In fact, we have ap-
plied diverse normalization techniques to class la-
bels, sub-class labels, disjoint class labels, data prop-
erty labels (dataProperty), relationship labels between
classes (objectProperty), individual labels and com-
ments associated to classes. The used normalization
techniques include: case normalization technique,
blank normalization technique, link stripping tech-
nique, punctuation elimination, diacritics suppres-
sion technique and digit suppression technique.
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Algorithm 1: Data Construction.

Data: O1.owl, O2.owl, Re f erence Alignment.rd f ;
Result: Ontology Data Matrix: array of V Data Ontology

vector (CSV file);
Re f erence Alignment Vector: Vector of reference alignment;
i← 0;
for class, ClassO1, of O1.OWL do

for class, ClassO2, of O2.OWL do
Sub-Class1←Sub-classes Of ClassO1;
Sub-Class2←Sub-classes Of ClassO2;
Disjoint-Class1←Disjoint-classes Of ClassO1;
Disjoint-Class2←Disjoint-classes Of ClassO2;
Data-Propclass1← Data Properties Of ClassO1;
Data-Propclass2← Data Properties Of ClassO2;
Object-Propclass1← Object Properties Of ClassO1;
Object-Propclass2← Object Properties Of ClassO2;
Individuals-class1← individuals Of ClassO1;
Individuals-class2← individuals Of ClassO2;
Comments-class1← Comments Of ClassO1;
Comments-class2← Comments Of ClassO2;
V Data Ontology←(ClassO1, ClassO1, Sub−Class1,

Sub−Class2, Dis joint−Class1, Dis joint−Class2,
Data−Propclass1, Data−Propclass1,
Ob ject−Propclass1, Ob ject−Propclass2,
Individuals− class1, Individuals− class2,
Comments− class1, Comments− class2);

Ontology Data Matrix[i]← V Data Ontology;
if (ClassO1, ClassO2 ) ∈ Re f erence Alignment.rd f

then
Con f ident alignment ← 1 ;

else
Con f ident alignment ← 0 ;

end
Re f erence Alignment Vector[i]←

Con f ident alignment;
i← i+1;

end
end

3.3 Step 3: Ontology Similarity Value
Computing

This step takes as input the normalized ontology data
matrix produced at the end of the Ontology Nor-
malization step. It aims to calculate the syntactic
and external similarity measures for the different en-
tity pairs stored in the input normalized ontology
data matrix. As output, the current step generates
two matrices: a String Similarity Matrix and a Lan-
guage Similarity Matrix. These matrices contain the
syntactic and external similarity values calculated for
the ontological data stored in the input matrix.

To build the syntactic similarity matrix, we used
26 individual matchers implementing 26 string-based
techniques (Abbassi and Hlaoui, 2024a)(see Table 1).
For the construction of the external similarity ma-
trix, we have used four individual matchers imple-
menting four language-based techniques(see Table 1).

Algorithm 2: Calculation Similarity Values.
Data: Normalized Ontology Data Matrix: matrix of

Normalized V Data Ontology vectors;
Result: String Similarity Matrix, Language similarity Matrix :

matrices of real values (CSV file);
i← 0;
for V DATA of Normalised Ontology Data Matrix do

for each in f ormation of V DATA do
SV sim Class←String Sim Class

(NClassO1,NClassO2);
SV sim SubClass←String Sim SubClass

(NSubClassO1,NSubClassO2);
SV sim Dis jointClass←String Sim DisjointClass

(NDis jointClassO1, NDis jointClassO2);
SV sim DataProperties←String Sim DataProperties

(NDataPropertiesO1,NDataPropertiesO2);
SV sim Ob jectProperties←String Sim ObjectProperties

(NOb jectPropertiesO1,NOb jectPropertiesO2);
SV sim Individuals←String Sim Individuals

(NIndividualsO1,NIndividualsO2);
SV sim ClassComments←String Sim ClassComments

(NClassCommentsO1,NClassCommentsO2);
Syntactic V Sim←GlobalConstructor(SV sim Class,

SV sim SubClass, SV sim Dis jointClass,
SV sim DataProperties, SV sim Ob jectProperties,
SV sim Individuals, SV sim ClassComments);

String Similarity Matrix [i]←Syntactic V Sim ;
i← i+1;

end
end
j← 0;
for V DATA of Normalised Ontology Data Matrix do

for each in f ormation of V DATA do
LV sim Class←Language Sim Class

(NClassO1,NClassO2);
LV sim SubClass←Language Sim SubClass

(NSubClassO1,NSubClassO2);
LV sim Dis jointClass←Language Sim DisjointClass

(NDis jointClassO1,NDis jointClassO2);
LV sim DataProperties←Language Sim DataProperties

(NDataPropertiesO1,NDataPropertiesO2);
LV sim Ob jectProperties←Language Sim ObjectProperties

(NOb jectPropertiesO1,NOb jectPropertiesO2);
LV sim Individuals←Language Sim Individuals

(NIndividualsO1,NIndividualsO2);
LV sim ClassComments←Language Sim ClassComments

(NClassCommentsO1,NClassCommentsO2);
Language V Sim←GlobalConstructor(LV sim Class,

LV sim SubClass, LV sim Dis jointClass,
LV sim DataProperties, LV sim Ob jectProperties,
LV sim Individuals, LV sim ClassComments);

Language Similarity Matrix [j]←Language V Sim ;
j← j+1;

end
end

These techniques are applied to each pair of elements
stored in the input ontology data matrix. They in-
clude the pairs of classes, the pairs of subclasses,
the pairs of disjoint classes, the pairs of data proper-
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Table 1: Used String and language based techniques.

Technique class Techniques

String-based
techniques

N-gram 1, N-gram 2, N-gram 3, N-gram 4, Dice coefficient, Jaccard similarity, Jaro measure, Monge-Elkan, Smith-Waterman,
Needleman-Wunsh, Affine gap, Bag distance, Cosine similarity, Partial Ratio, Soft TF-IDF, Editex, Generalized Jaccard, Jaro-
Winkler, Levenshtein distance, Partial Token Sort Fuzzy Wuzzy Ratio, Soundex, TF-IDF, Token Sort, TverskyIndex, Overlap
coefficient (Euzenat et al., 2007; Abbassi and Hlaoui, 2024a).

Language-based
techniques

Wu and Palmer similarity,Word2vec, Sentence2vec similarity and Spacy (Euzenat et al., 2007; Abbassi and Hlaoui, 2024a).

ties (dataProperty), the pairs of relationships between
classes (objectProperty), the pairs of individuals and
the pairs of class comments. The current step is im-
plemented by the Calculation Similarity Values al-
gorithm(cf. Algorithm 2), which uses the following
functions:

1. String Sim Entity to create and return syn-
tactic similarity vectors for each pair of
ontological entities stored in the Normal-
ized Ontology Data Matrix.

2. Language Sim Entity to create and return exter-
nal similarity vectors for each pair of entities in
the Normalized Ontology Data Matrix.

3. GlobalConstructor to concatenate the syntactic
and external similarity vectors and produce the
Syntactic VSim and Language VSim vectors for
each pair of classes of the pair of ontologies to be
aligned. As a result, the Syntactic VSim vector
contains 182 similarity values (26 x 7), while the
Language VSim vector contains 28 (4 x 7) simi-
larity values.

Indeed, each of generated matrices has a number of
rows equal to the cardinality of the cartesian product
of ontology O1 classes and ontology O2 classes, i.e.
|ClassesO1×ClassesO2|.

3.4 Step 4: Final Similarity Matrix
Construction

This step takes as input the similarity matri-
ces generated by the previous step and the
Re f erence Alignment Vector produced by the On-
tologies and Reference Alignment Parsing step.
The objective of this step is to combine these ma-
trices with the reference vector to obtain a final
similarity matrix. Hence, the construction of this
Final Similarity Matrix proceeds as follows:

• Step 1: Each row of the syntactic simi-
larity matrix, representing an instance of the
Syntactic V Sim vector, each row of the exter-
nal similarity matrix, representing an instance of
the Language V Sim vector, and each row of the
Re f erence Alignment Vector are concatenated to

form a final similarity vector, named Final V Sim.
This vector contains all the calculated similarity
values and the reference alignment of each pair of
elements concerned. It is defined as follows:

Final VSim=(Syntactic VSim,Language VSim
,ConfidentAlignement)

This vector contains 210 similarity values (re-
sulting from the concatenation of the of the
Syntactic V Sim and the Language V Sim vectors)
and integrates the reference alignment for the cor-
responding pair of classes.

• Step 2: The Final Similarity Matrix is then con-
structed, where each row represents an instance
of the calculated Final V Sim. This matrix has the
same number of rows as the similarity matrices
created at the end of the previous step.

3.5 Step 5: Ontology Training and
Testing

The role of this phase is to produce the final align-
ment result between a given pair of ontologies. It
takes as input the Final Similarity Matrix generated
by the previous step and six machine learning models.
The selected models are Logistic Regression, Random
Forest Classifier, Neural Network, Linear SVC, K-
Neighbors Classifier and Gradient Boosting Classi-
fier, which are the most frequently used in the litera-
ture (Bento et al., 2020; Abbassi and Hlaoui, 2024a;
Xue and Huang, 2023). As an output, this step pro-
vides the degree of similarity of the input ontology
pair and generates a matrix of conformity metrics.
This matrix includes the precision (P), recall (R) and
f-measure , calculated by each used machine learn-
ing model (Euzenat et al., 2007; Abbassi and Hlaoui,
2024a). These measures are defined as follows:

P : Λ×Λ→ [0..1] R : Λ×Λ→ [0..1]

P(A,T ) =
|T ∩A|
|A|

R(A,T ) =
|T ∩A|
|T |

f −measure =
2∗P(A,T )∗R(A,T )

P(A,T )+R(A,T )
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Where Λis the set of all values of the computed
alignments and the reference alignments provided by
OAEI, T is the set of all values of the reference align-
ments, A is the set of all values of the computed align-
ments and |T ∩A| is the cardinality of the set of values
of the calculated alignments relative to the values of
the reference alignments.

The training and testing process for each used ma-
chine learning model is detailed as follows:

• Step 1 Model Training: In this first step, we
build a training matrix consisting of 60% of the
rows of the final similarity value matrix for a pair
of ontologies to be aligned. Each machine learn-
ing model is then trained from this matrix, us-
ing the first 210 columns to build their necessary
datasets for evaluating the degree of similarity be-
tween the ontologies. This creates trained models
capable of capturing the relationships between on-
tological entities.

• Step 2 Model Testing:: This stage consists of
preparing a test matrix containing the remaining
40% of the rows of Final Similarity Matrix for
the same pair of ontologies. Each trained model
is tested based on the first 210 columns of this test
matrix, to produce the final alignment for the cur-
rent pair of ontologies. This test evaluates each
model’s capacity to generalize and predict align-
ments for new data.

• Step 3 Model Evaluation: Finally, each ma-
chine learning model is evaluated using confor-
mity metrics, which measure the degree of corre-
spondence between the degrees of similarity pre-
dicted by the models and the confidence align-
ment values provided in the Re f erenceAlignment
column. This evaluation is used to determine the
accuracy and efficiency of the models in establish-
ing alignments between ontologies.

We have implemented the training and testing process
for each pair of reference ontologies and for the six
machine learning models that we have used. As a
result, we have generated 29 matrices of conformity
metrics.

3.6 Step 6: Quality Evaluation of
Ontology Alignment

The main objective of this step is to validate the re-
sults obtained by the different machine learning mod-
els that we have used. This validation is based on
the matrices of conformity metrics generated by the
previous step, specifically focusing on the f-measure
metric provided by each model for the set of align-
ment tests performed on the reference ontology pairs.

This choice is justified because the f-measure calcu-
lates the harmonic mean of precision and recall, giv-
ing them equivalent importance (Euzenat et al., 2007;
Abbassi and Hlaoui, 2024a). This validation consists
of comparing the results provided by our approach
with those of our previous approach (Abbassi and
Hlaoui, 2024a).

4 EXPERIMENTATION AND
QUALITY EVALUATION OF
THE ALIGNMENT APPROACH

To implement the different steps of our approach,
we have configured a work environment using Ana-
conda 1.10.1 and the Spyder editor, specially de-
signed for Python development. This configuration
includes the installation and the use of tools such
as the py stringmatching, the beauti f ulsoup4, the
Owlready2, the pandas, the f uzzycomp, the NGram,
the WordNet, the nltk(NaturalLanguageToolkit), the
spacy, the en core web lg, the Gensim, the tqdm,
the Keras and the sklearn libraries, as well as the
GoogleNews − vectors − negative3 − 0011 Dictio-
nary. These tools are running on a laptop with Win-
dows 10 Professional N 64-bit operating system, In-
tel Core i7-8550U processor (1.80 GHz - 1.99 GHz)
and 8 GB RAM. To configure the hyper parameters
of the different machine learning models that we have
used, we have employed those described in Table 2.
To experiment our approach, we have focused on the
benchmark 3 and conference 4 tracks, which are fre-
quently used in the literature. Each includes refer-
ence ontologies in OWL file format and their refer-
ence alignments in RDF file format. The reference
track comprises various ontologies modified accord-
ing to three test families: the 1xx family, the 2xx fam-
ily and the 3xx family. The conference track presents
the highest degree of heterogeneity compared with the
other tracks. It includes seven reference ontologies,
generating 21 pairs of ontologies with their reference
alignments. We have used eight cases of alignment of
the benchmark track and 21 cases of alignment of the
conférence track.

4.1 Quality Evaluation of the Current
Ontology Alignment Approach

The validation of the results provided by our align-
ment approach applied to the different tested machine

3https://oaei.ontologymatching.org/2016/benchmarks/
4http://oaei.ontologymatching.org/2024/conference/
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Table 2: Hyper parameter tuning of used machine learning models.

Machine Learning Model Hyper parameters

Random Forest Classifier n estimators=100, max features=None, max depth=2

Neural Network Dense layer = 211 neurons with Activation function = relu. Dense output layer 1 neuron with activation
function sigmoid. Compiler of the algorithm with an adam optimizer. The Metric accuracy. The binary
crossentropy loss function.

Linear SVC C=0.5, penalty=”l2”, dual=False

K-Neighbors Classifier n neighbors=1

Gradient Boosting Classifier learning rate = 1, n estimators= 100

Logistic Regression max iter= 1000, solver=’lbfgs’

Table 3: Values of f-measure of our approach compared to our previous approach (Abbassi and Hlaoui, 2024a) for each pair
of ontology tests in the 2024 OAEI conference track.

Pair of Reference Ontologies
Our Approach Our previous Approach (Abbassi and Hlaoui, 2024a)

LR RFC NN LSVC KNC GBC XGB NN LSVC LR RFC

cmt-conference 0.66 0.40 0.88 0.40 0.52 0.57 0.44 0.80 0.44 0.44 0.40

cmt-confOf 0.60 0.50 0.64 0.62 0.50 0.66 0.53 0.53 0.53 0.53 0.57

cmt-edas 0.90 0.97 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.85

cmt-ekaw 0.74 0.82 0.90 0.88 0.86 0.85 0.76 0.76 0.76 0.76 0.76

cmt-iasted 0.64 0.60 1.00 0.97 0.90 0.80 0.88 1.00 0.88 0.88 0.57

cmt-sigkdd 0.88 0.77 0.97 0.86 0.81 0.96 0.88 0.88 0.88 0.82 0.62

conference-confOf 0.88 0.85 0.90 0.88 0.86 0.88 0.73 0.80 0.73 0.73 0.73

conference-edas 0.53 0.51 0.77 0.77 0.74 0.61 0.63 0.66 0.63 0.63 0.47

conference-ekaw 0.58 0.51 0.40 0.53 0.50 0.60 0.50 0.47 0.45 0.45 0.50

conference-iasted 0.50 0.44 0.51 0.40 0.44 0.53 0.44 0.55 0.44 0.52 0.44

conference-sigkdd 0.85 0.88 0.85 0.85 0.81 0.85 0.76 0.76 0.76 0.76 0.76

confOf-edas 0.66 0.66 0.77 0.71 0.76 0.77 0.69 0.69 0.69 0.63 0.57

confOf-ekaw 0.63 0.77 0.74 0.62 0.60 0.57 0.60 0.60 0.55 0.55 0.64

confOf-iasted 0.66 0.74 0.77 0.73 0.70 0.76 0.61 0.61 0.61 0.61 0.61

confOf-sigkdd 0.80 0.90 0.96 0.88 0.81 0.88 0.80 0.80 0.80 0.80 0.80

edas-ekaw 0.76 0.77 0.76 0.70 0.69 0.76 0.62 0.64 0.64 0.68 0.68

edas-iasted 0.53 0.63 0.66 0.60 0.54 0.44 0.51 0.51 0.51 0.46 0.51

edas-sigkdd 0.88 0.85 0.86 0.81 0.86 0.88 0.77 0.77 0.77 0.77 0.70

ekaw-iasted 0.74 0.88 0.90 0.88 0.80 0.90 0.74 0.75 0.74 0.66 0.74

ekaw-sigkdd 0.81 0.90 0.96 0.88 0.85 0.81 0.77 0.77 0.77 0.77 0.77

iasted-sigkdd 1.00 0.90 1.00 0.97 0.96 0.96 0.85 0.81 0.81 1.00 0.85
LR: LogisticRegression, RFC: RandomForest, GNB: GaussianNB, NN: Neural Network, LSVC: Linear SVC, KNC: KNeighborsClassifier, GBC:

GradientBoostingClassifier, XGB: XGBoost.

Table 4: Values of f-measure of our approach compared to our previous approach (Abbassi and Hlaoui, 2024a) for eight pairs
of ontology tests in the benchmark track.

Pair of Reference

Ontologies
Our previous approach (Abbassi and Hlaoui, 2024a) Our Approach

RFC NN LSVC LR GBC LR RFC NN LSVC KNC GBC

201-208 0.79 0.81 0.85 0.83 0.75 0.80 0.88 0.92 0.96 0.74 0.86

221-247 0.89 0.95 0.96 0.93 0.92 0.97 0.90 1.00 1.00 0.96 0.97

301-304 0.80 0.88 0.95 0.80 0.82 0.88 0.85 0.85 0.96 0.77 0.90

248-266 0.50 0.55 0.59 0.52 0.52 0.66 0.66 0.77 0.74 0.69 0.74

101-104 0.96 1.00 1.00 1.00 0.98 1.00 0.96 1.00 1.00 0.88 1.00

101-302 0.97 0.90 1.00 0.92 0.92 0.96 0.95 0.95 1.00 0.74 0.97

101-303 0.97 0.93 1.00 0.92 0.88 1.00 1.00 1.00 1.00 0.90 0.90

101-304 0.98 1.00 0.97 0.99 1.00 1.00 1.00 1.00 1.00 0.97 1.00
LR: LogisticRegression, GBC: GradientBoostingClassifier, KNC: KNeighborsClassifier, NN: Neural Network, RFC: RandomForest, LSVC: Linear SVC.
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learning models is based on comparing the results ob-
tained and those of our previous approach (Abbassi
and Hlaoui, 2024a). This comparison is based on the
f-measure metric (see section 3.5), applied to all used
models (see Tables 3 and 4). The choice of the f-
measure is justified by its capacity to calculate the
harmonic mean of precision and recall according to
them equal importance (Euzenat et al., 2007; Abbassi
and Hlaoui, 2024a)(see section 3.5). Then, these re-
sults show a percentage higher than 70% up to 90%
for the conference track and a percentage higher than
60% up to 100% for the benchmark track. These per-
centages represent the better performance achieved
by our approach compared to the previous approach.
This confirms the enhanced quality and performance
of our results compared to those obtained by our pre-
vious results (Abbassi and Hlaoui, 2024a). This per-
formance is due to the construction of ontological
data matrices, respecting the structure of ontologies,
which was crucial in improving alignment results. Al-
though the same machine learning models are used,
with the addition of the Neighbors Classifier model,
the accuracy of the results is improved through richer
data matrices. However, some special cases, such as
the ontology pairs 101-104, 221-247, cmt-conference,
conference-ekaw, conference-iasted and edas-iasted,
show lower accuracy. This is often due to the struc-
ture and absence of certain ontological elements, such
as disjoint classes or comments.

5 CONCLUSION

This paper presents an ontology alignment method
based on supervised machine learning and automatic
schema-matching. Our approach follows a series of
successive steps: ontology and reference alignment
parsing step, ontology normalization step, ontology
similarity value computing step, final similarity ma-
trix construction step, ontology training and testing
step, and quality evaluation of ontology alignment
step. The first step consists to analyze the reference
ontologies and their alignments provided by the OAEI
to extract ontological data matrices and confidence
vectors. This forms a basis for further processing.
Then, these data are normalized into a coherent for-
mat, which enhances the accuracy of the alignments.
Syntactic and external similarity matrices are subse-
quently generated by individual matches applied to
the normalized data and then merged to create a fi-
nal similarity matrix representing the correspondence
between a pair of ontologies. This matrix is exploited
by machine learning models to identify ontological
similarities, and the quality of our alignment is evalu-

ated by comparing our results with those of our previ-
ous results (Abbassi and Hlaoui, 2024a). Our exper-
iments indicate that our approach improves accuracy
over previously published methods.

As future work, we propose enriching the align-
ment approach by adding other ontological enti-
ties, such as ontology comments, equivalent classes,
super-classes and equivalent individuals of a given
class.
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