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Abstract: Cybersecurity has become increasingly challenging, particularly in understanding and predicting complex 
attack sequences within network traffic. In this paper, we introduce a new approach for predicting cyber-
security attacks utilizing time series data and transformer architecture, which has achieved the state-of-the-art 
F1-score for a time series, multiclass problem on the UNSW-NB15 dataset. This is despite earlier studies 
either considered binary task only (attack/non-attack) or did not deal with the problem as a time series. For 
the first time, we integrated time series prediction with analysis and visualization methods for detecting 
possible sequences of cyber-attacks, which were then verified with domain experts. Statistical methods 
confirmed the significance of the detected sequence, ensuring that these attacks are not random.  Our findings 
revealed the existence of patterns of attack sequences, demonstrating how one attack type often precedes 
another in predictable patterns. This paper not only fills a critical gap in attack progression modelling but also 
introduces advanced visualization and analysis that confirm the predictions of the model. 

1 INTRODUCTION 

Network intrusion is a significant threat to businesses 
and organizations, and to protect against it, networks 
use Network-based Intrusion Detection Systems 
(NIDS) with signature-based and anomaly-based 
detection (Marir et al., 2018). Anomaly detection has 
been a main focus since the 1960s, and today's 
networks have a large number of datasets and 
complex algorithms, allowing for the efficient use of 
different approaches such as time series (Darban et 
al., 2022). Research in network intrusion detection 
has focused on identifying and classifying anomalies 
using time series data, leading to a shift from 
traditional statistical methods to machine learning 
methods (Psychogyios et al., 2023). Time series data 
is particularly important in cybersecurity as it can 
detect changes over time, identify patterns and 
deviations, and allow for real-time analysis and helps 
uncover complex anomalies that are not feasible 
using traditional analysis. Although research in time 
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series and cybersecurity has been witnessing many 
advancements, this field is confronted with several 
problems that face both traditional and deep learning 
approaches (Al-Ghuwairi et al., 2023). When it 
comes to traditional methods such as the 
Autoregressive Integrated Moving Average 
(ARIMA) and Symbolic Aggregate Approximation 
(SAX) models, one main problem is the nature of 
cybersecurity threats, which are varying and 
dynamic. Also, those methods are largely static and 
not able to handle the large volumes and high 
velocities of data generated within today's 
cybersecurity networks (Smith, 2019).  

This paper introduces a new approach for 
predicting cyber security attacks utilizing time series 
data and transformer architecture, achieving a state-
of-the-art macro F1-score for a time series, multiclass 
classification problem on the UNSW-NB15 dataset, 
where previous studies either only considered binary 
classification task or did not deal with the problem as 
a time series. Furthermore, the study integrates for the 
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first time; time series prediction with analysis, and 
visualization methods for detecting possible 
sequences of cyber-attacks, which is verified with 
domain experts and shows statistical significance for 
the detection sequence of attacks. 

1.1 The Paper Contribution  

As detailed in the results section, this paper's 
contributions are listed below, ordered by their 
significance from the authors' point of view:  

• For the first time, this study integrates time-
series prediction with analysis and 
visualization techniques to identify and detect 
cyber-attack sequences, 

• Investigating the possible sequence of attacks 
on a single IP destination, from different 
source IPs, 

• Providing insights into how some attack types 
evolve, 

• Improving the performance of deep learning 
models for temporal attack pattern prediction. 

The rest of the paper is organized as follows: Section 
2 introduces the related work, while Section 3 details 
the research methodology. In Section 4, the 
experimental setup is described,  followed by results 
and discussions in Section 5. The paper is concluded 
in Section 6. 

2 RELATED WORK 

Over the last decade, numerous approaches have been 
developed to address cyber-attacks, ranging from 
signature-based approaches to more advanced 
machine learning and deep learning models. The 
following section surveys notable contributions in 
this field, highlighting both traditional and state-of-
the-art techniques for time series and non-time series 
multi-class classification in the field of cybersecurity. 

2.1 Non-Time Series Classification 

Kasongo et. al. (2020) used the XGBoost algorithm 
on the UNSW-NB15 dataset, utilizing a filter-based 
feature selection. They also used other algorithms 
including KNN, LR, SVMs, ANNs, and DT. The 
experiments explored both binary and multiclass 
classification setups. Results indicated that 
employing XGBoost achieved the best performance 
of an F-1 score of 69% for multi-class classification. 
Jouhari et al. (2024) suggested a hybrid model that 
integrates a lightweight convolutional neural network 

(CNN) with bidirectional long short-term memory 
(BiLSTM) for intrusion detection in IoT networks. 
They implemented a Chi-square feature selection 
technique and addressed the issue of class imbalance 
by implementing a weighted loss function which 
enhanced their model’s performance. Their proposed 
solution achieved an F-score of 97.09% for multi-
class classification respectively.  

In another study, Al-Obaidi et al., (2023) used 
multiple machine learning algorithms on the UNSW-
NB15 to perform multi-class classification. They 
performed label encoding then they split the dataset 
into 90 % training and 10 % testing. The best model 
was XGBoost achieving an F-Score of 68.8% for 
multi-class classification. In a recent study by 
Talukder et al. (2024), the authors proposed the use 
of ML-based intrusion detection, where they used 
random oversampling and stacking feature 
embeddings. The authors performed data cleansing, 
feature scaling, and feature reduction using Principal 
Component Analysis (PCA). The authors used 10-
fold cross-validation to train different ML models on 
UNSW-NB15, CIC-IDS2017, and CIC-IDS2018 
datasets. They performed multi-class classification. 
The highest F1-score was 99.9% achieved by the 
Random Forest model.  

2.2 Time Series Classification 

In a study by Psychogyios et al. (2023), the authors 
implemented an LSTM model to perform time series 
binary classification on the UNSW-NB15 dataset. 
They performed data pre-processing including one-
hot encoding to the categorical features and min-max 
scaler to perform data scaling. Converting the dataset 
to a time series format was the last step in the pre-
processing process. This was accomplished by first 
sorting the dataset according to its starting time 
feature. Next, time windows W, which are time points 
and labels, were created while all the features were 
retained. This resulted in a multi-variate time series 
problem, where W represents the size of the input 
window, and the label is the target that must be 
predicted. They utilized the 5-fold cross-validation 
technique and averaged the results across the five 
folds. They ran multiple experiments with different 
W values ranging from 1 to 200, the highest F-score 
achieved (80%) was in the experiment where the W 
was set to 200 (Psychogyios et al., 2023). In another 
study by Alsharaiah et al. (2024), the authors 
proposed integrating an LSTM with attention 
mechanisms to enhance the analysis of spatial and 
temporal features in the network data. The model was 
tested on the UNSW-NB15 dataset, after applying 
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data normalization, and feature encoding for 
categorical features. Then, they performed binary 
classification with different attention dimensions. 
The proposed model achieved accuracy of 82.2% and 
92.2% for attention dimensions of 150 and 300 
respectively outperforming the existing binary 
classification methods applied on the same dataset. 

2.3 Identified Research Gap 

As shown in Sections 2.1 and 2.2, no studies 
investigating the possibility of sequential attack 
patterns, while a very small number of studies 
considered the temporal patterns in cyber-attack 
prediction. Furthermore, the majority of the papers 
considered attack predictions as a binary 
classification problem (attack/non-attack) and 
oversampled the used data sets to achieve high 
prediction results. In this paper, the attack progression 
modelling is studied, considering the temporal nature 
of attacks.  

3 PROPOSED METHODOLOGY 

3.1 Dataset Description 

The dataset used in this paper is the UNSW-NB15 
dataset (Moustafa & Slay, 2015), which is widely 
used for benchmarking network intrusion detection 
systems. The dataset has around 2.5 million records 
representing network traffic for multiple source and 
destination IPs, as described by 48 features, and a 
label representing the attack type. The features 
include basic information such as source and 
destination IP addresses, as well as more advanced 
features such as the packet size, time to live, and 
protocol type. This dataset also contains time-based 
features, which enable time-series analysis and 
studying the temporal patterns of different attacks. 
There are 9 attack types, namely, Fuzzers, Analysis, 
Backdoors, Denial of Service (DoS), Exploits, 
Generic, Reconnaissance, Shellcode, and Worms. 
Shellcode and Worms were excluded from our 
analysis as, they have an extremely small number of 
records, compared to the rest of the attack types. For 
a more detailed description of the data set, please 
refer to (Azeroual et al., 2022). 
 
 
 
 

3.2 Pre-Processing and Feature 
Engineering 

As the main objective of this paper is to study the 
temporal nature, and possible sequence of attacks, for 
each data set, the records were grouped by the 
destination IP, where destination IPs with only 
normal traffic (with no attacks) are excluded. This 
splitting was necessary to study whether there are 
specific patterns and/or temporal dependencies 
between the different types of attacks and potentially 
capturing common attack chains. Table 1 shows the 
number of records for each destination IP.  

Table 1: Destination IPs and their record original count. 

Dataset No. Destination IP No. Records
1 149.171.126.14 45,375
2 149.171.126.10 43,877
3 149.171.126.12 30,308
4 149.171.126.17 26,759
5 149.171.126.13 17,647
6 149.171.126.19 16,022
7 149.171.126.11 14,104
8 149.171.126.16 12,219

Common pre-processing steps have been 
performed, such as dropping null values, as well as 
excluding records with negative packet length. 
Feature selection has been performed to choose the 
best set of features, using different feature selection 
techniques such as sequential feature selection, 
random forest feature importance index, and a 
domain expert’s opinion after understanding the 
dataset. We ended up with 14 features, including, 
transaction bytes, service type (i.e. https), protocol, 
TCP connection round-trip, source bits, source to 
destination time to live, means of packet sizes, and 
some aggregated counts of connection details. The 
target class is encoded to integers from 0 to 7. The 
data set for each IP is then split into 80 % training and 
20% testing. It has been noticed that the normal traffic 
(normal class) is a minority class in all destination 
IPs, which is not the case in real-world scenarios, 
where a majority of the incoming traffic packets are 
normal traffic. To handle this issue, the SMOTE 
oversampling method has been used on the normal 
class only, to maintain the nature of data, where the 
majority class  (traffic) in all destination IPs is 
normal. The generated data by SMOTE was equal in 
number to the sum of all the records of other attack 
types (i.e., 50% normal, 50% for all other attack types 
together). A check on the SMOTE data is performed 
to avoid any duplicates on the timestamp feature.  
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Due to irregular time intervals of the time series, 
a new feature named time_interval, which is the 
difference in seconds, between the timestamp of each 
record and the previous record timestamp. This has 
been followed by applying a one-hot encoding 
technique to the selected categorical features which 
are ‘service’, and ‘proto’. Another important pre-
processing is data scaling, where the StandardScaler 
has been used for data scaling. 

3.3 Sequence Generation  

The input sequence for the model is generated by 
sorting the dataset according to timestamps. A 
lookback window in seconds (sequence size) and a 
future window in seconds (future size) are defined to 
create time-based sequences for the model's input. 
This process incorporates examining each timestamp 
in the dataset, creating a historical window according 
to the sequence size, and acquiring future labels from 
the following time interval. Consequently, this leads 
to sequences of variable length that are incompatible 
with the model input requirements. A function is 
employed to generate a fixed-length input sequence 
within the batch. This function generates an array of 
Boolean variables initialized to "True," representing 
the padding mask for sequences, based on the 
maximum sequence length. The function populates 
variable-length sequences into a fixed-length format. 
It also applies a padding mask to designate "real" non-
padded positions as "False" within the mask for the 
transformer. This differentiation allows the model to 
distinguish between actual data and padded positions, 
which are to be ignored during training. This method 
transforms the dataset into sequences with fixed time 
windows, incorporating the time factor and thereby 
creating a multi-variate, multi-class time-series 
classification problem. 

3.4 The Proposed Architecture 

In this paper, a transformer architecture has been 
used, as transformers are highly beneficial for time-
series analysis. Unlike recurrent networks, 
transformers process whole sequences concurrently, 
allowing each input element to attend to all other 
elements, therefore, the capacity to capture both local 
and global dependencies. The used transformer also 
has a custom encoder layer that retains attention 
weights for each encoder layer. This feature enables 
visualization of the model's attention over time steps, 
hence improving the model’s interpretability. The 
model architecture comprises encoder layers, which 
include multi-head attention. Furthermore, positional 

encoding is utilized to maintain the sequence order of 
the input, enabling the model to monitor both short-
term variations and long-range dependencies. In each 
layer, multi-head attention separates the sequence 
representations into several subspaces to capture 
diverse temporal and contextual patterns. Feed-
forward sub-networks perform transformations on 
encodings, followed by dropout and normalization 
steps which contributes to the stabilization of 
training. A final normalization layer prepares the 
output for the decoder layer which is the final layer in 
the architecture.  

4 EXPERIMENTAL SETUP 

In the following section, the selection of the loss 
function, model hyper-parameters, regularization 
techniques, and training protocol are outlined.  

4.1 Model Training 

The input features are fed to the Transformer, which 
processes sequences using positional encoding then 
passed to the custom encoder layers. The padding 
mask is passed through the encoder layers to prevent 
self-attention computations from ignoring padded 
elements. Each layer produces an attention map, 
capturing interaction token weights for better 
interpretability. Then, the model applies a mask-
aware pooling mechanism, to create a real tokens 
mask which is the logical inverse of the padding 
mask, and indicates which positions are valid (i.e., 
non-padded). Then, it computes a weighted sum of 
hidden representations across the time dimension and 
divides it by the count of valid tokens to obtain a 
mean representation. The output vector is passed to 
the linear decoder layer for final predictions. 

To handle the class imbalance problem, the Focal 
Loss function has been utilized. Focal Loss modifies 
the cross-entropy component by adjusting it 
according to the difficulty of predictions, by adding it 
in equation (1). This method is especially beneficial 
for time-series data in which minority classes are both 
rare and essential to identify. 

(ሺ1 − 𝑝௧ሻఊ) (1)

where 𝛾  represents the degree to which easily 
classified examples are down-weight and 𝑝௧  is the 
predicted probability for class 𝑡 . In that case, the 
model prioritizes challenging or minority-class 
instances.  
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4.1.1 Model Hyper Parameters 

The model is configured with an embedding 
dimensionality of 128 for each token and employs 
multi-head attention with 4 heads. 8 encoder layers 
have been used, to facilitate deep feature extraction 
from temporal sequences. Every encoder layer 
incorporates a dropout probability of 0.2 to prevent 
over-fitting. The final classification layer outputs 
predictions for the designated number of classes 
derived from the encoded sequence representation.  

Regularization techniques are implemented to 
enhance model’s generalization. A dropout rate of 0.2 
is applied within the Transformer layers to reduce the 
risk of co-adaptation among hidden units. Secondly, 
weight decay of  1 × 10ିସ is utilized in the optimizer 
to penalize excessively large weights. These 
techniques enable the model to develop more robust 
and generalizable patterns from the training data. The 
chosen architecture achieves the balance between the 
computational cost and successfully capturing the 
temporal dependencies between sequences while not 
overlooking the minority class and misclassifying 
them. 

4.1.2 Training Parameters 

The maximum number of epochs is set to 50, utilizing 
mini-batches of size 8, which is necessitated by the 
dataset's complexity. The optimizer used is Adam, 
with a learning rate of 1 × 10ିସ balancing rapid 
convergence and the risk of overshooting local 
minima. In each mini-batch, the training data are 
randomized to decrease correlation among successive 
samples. Conversely, validation and testing datasets 
are not shuffled to maintain temporal relationships 
during evaluation. To avoid over-fitting an early 
stopping mechanism is implemented. At the end of 
each epoch, the model is evaluated on the validation 
set, and the F1 score is recorded. Training is halted if 
the F1-score does not improve within a patience 
window of five epochs. This criterion ensures that the 
model avoids over-fitting. 

4.1.3 Evaluation Metrics 

The models’ performance is assessed by the F1 score, 
Precision, and Recall. These metrics are particularly 
vital in imbalanced datasets, as accuracy is biased to 
the dominant class. The F1 score, equation is shown 
below:   

(𝐹1 =  2 ×   ୔୰ ௘௖௜௦௜௢௡ × ோ௘௖௔௟௟୔୰ ௘௖௜௦௜௢௡ ା ோ௘௖௔௟௟) (2)

In time-series multiclass classification, handling class 
imbalance is crucial, as minority or unusual events 
may appear sporadically. 

5 RESULTS AND DISCUSSIONS 

5.1 Model’s Performance Results 

The data set of the destination IP which has the largest 
number of samples (dataset 1) has been used. 
Different sets of experiments are conducted using 
input sequence sizes of 50, 90, 120, 150, and 200 
seconds respectively, while fixing a future size of 10 
seconds. In these experiments, it was noticed that 
larger input sequences require increased 
computational power for model training, yet do not 
necessarily produce improved results. The smaller 
sequence sizes tend to underperform and fail to 
capture the temporal dependencies necessary for the 
successful classification of minority classes. The 
experiments showed that a sequence size of 90 
seconds produced the best results across all tested 
sizes while maintaining low computational resource 
usage. The experiment was further extended by 
increasing the future size from 10 seconds to 30 
seconds. The model maintained strong performance 
with a sequence size of 90 seconds and a future size 
of 30 seconds, demonstrating its capability to capture 
the temporal dependencies necessary for classifying 
all classes, particularly the minority classes.  Table 2 
shows the precision, recall, and macro F1-score for 
each sequence size and future size evaluated on the 
testing dataset. From Table 2, it can be seen that the 
sequence size of 90 sec. and the future size of 30 sec. 
gave the best F1-score across all the attack classes on 
dataset 1. The F1 scores for different attack types in 
addition to the attack distribution after applying 
SMOTE on normal class for the data set 1 are shown 
in Table 3. It can be seen that all classes have been 
detected with an F1- score above 90%, except for the 
analysis attack, which has the least number of 
records.  

Table 2: Model’s performance on dataset 1 with different 
sequences and future sizes in seconds. 

Seq. size Future size Pre. Rec. Macro F1
50 10 0.83 0.85 0.84
90 10 0.88 0.88 0.87
90 30 0.92 0.93 0.92
120 10 0.97 0.80 0.88
150 10 0.91 0.81 0.86
200 10 0.76 0.92 0.83
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Table 3: Total No. of Records and F-score for each attack 
type in the test set of dataset 1. 

Records Attack Type Test F-Score
41657 Normal 1.00
1252 Reconnaissance 0.94
3,351 Exploits 0.95
609 DoS 0.91

33661 Generic 0.94
2637 Fuzzers 0.90

74 Backdoor 0.93
73 Analysis 0.81

5.2 Temporal Patterns Analysis  

To get more insights on possible attack dependencies, 
we used advanced visualization methods like the 
Sankey Diagram and Transition Heatmap. Each one 
of these diagrams reveals whether the model captured 
possible sequences of attacks.  Figure 1 shows a 
Sankey Diagram that identifies dominant attack 
pathways and show high-level trends. It can be seen 
that the largest flow originates from normal in the 
input sequence and transits to normal in the future 
sequence, which indicates that the dataset has a high 
proportion of normal traffic. Other flows, such as 
from generic or reconnaissance attacks appear to be 
less frequent. Some transitions, such as from generic 
to backdoor or DoS, appear to be minimal. This 
indicates that such sequences are rare or that certain 
attacks do not typically follow one another. However, 
reconnaissance and generic attacks are primary 
precursors to a DoS attack, while a backdoor attack 
may result from a sequence comprising generic and 
exploit attacks. The diagram illustrates that one of the 
most prevalent attack sequences preceding a 
backdoor attack consists of 14 exploit attacks and 918 
generic attacks. The Transition Heatmap in Figure 2 
provides another perspective by showing how the 
distribution of past attack events correlates with each 
predicted class in a single visual framework. The 
colour gradient highlights which patterns of historical 
attacks is associated with a given prediction. By 
analysing the diagram, we can see combinations of 
past activities that frequently lead to specific attack 
types. For example, we can notice that the sequences 
that contain some fuzzers attacks are most likely to be 
followed by another fuzzers attack. These types of 
figures give such valuable information to the domain 
experts who can use those insights to prevent future 
attacks. 

We further extended the analysis of the past 
sequence to analyse the actual sequence that the 
attacks follow within that time sequence and the 
predicted attack in the future after this sequence. 

Figure 3 shows one of the most common sequences 
of attacks ordered by their time of occurrence and the 
predicted label for this sequence. In figure 3, normal 
activity (yellow) span consistently through the early 
(0-20) and later (60-80) time steps. The transition to 
a cluster of reconnaissance events (orange) between 
time steps 20 and 35 shows the shift to malicious 
behaviour. From time step 35 onward, the attack type 
emerges as exploits (red), with the arrow labelled 
recon ⇒  exploits, which highlights how 
reconnaissance flows into active exploitation. Such 
figures can be used by  domain experts to prevent 
subsequent attacks. 

 
Figure 1: Sankey Diagram showing attacks’ distribution in 
the input sequence and its corresponding attack label in the 
future sequence. 

 

Figure 2: Transition Heatmap showing common attacks’ 
patterns within the sequence and its predicted future label. 

 

Figure 3: Visualization for example key transitions in data 
set 1. 
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5.3 Model’s Generalization 

To test our model’s generalizability, the model was 
tested on the rest of destination IP datasets from 2-7. 
Table 4 shows the model’s generalization 
performance with average of  82% F1-score on the 7 
datasets. However, the model performance on smaller 
size datasets is lower, compared to larger data sets.  
This can be attributed to the limited number of 
minority class’s records in these datasets. 

Table 4: Model’s performance across all sub-datasets. 

Dataset No. Precision Recall Macro F1
2 0.95 0.92 0.93
3 0.86 0.83 0.84
4 0.87 0.83 0.85
5 0.81 0.71 0.74
6 0.81 0.77 0.79
7 0.79 0.72 0.74
8 0.67 0.67 0.67

5.4 Statistical Analysis 

To further investigate whether the detected sequence 
of attacks are statistically significant, a deeper 
statistical analysis was conducted on dataset 1 results. 
A Chi-Square test on the entire transition matrix has 
been performed. Two of the most common attack 
distributions within the 90-second sequence were 
picked to see the probability of the predicted attacks 
following these sequences. Starting with the sequence 
that contains 5 exploits and 3 reconnaissance, the 
probability of the predicted attack for this sequence 
was assessed for each attack class and the result stated 
that the subsequent attack was backdoor which was 
recorded 22 times after this sequence with a 
probability of 73%, followed by fuzzers which was 
recorded 5 times achieving a probability of 17%. The 
second sequence tested was a combination of 1226 
generic, 14 exploits, 7 dos, 3 reconnaissance, 1 
fuzzers, and 1 backdoor and it transitioned to a DoS 
attack 30 times with a probability of 100%. This 
means that whenever such a combination of attacks is 
observed, a complete shift to DoS attacks will occur 
in the future. The Chi-square test result with 𝑋ଶ =111182.34, 𝑝 = 0.000, and degree of freedom of 
20440 shows that there are meaningful relationships 
among the observed attacks. These results align with 
the findings of research by (Sufi, 2024) which state 
that there are dependencies between certain attack 
types as mentioned in our results, as well as there 
were some sequences of attacks that they detected 
using a different dataset.  

5.5 Comparison with Previously 
Published Work 

The F1- scores of our model was compared to the 
results of other published papers, which used the 
same data set. The comparison is based on different 
dimensions as shown in Table 5.   From this table, it 
can be seen that our proposed model achieved the 
state-of-the-art F1 score, compared to other 
multiclass, time series studies. This is a significant 
contribution, given that we worked with unbalanced 
data sets. Furthermore, our proposed model is the 
only model that captures the relationship and the 
sequence of attacks within the time series. This 
provides a good base, where security experts can 
build on to protect their networks from cyber-attacks. 

6 CONCLUSION AND INSIGHTS 
FROM THE RESULTS 

This paper presents a novel approach for detecting 
cyber-attacks and the possibility of consecutive 
attacks, utilizing deep learning model for multi-class, 
multivariate time-series analysis. The model utilizes 
a transformer architecture to capture temporal 
relationships while dealing with class imbalances. 
The model has achieved state of the art results for 
detecting cyber-attacks, in multi-class classification 
tasks, and revealing complex relationships between 
different attacks, overcoming the shortcomings of the 
traditional methods. The model also demonstrated 
strong performance in classifying minority attack 
types, such as fuzzers and backdoor attacks, even 
when they occurred sporadically in the data.  

The most important outcome of this paper is that 
there are methods that can model, analyse and detect 
possible sequences or dependencies between attacks. 
However, this  might be different from one network 
to another, depending on their nature and the type of 
traffic and attacks they have. the model’s learned 
awareness of diverse attack sequences enables it to 
capture transitions between attacks from 
reconnaissance or generic to more serious intrusions 
like dos or backdoors. 

Future research can improve the model's 
performance by implementing feature augmentation, 
integrating Shapelet learning and discovery 
techniques to enhance the interpretability of the 
model, and exploring the model's scalability on 
different real-life datasets. 
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Table 5: Performance comparison between the proposed solution and the existing literature on the UNSW-NB15 dataset. 

Method Accuracy F-score Classification 
Type

Time 
series

Sequences of 
attacks detected 

Data 
balanced

(Kasongo & Sun, 2020) N/A 69% Multi-class No N/A No
(Jouhari et al., 2024) N/A 97% Multi-class No N/A No

(Al-Obaidi et al., 2023) N/A 68.8% Multi-class No N/A No
(Talukder et al., 2024) N/A 99% Multi-class No N/A Yes

(Psychogyios et al., 2023). N/A 80% Binary Yes No No
(Alsharaiah et al., 2024) 92% N/A Binary Yes No No

(Proposed Method) 90% 82% Multi-class Yes Yes No 
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