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Abstract: Open Source Software (OSS) projects have the potential to achieve high software quality through community
collaboration. However, the collaborative nature of OSS development presents unique challenges, particularly
in maintaining software quality through testing practices. The lack of formal testing roles and structures un-
derscores the importance of understanding testing patterns to enhance project quality. To address this need, our
study investigates key aspects of testing contributions within Apache Spark project. The study aims to identify
the top testing contributors responsible for the majority of test-related commits, as well as their engagement
levels and evolving testing focus over time. Additionally, it examines how these contributors’ activities vary
across different time periods and explores their distinct engagement patterns within the community. Our find-
ings reveal that only 9.8% of contributors handle the majority of test-related commits, exceeding the traditional
80/20 Pareto principle. Additionally, hierarchical clustering of these contributors over three years identified
three activity levels: Highly-Active, Moderately-Active, and Lowly-Active. Each cluster exhibits unique pat-
terns of testing focus and engagement across different time periods. These insights emphasize the critical role
of a small core group in managing the project’s testing workload and underscore the need for strategies to
broaden participation in testing activities.

1 INTRODUCTION

Open Source Software (OSS) offers a valuable op-
portunity for individuals and organizations to explore,
share, and modify software freely. This freedom en-
courages developers from diverse profiles and various
experience levels to collaborate with other develop-
ers, driven by their shared interests, reputations, and
professional needs. While the collaborative nature
of OSS creates efficient and productive software de-
velopment (Hao et al., 2008), it also presents chal-
lenges in maintaining software quality, as the diver-
sity among contributors can complicate the consis-
tency of OSS project standards (Abdou et al., 2012).

Testing is an essential aspect of ensuring the high
quality of OSS products (Napoleão et al., 2020). The
collaborative nature of OSS, where developers con-
tribute voluntarily, introduces challenges in imple-
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menting effective testing practices. For instance, OSS
can be developed by volunteers who lack experience
in quality engineering, or it can be released prema-
turely, without adequate testing or addressing crit-
ical bug reports (Abdou et al., 2012). There are
several studies that have explored how to system-
atically model quality assurance processes for OSS
projects. Notably, researchers such as Abdou et al.
and Seigneur et al. have proposed conceptual frame-
works for the OSS testing process (Abdou et al.,
2012), (Seigneur, 2007). However, while these frame-
works offer structured methodologies for testing, they
do not explicitly define the specific roles and respon-
sibilities of testers within OSS projects. This lack of
clarity challenges the identification of contributors in-
volved in testing activities and makes it difficult to as-
sess how testing responsibilities and contributions are
distributed among participants in OSS development.

In traditional software product teams, testing re-
sponsibilities are distributed among members accord-
ing to their relevant skill sets, with specific roles as-
signed for different types of testing. For example, the
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test leader is critical to the conduct of downstream
testing, such as integration and system testing (De-
sikan and Ramesh, 2006). A test engineer is expected
to demonstrate competence in handling categorized
defects and develop high-quality documentation (De-
sikan and Ramesh, 2006). However, there is currently
a lack of empirical studies regarding such explicit as-
signment roles in OSS. In other words, testers and
developers are not specifically designated as testers
or developers; instead, participants can shift between
testing and development teams as needed. Develop-
ers typically engage a common series of actions when
working on the software source, for instance, devel-
oping and testing the code within their local copy
of the source (Mockus et al., 2002). This absence
of formal role designation highlights the significance
of characterizing the testing behavior of contributors
from diverse profiles and backgrounds. Therefore, ex-
amining how contributors engage in testing and iden-
tifying those who are highly involved in test-related
tasks provides a better structure for testing practices
in OSS projects.

To address this gap, we focus on Apache Spark,
an open-source data analytics platform designed for
distributed data-sharing. Numerous research papers
have explored various aspects of Apache projects, in-
cluding investigations of merged pull requests to char-
acterize refactoring activities (Coelho et al., 2021)
and analyses of the relationship between commits and
their associated source files (Li et al., 2021). How-
ever, a notable gap exists in understanding the testing
behaviors of contributors. We selected Apache Spark
for its use of Apache Maven, which provides a stan-
dardized directory layout that separates test code from
source code, facilitating the distinction between soft-
ware development and testing activities. Additionally,
the project maintains well-documented connections
between modified files and their associated commits,
providing a reliable basis for analysis. The diverse
community of contributors offers an excellent oppor-
tunity to examine testing patterns. This study aims to
explore testing patterns and identify potential testers
within the Apache Spark project. To guide our inves-
tigation, we propose two research questions.

RQ1: How are testing contributions distributed
among contributors in Apache Spark project?

We conducted a Pareto analysis of testing activi-
ties to pinpoint the key contributors who are respon-
sible for the majority of testing activities within the
Apache Spark project. This analysis enabled us to
identify and designate this core group of contributors
as top testing contributors for our study.

RQ2: How do the testing activities of contributors
change over time?

Given the long-term nature of the Apache Spark
project, which has spanned over a decade, we rec-
ognize that the testing behaviors of contributors may
change over time. Consequently, some contributors
we currently identify as top testing contributors may
not be actively involved in recent activities. Addition-
ally, those acknowledged as top testing contributors
in our RQ1 may not demonstrate consistent testing
involvement throughout the project’s lifecycle. To ad-
dress these temporal variations, we conducted an in-
vestigation into their activity levels and how the test-
ing activities of top contributors have evolved over
time. Our focus was on a limited but recent three-
year period (inspired by (Cheng and Guo, 2019)) to
capture both activity levels and contemporary testing
activities. We clustered the 159 top testing contrib-
utors based on their total commits during this time-
frame and examined their activity levels and tempo-
ral testing contributions over time, analyzing the test
commit ratio as the count of test commits relative to
total commits.

The structure of the paper is as follows: Section
2 reviews related work on contributor behaviors in
OSS projects, the challenges of OSS testing, and the
identification of test contributors in software projects.
Section 3 outlines our research methodology for ana-
lyzing commits to identify test-related activities, the
levels of activity levels concerning project involve-
ment, and examining testing focus over various time
periods. Section 4 presents our findings. Section 5
discusses the implications of our results for identify-
ing the role of testers. Section 6 addresses potential
threats to validity. Finally, Section 7 concludes the
paper, highlighting key insights and proposing direc-
tions for future research.

2 RELATED WORK

There are numerous participants involved in OSS
projects, each exhibiting varying levels of engage-
ment, yet their specific roles related to software en-
gineering remain undefined. This section reviews ex-
isting research pertinent to our objectives, highlights
individuals who significantly impact test-related ac-
tivities, and identifies the most active contributors in
testing. Section 2.1 explores methods for identify-
ing contributor roles within OSS projects. Section 2.2
addresses the testing challenges encountered in these
OSS initiatives. Additionally, Section 2.3 focuses on
identifying test contributors in the software projects.
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2.1 Contributor Roles and Behaviors in
OSS

Open source is a collaborative endeavor that brings to-
gether various contributors with diverse backgrounds
and profiles that extend beyond the clearly defined
roles typical of traditional software development.
Several studies have highlighted this collaborative na-
ture and offered frameworks for categorizing con-
tributors into over-arching roles. For instance, core
members play a significant role in the OSS project
with authority to accept or reject (Ducheneaut, 2005),
while peripheral contributors sequentially achieve
more central roles as they gain experience and vis-
ibility (Trinkenreich et al., 2020). Additionally, ca-
sual contributors participate in the project with mini-
mal knowledge and engagement (Pinto et al., 2016).
However, such overarching categorization in OSS is
complex and not always straightforward, particularly
when the diverse backgrounds of the contributors de-
velop the OSS project. This complexity highlights the
need to expand our horizons beyond merely the tech-
nical aspects of contribution structures, paving the
way for a more nuanced classification of roles that
surpasses these general categories.

Researchers focus on quantitative approaches to
analyzing contributor behaviors within OSS projects
through repository mining. For example, parsing
messages in email archives and calculating the sim-
ilarities among email messages are utilized to deter-
mine OSS participants’ coordination and communi-
cation activities and the developer’s social patterns
among the peers in the OSS project (Bird et al., 2006).
Another study examined commit sizes regarding the
number of source lines of code added and removed to
identify the code contribution behaviors of OSS par-
ticipants (Arafat and Riehle, 2009). The commit mes-
sages from OSS participants were analyzed to cate-
gorize their maintenance activities within the project
(Levin and Yehudai, 2017). While these studies high-
light the exploration of the OSS contributor behaviors
and categorize them through various metrics, there re-
mains a research gap in identifying contributors who
focus on testing activities.

2.2 Testing Challenges in OSS Projects

Testing activities in OSS projects pose unique chal-
lenges when compared to traditional software devel-
opment. OSS projects as a whole hardly ever follow
traditional software engineering paradigms (Morasca
et al., 2011), which can restrict the applicability
of well-established testing approaches in the open-
source domain. Zhao and Elbaum conducted a sur-

vey to investigate the testing activities in OSS projects
(Zhao and Elbaum, 2003). They found a significant
gap in testing familiarity by revealing that only 5%
of the respondents employed testing tools. Another
survey indicated that testing activities are less empha-
sized in OSS compared to traditional software devel-
opment (Tosi and Tahir, 2010). Specifically, over 40%
of OSS products lack testing activities, and 67% of
the projects do not have any test planning documenta-
tion. These findings indicate that testing activities are
relatively underutilized in OSS. To tackle these chal-
lenges, several studies have proposed solutions such
as testing guidelines and checklists, which outline a
set of issues and recommend appropriate testing ap-
proaches (Morasca et al., 2011). However, a notable
limitation of these proposed solutions is that they pri-
marily emphasize testing methodologies, often over-
looking the crucial aspect of identifying the contribu-
tors involved in testing activities. Without a clear un-
derstanding of who participates in testing within OSS
projects, it becomes increasingly challenging to as-
sess their overall impact or to implement meaningful
improvements in testing practices.

2.3 Identifying Test Contributors in
Software Projects

While existing studies have explored testing activi-
ties in OSS projects, there remains limited research
on the testing profile, i.e., quantitative evaluation of
OSS contributors’ testing efforts. This gap signifi-
cantly impacts our ability to identify the relevance of
contributors’ roles in relation to testing activities and
their overall impact on projects. Therefore, there is a
need for more systematic approaches to identify con-
tributors engaged in testing. Establishing a structured
evaluation of contributors’ behaviors, particularly in
testing, has become a cornerstone for not only rec-
ognizing their involvement but also for enhancing the
effectiveness of test practices.

Some studies have explored the identification of
contributors within software projects. For instance,
Zhang et al. employed an online survey to define
the specifications for testers in the software project
(Zhang et al., 2020). Similarly, Beller et al. utilized
the survey to determine whether and how individu-
als engage in software testing (Beller et al., 2015).
While these studies offer valuable qualitative insights
into testing involvement, they primarily depend on
self-reported data, lacking a rigorous empirical anal-
ysis of actual testing contributions. This highlights
a significant gap in the existing literature, emphasiz-
ing the need for more comprehensive research that
quantitatively evaluates testing activities and system-
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atically identifies contributors to these efforts. Our
study aims to address this gap by analyzing commit
data from open-source software (OSS) project, pro-
viding an empirical evaluation of contributors’ behav-
iors in testing activities.

3 METHODOLOGY

This section outlines our systematic approach for
identifying and analyzing the testing focuses of con-
tributors within the Apache Spark project. We con-
duct both Pareto analyses on commits and a time-
based examination of contribution patterns to gain
insights into the participants involved in testing ac-
tivities and how their behaviors evolve over time.
The following subsections detail our data collection
methodology and the statistical analysis techniques
applied in this study.

3.1 Data Collection and Preparation

To explore contributor behaviors related specifically
to testing, we conducted a detailed case study on the
commit records of the Apache Spark project. The pri-
mary motivation for this study is to examine testing-
related contributions within the real-world context of
OSS development, using Apache Spark as a represen-
tative example. Each commit represents a contribu-
tor’s interaction with the project repository, involving
local changes submitted to the remote repository, such
as adding, modifying, or removing lines of code or
files (Chełkowski et al., 2016). To identify test-related
files, we utilized Apache Spark’s Maven standardized
directory layout and conducted a manual review of the
repository file organization on its GitHub page. We
specifically targeted executable test files within com-
mits, as these represent direct indicators of a contribu-
tor’s testing activities. Our ultimate goal is to identify
top testing contributors and their activity levels within
the project, as well as the testing focus over time in
Apache Spark, by assessing contributors’ test commit
activities.

To achieve this, we focus on the total number
of commits and the subset that included executable
test files as our primary units of analysis. Data col-
lection was conducted using Github, enabling us to
gather comprehensive data for each contributor to the
Apache Spark project. The specific data items col-
lected for each contributor are summarized in Table
1.

Table 1: Data items collected per contributor.

# Name Description
D1 CmtAuNa Commit author name
D2 CmtAuMl Commit author e-mail
D3 CmtNum Number of total commits
D4 CmtTesNum Number of commits

including executable test files

3.2 Pareto Analysis on Apache Spark

We have effectively applied the Pareto 80/20 Rule,
which asserts that a small number of causes (20%) are
responsible for a large percentage (80%) of the effects
to pinpoint top testing contributors within the Apache
Spark project. This empirical approach enables thor-
ough various aspects of human activity in the software
engineering domain (Lipovetsky, 2009). For example,
Geldenhuys investigated user activity in OSS projects
by analyzing contribution patterns and concluded that
about 20% of the participants in an OSS project con-
tribute 80% of the work, highlighting the significant
influence of a small core group (Geldenhuys, 2010).
Another study shows that the exact ratio of the Pareto
Principle varies, but it is applicable: a relatively small
group drives the majority of work to commit activ-
ity, mailing activity, and bug activity (Goeminne and
Mens, 2011). While these studies have shown varia-
tions in contribution distributions, revealing that not
all metrics align with the 80/20 ratio, a corresponds
to this rule approximately. These studies affirm the
efficacy of the Pareto principle in analyzing various
contribution patterns and identifying key contributors
in OSS projects.

Notably, there remains an unexplored issue re-
garding the application of the Pareto Principle in the
context of testing contributions. Given that Pareto
Law has successfully identified key contributors in
OSS projects via several metrics, it presents a promis-
ing approach to how testing efforts are distributed and
to pinpoint potential testers for OSS projects effec-
tively. To tackle this research gap, during the initial
phase of our analysis, we identify contributors most
actively involved in testing activities by examining the
number of commits made to executable test files. We
employed the Pareto analysis approach based on the
methodology outlined by Yamashita et al. (Yamashita
et al., 2015) study. While they focus on core devel-
opers in selected projects, we adapted this method to
specifically address the testing workload within the
Apache Spark project. By leveraging the Pareto prin-
ciple and analyzing the distribution of test commit
count (CmtTesNum), we confidently identify the con-
tributors who are responsible for the majority of test-
ing contributions. Our systematic analysis involved
the following steps:
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Step 1: Clone the Apache Spark project reposi-
tory from Github.

Step 2: Extract commit author information, in-
cluding author names (CmtAuNa) and e-mail ad-
dresses (CmtAuMl).

Step 3: Identify executable test files by examin-
ing the repository’s directory structure, focusing on
standardized test directories such as ‘src/test/’.

Step 4: Calculate the number of commits contain-
ing executable test files (CmtTesNum) for each con-
tributor.

Step 5: Filter out contributors whose commits do
not include any executable test files.

Step 6: Apply the Pareto principle to the distribu-
tion of test commit counts (CmtTesNum) to identify
key contributors to testing activities.

Through this systematic analysis of test commit
counts, we can identify the key contributors driving
the majority of testing activities in the Apache Spark
project, i.e., top testing contributors. This founda-
tional work enables an insightful time-based analysis
of their testing engagement patterns.

3.3 Time-Based Analysis of Activities

Contributors often demonstrate a range of engage-
ment levels over time, underscoring the importance
of time-based analysis. Such an approach allows for
the classification of contributors’ activities into spe-
cific groups based on their participation levels. For
instance, Lee and Carver (Lee and Carver, 2017) have
investigated OSS contributors over time according to
the number of commits. Core contributors, for in-
stance, are those who have been engaged with the
project for a long time and have contributed many
patches to the project, while the peripheral contrib-
utors tend to have shorter involvement compared to
the core contributors (Lee and Carver, 2017). Within
this latter group, One-Time Contributors (OTCs) have
made only a single code contribution to the project
repository. Another time-based analysis focuses on
the average time between commits and the duration
of involvement, enabling the identification of active,
occasional, and rare developers (Di Bella et al., 2013).
A more recent study further categorizes the OSS de-
velopers within the active roles and supporting roles
by analyzing code contribution metrics from a three-
year period (Cheng and Guo, 2019). Such a combined
approach is particularly promising for exploring not
only who the key testers are but also how their ac-
tivities develop or diminish over time. Building on
this framework, the next phase of our analysis investi-
gates the recent engagement patterns of the top testing
contributors identified through the Pareto Analysis.

This approach aims to determine whether these top
contributors remain consistently active or show signs
of declining participation in activities over time. To
achieve this, we adopt the time-based analysis frame-
work proposed by Cheng and Guo (Cheng and Guo,
2019), which focuses on a three-year timeframe di-
vided into quarterly intervals. Their study aligns with
our objectives of examining activities within the OSS
projects by analyzing code contribution metrics, such
as the number of commits and modified files. How-
ever, we specifically focus on identifying top test-
ing contributors and evaluating their activity level in
terms of project involvement and testing focus over
time within Apache Spark.

We evaluate top testing contributor’s overall en-
gagement by analyzing their total commit counts
(CmtNum) as a proxy for their activity levels. An-
alyzing this metric from 2021 to 2023 allows us to
effectively measure their recent participation trends.
We identified the contributors by their names (Cm-
tAuNa) over the three years and aggregated their com-
mit counts (CmtNum). To categorize top testing con-
tributors based on activity levels, we applied a hi-
erarchical clustering approach to their total commit
counts. This clustering method allows us to cate-
gorize contributors into three activity strata: Highly-
Active, Moderately-Active, and Lowly-Active. Using
dendrograms as visual aids, we provide an intuitive
graphical representation of clusters, facilitating easier
interpretation of contributor activity patterns (Bruce
et al., 2020).

After identifying the top testing contributors
through Pareto analysis (Section 3.2) and categoriz-
ing their recent activity levels over the three-year
period (Section 3.3), we further explore their sus-
tained testing focus by examining test commit counts.
By analyzing test commit counts across quarterly
intervals from 2021 to 2023, we further examine
the continuity and variability of testing focus among
the Highly-Active, Moderately-Active, and Lowly-
Active groups. This analysis provides valuable in-
sights into the long-term testing focus of key contrib-
utors within the Apache Spark community and high-
lights how these testing focuses evolve over time.

4 RESULTS

This section presents our findings, directly addressing
the research questions outlined in Section 1. We pro-
vide a detailed analysis of testing contributions, along
with a time-based evaluation of recent contributors, to
thoroughly investigate their contribution patterns over
time.
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4.1 Distribution of Testing
Contributions (RQ1)

We examined the GitHub commit data to investigate
the Apache Spark testing workload. The primary ob-
jective of RQ1 is to identify top testing contributors
who are predominantly involved in testing activities
using Pareto Analysis. To this end, we counted the
number of commits containing executable test files
for each contributor.

Our dataset encompasses 41,291 total commits
made by 2,883 contributors. Among these, 20,468
commits (49.57% of the total) include modifications
to executable test files, derived through a detailed ex-
amination of the Apache Spark project directory. Ta-
ble 2 presents an overview of our dataset.

Table 2: Overview of the Apache Spark Dataset.

Metrics Count
Total number of commits 41,291

Commits with test modifications 20,468
Total number of contributors 2,883

4.1.1 Pareto Analysis Results

Our analysis of test-related commits reveals no-
table patterns in the distribution of testing workloads
among contributors. Out of 2,883 contributors, 1,625
(56.36%) have made at least one test-related commit.
A Pareto Analysis of these contributors indicates an
even more core distribution than the traditional 80/20
principle: 80% of all test-related commits were made
by just 159 developers, accounting for only 9.8% of
contributors in this category.

This analysis implies that a window of flexibility
exists, allowing projects with core contributors falling
within the range of 20% ± 10% to adhere to the Pareto
principle. Figure 1 visually depicts this concentrated
distribution pattern.

These findings provide key insights for RQ1,
demonstrating that testing efforts in Apache Spark are
heavily reliant on a small group of highly dedicated
contributors. This emphasizes the crucial role of core
contributors play in managing the testing workload.

4.1.2 Core Contributors in Testing

An in-depth examination of core contributors through
the lens of the Pareto principle reveals notable pat-
terns in their test-related commit activities. Table
3 outlines the statistics for the top 10 contributors,
whose testing workload constitutes 30.46% of the to-
tal testing workload, with their test-related commit
count (CmtTesNum) reaching 16,367.

Figure 1: Test commits Pareto analysis.

Figure 2: Test contribution analysis of Top 10 contributors.

Among these core contributors, we can draw sig-
nificant insights regarding their testing patterns. As
illustrated in Figure 2, Contributor-65 stands out as
an outlier with 852 test-related commits (CmtTes-
Num), which shows a strong commitment to testing
activities, which account for 71.96% of their total
commits. To further investigate the testing contribu-
tions of Contributor-65, we analyzed their test-related
commits and the modified files associated with them.
For example, Contributor-65 indicated involvement in
writing tests for the project and enhancing test in-
frastructure in [SPARK-XXXXX][CORE][TESTS],
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Table 3: Statistics of Top 10 testing contributors.

Contributor CmtNum CmtTesNum % of CmtTesNum CmtTesNum/CmtNum Ratio
Contributor-65 1,184 852 5.20% 71.96%
Contributor-50 1,482 666 4.07% 44.94%
Contributor-15 1,584 661 4.04% 41.7%
Contributor-52 825 490 2.99% 59.39%
Contributor-45 577 437 2.67% 75.74%
Contributor-42 676 434 2.65% 64.20%
Contributor-92 1,592 401 2.45% 25.19%
Contributor-38 578 357 2.18% 61.76%
Contributor-25 874 344 2.10% 39.36%
Contributor-60 564 344 2.10% 60.99%

along with modifying test files in this commit. This
evidence underscores their direct involvement in test-
ing activities. The existence of multiple similar com-
mits emphasizes that Contributor-65 not only fo-
cuses on core development but also takes an active
role in writing tests and improving test infrastruc-
ture, thus solidifying their role as a testing contribu-
tor. Contributor-45 holds the highest ratio of test com-
mits to total commits at 75.74%, with 437 test commit
counts. An analysis of Contributor-45’s commits re-
veals their efforts in contributing to new test suites for
the Apache Spark project, enhancing test coverage,
and eliminating duplicate tests, as evidenced by their
[SPARK-XXXXX][SQL][TESTS] commit. Notably,
this commit comprises only test-related code modi-
fications. These findings confirm that Contributor-
45 plays a significant role in enhancing the effective-
ness of testing within the Apache Spark project. Ac-
cording to Table 3, the proportion of test commits
(CmtTesNum) to total commits (CmtNum) varies by
25.19% among the top contributors, with Contributor-
92 and Contributor-45 ranking high in testing activi-
ties. These findings affirm that testing responsibilities
within Apache Spark are predominantly handled by a
small group of contributors despite variations in both
the number and proportion of their testing activities.

4.2 Time-Based Analysis in Testing
Activities (RQ2)

To explore the contribution patterns of core contribu-
tors identified through the Pareto Analysis, we con-
ducted a time-based analysis to determine whether
these top testers have maintained consistent activity
levels or exhibited shifts in their testing focus. By
examining quarterly periods over the past three years,
we categorized contributors’ engagement activity pat-
terns, capturing fluctuations and trends in their testing
contributions.

4.2.1 Clustering on Contributor Commit
Activities

To further investigate the activity patterns of top test-
ing contributors, we applied hierarchical clustering to
explore their project engagement activity levels based
on total commit counts over the last three years. The
results of this analysis are visualized in Figure 3,
which uses a dendrogram to depict these activity pat-
terns.

Although the silhouette measure suggests the
highest coefficient (0.84) for two clusters, this re-
sults in a notably imbalanced distribution, with only
four active top testing contributors (Contributor-15,
Contributor-25, Contributor-52, and Contributor-88)
compared to 87 non-active contributors. In order to
provide a more nuanced understanding of contribu-
tion patterns among the recently active contributors,
we examined the largest vertical distance between
successive horizontal cuts in the dendrogram, which
represents the merging of dissimilar clusters. The
height of these merges identified three distinct activ-
ity patterns, offering a clearer categorization of con-
tributor behaviors, as shown in Figure 3. The clus-
ters were classified into three groups based on total
commit counts: Highly-Active Contributors (4 mem-
bers), Moderately-Active Contributors (23 members),
and Lowly-Active Contributors (64 members).

The first group, Highly-Active Contributors,
demonstrates exceptional activity, with total com-
mit counts ranging from 637 to 726 over the last
three years. Members of this group, Contributor-
52 (637), Contributor-25 (642), Contributor-15 (654),
and Contributor-88 (726), are responsible for 2,659
commits, representing 31.27% of total commits. This
analysis indicates a significant portion of commit ac-
tivity among these four contributors, highlighting the
strong dependency on a small core group within the
Apache Spark project.

The second group, Moderately-Active Contribu-
tors, exhibits more balanced activity patterns, with
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Figure 3: Dendrogram visualization of hierarchical clustering results regarding contributors’ total commit counts.

Figure 4: Distribution of total commit counts across con-
tributor clusters.

commit counts varying from 82 to 385. Key contrib-
utors in this group are Contributor-83 (304 commits),
Contributor-84 (382 commits), and Contributor-45
(385 commits).

The final group, Lowly-Active Contributors, con-
tributed the least, representing 18% of total commits,
with fewer than 70 commits per member.

This hierarchical clustering points to a highly
skewed distribution of contribution activity, where a
small number of Highly-Active contributors (4 mem-
bers) and a larger number of Moderately-Active Con-
tributors (23 members) dominate the commit activ-
ities in Apache Spark over the last three years, as
shown in Figure 4.

4.2.2 Time-Based Activity Patterns

Our time-based analysis of quarterly test commit pat-
terns from 2021 to 2023 deduces several outcomes of
how contributors within each cluster engage in testing
focus over time. In order to achieve this, we analyzed
the test commit ratio, which is defined as the num-

ber of test commits divided by the total commit count
for each period within each activity cluster identified
in the previous section, Section 4.2.1. This analy-
sis reveals the proportion of work related to testing
across different activity levels. As shown in Figure
5, the members of each cluster show distinct patterns
in testing-focused activities across these three-month
intervals over the last three years.

Highly-Active Contributors exhibit a notable fo-
cus on testing when compared to other clusters. Be-
ginning with a significant peak in test commit ratio
of approximately 0.22 in early 2021 (2021-Q1), this
group demonstrates consistent testing involvement
throughout the observed timeframe, despite experi-
encing some fluctuations. There was a dramatic de-
cline in 2021-Q3, where the test commit ratio dropped
to around 0.07. Nevertheless, this group has main-
tained the highest test commit ratios relative to the
other clusters during all periods reviewed. Another
peak occurred in 2023-Q2, reaching about 0.22 in
the test commit ratio. This trend indicates this rela-
tively small group sustains substantial involvement in
testing, consistently outperforming both Moderately-
Active and Lowly-Active Contributors in terms of test
commit ratios.

Moderately-Active Contributors show a rela-
tively stable in their involvement with test commits.
According to Figure 5, they show a slight increase
during 2021-Q2, in which their test commit ratio is
approximately 0.14. Their test commit ratio then
gradually decreases until 2021-Q4, before peaking at
around 0.15 in 2022-Q2. Overall, their testing en-
gagement demonstrates a general downward trend,
with the ratio fluctuating between approximately 0.06
and 0.10 throughout 2023. Although their test com-
mit ratios are lower than those of Highly-Active con-
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Figure 5: Test commit ratio over time by cluster.

tributors during the examined periods, they maintain
a more consistent level of testing involvement.

Lowly-Active Contributors display considerable
fluctuations in their test commit ratios, beginning at
approximately 0.14 in 2021-Q1. Their testing in-
volvement is comparable to those of Moderately-
Active Contributors. Interestingly, the test commit ra-
tio for Lowly-Active Contributors test is nearly equiv-
alent to the around 0.08 observed for Moderately-
Active Contributors in 2021-Q4. They experience the
most drastic decreases compared to the Moderately-
Active Contributors cluster, highlighted by a sharp
drop of around 0.02 in 2022-Q4, followed by a re-
markable increase of around 0.14 in 2023-Q1. By
the final quarter of 2023, their test commit ratio
once again approaches that of the Moderately-Active
Contributors, stabilizing around 0.10. Consequently,
Lowly-Active Contributors maintain periodic testing
involvement and demonstrate less consistency in test-
ing activities compared to other clusters.

These time-based analyses underscore the evolu-
tion of distinct testing activities within the Apache
Spark project, revealing that each cluster exhibits
unique patterns over time. Highly-Active Contribu-
tors consistently maintain the highest test commit ra-
tios, indicating their significant focus in testing activ-
ities during the observed time periods. Moderately-
Active Contributors and Lowly-Active Contribu-
tors demonstrate test commit ratios that are closer
to each other during certain periods, such as 2021-
Q4 and 2022-Q1. However, Moderate-Active Con-
tributors show more stable test commit ratios over-
all. These findings provide valuable insights into test-
ing focus over time and shed light on whether such
involvement is consistently sustained across different

contributor groups or if it heavily depends on specific
activity clusters.

5 DISCUSSION

In this section, we revisit our two research questions.
Using the results described in Section 4 along with
previous results from the literature.

RQ1: How Are the Contributions to Testing
Distributed Among Contributors in the Apache
Spark Project?

Our study clearly demonstrates a significant con-
centration in the Apache Spark project, where 9.8%
of contributors are responsible for 80% of test com-
mits. This distribution pattern emphasizes an atypical
focus on testing activities than the traditional Pareto
principle observed in prior literature, which typically
shows that 20% of contributors account for 80% of
the work (Geldenhuys, 2010), (Lipovetsky, 2009).
Through quantitative analysis of test-related commits,
we found that this small but dedicated group of con-
tributors participated in testing activities, indicating
the presence of informal testers within the Apache
Spark community. This phenomenon could allow
for the assignment of testing roles to OSS contribu-
tors, similar to the tester roles in traditional software.
While this outcome presents intriguing possibilities
for defining specific testing roles for open-source soft-
ware (OSS) contributors, it also raises significant con-
cerns regarding the effectiveness of testing efforts.
Relying on a limited group of testing contributors may
result in an imbalanced distribution of testing respon-
sibilities. Moreover, when testing efforts are concen-
trated among a small group, it can lead to insufficient
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testing across various software modules, thereby di-
minishing the effectiveness of the tests. This focused
concentration may also create uneven workflows in
testing activities, resulting in gaps in test coverage,
where certain components of the software receive
thorough testing while others are neglected. Our find-
ings reveal a noteworthy disparity in testing efforts
within Apache Spark, which is dependent on a small
number of contributors, thus underscoring the chal-
lenge of uneven test coverage throughout the project.
In contrast, OSS projects like Mozilla have embraced
a more inclusive and collaborative approach to test-
ing (Mockus et al., 2002). Mozilla actively involves
a sizeable group of contributors who are dedicated to
testing activities, which helps to distribute testing ef-
forts more equitably across the entire project and re-
duces the likelihood of components being either over-
looked or excessively tested. For instance, a substan-
tial group within Mozilla maintains the test cases and
test plans, ensuring broader participation in testing ac-
tivities (Mockus et al., 2002). The differences in the
testing strategies between Apache Spark and Mozilla
emphasize a critical concern: substantial gaps in test-
ing participation can diminish test effectiveness, lead-
ing to inconsistent coverage. Encouraging broader
collaboration among participants is crucial for ensur-
ing the quality and reliability of open-source software
projects (Wang et al., 2024). Therefore, it is essential
to encourage wider participation in testing activities
to ensure that all aspects of the software undergo rig-
orous and comprehensive testing, enhancing test ef-
fectiveness.

RQ2: How do the Testing Activities of Contrib-
utors Change Over Time?

Our time-based analysis of contributor activity
within the Apache Spark project between 2021 and
2023 reveals significant differences in the engage-
ment levels of top testing contributors. It is ev-
ident that not all contributors maintained a con-
sistent involvement; while some have shown ac-
tive participation, others exhibit moderate or low in-
volvement. This dynamic participation among the
top testing contributors is categorized into Highly-
Active, Moderately-Active, and Lowly-Active clus-
ters as seen in Figure 4. This analysis indicates that
top testing contributors do not always sustain equal
levels of activity; rather, their levels of contribution
change over time.

With these activity-based clusters established, we
assessed each cluster’s test commit ratio to exam-
ine their testing focus throughout the periods. This
approach enables us to discern whether their test-
ing focus remains stable or experiences fluctuations.
Highly-Active contributors exhibit the highest testing

focus during 2021-Q1 and 2023-Q4, showing their
strong commitment to testing. As a pivotal group
within the community, these contributors bear the pri-
mary responsibility for the testing within the Apache
Spark OSS project. This strong emphasis on testing
not only underscores their dedication but also aligns
with existing research that identifies core contribu-
tors as key players who drive substantial contribu-
tions and propel the project forward (Lee and Carver,
2017). Moderately-Active and Lowly-Active demon-
strate similar test focuses, albeit with some temporal
variability. The observed patterns highlight that the
testing focus of top testing contributors not only dif-
fers by activity level but also exhibits noticeable tem-
poral trends.

6 THREATS TO VALIDITY

Several factors discussed in this section may pose
challenges to the validity of our proposed approach.
The selection of a three-year time period could af-
fect our assessment of contributor patterns. We ad-
dressed this by choosing this specific period to main-
tain recency while having sufficient data for meaning-
ful analysis. Additionally, our use of specific thresh-
olds in Pareto Analysis (80/20 principle) and hierar-
chical clustering parameters could influence how we
identify and categorize testing contributors and their
activity levels. To address these challenges, we val-
idated our Pareto threshold against established OSS
studies and carefully interpreted the dendrogram to
determine optimal cluster numbers in our hierarchi-
cal analysis, ensuring our classifications accurately
reflect contributor activity levels. In our research,
analyzing the testing behaviors of OSS contributors
through commits that contain test files may not fully
capture their testing responsibilities. Future research
could expand our methodology by examining addi-
tional activity-based metrics related to testing, such
as the number of test cases developed or executed.
It would also be beneficial to conduct a study across
multiple projects. Our research centered exclusively
on the Apache Spark project. To enhance the exter-
nal validity of our findings, we intentionally selected
this project, which has been the subject of numerous
studies, features a diverse set of contributors, and has
a well-documented commit history. While our find-
ings are drawn from Apache Spark, they may not be
generalizable to all OSS projects. Nevertheless, the
methodological framework we conducted can indeed
be adapted for use with other OSS projects. Future
research could further validate and expand upon our
findings across a variety of OSS contexts. In this vein,
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we have presented initial results and conceptual ideas.

7 CONCLUSION

Our aim in this paper is to explore how to identify
key contributors responsible for the majority of test-
ing in open-source projects, specifically through the
analysis of test commits within the Apache Spark
project. By focusing on contributors who bear testing
responsibilities (RQ1), we observe that only 9.8% of
contributors are responsible for the majority of test-
related commits. This distribution emphasizes that a
concentrated group of individuals is responsible for
testing activities, a more skewed distribution than the
traditional 80/20 Pareto Principe. Our further analy-
sis uncovered varying engagement levels among the
top testing contributors by examining their total com-
mits over the past three years. We categorized them as
Highly-Active Contributors, Moderately-Active Con-
tributors, and Lowly-Active Contributors (RQ2). Ad-
ditionally, we analyzed the testing focuses of each
activity level across quarterly periods. It becomes
apparent that Highly-Active Contributors who are
deeply engaged with the Apache Spark project also
exhibit the highest testing focus across other clusters,
positioning them as the backbone of the project’s test-
ing practices. Our analysis highlights significant im-
plications for OSS projects, particularly in fostering
broader participation in testing activities among OSS
contributors and strategizing to achieve a more bal-
anced involvement across the community.
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