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3LAMIH CNRS, Université Polytechnique Hauts-de-France, Campus Mont Houy, 59313 Valenciennes Cedex 9, France

Keywords: CAD, 3D, LLM, Context Augmentation, BRep.

Abstract: This paper presents a novel approach for automated generation of 3D CAD models using Large Language

Models (LLMs) within Model-Based Systems Engineering workflows. We introduce Iterative Diagnosis-

Driven Augmented Generation (IDDAG), a methodology combining programmatic geometry creation with

systematic diagnostic feedback. The approach leverages a dedicated API for exact Boundary Representation

(B-Rep) geometry generation, augmented by a closed-loop architecture that provides iterative refinement based

on syntactic, runtime, and geometric analysis. Unlike existing methods requiring extensive training datasets

or producing approximate geometries, our solution generates topologically valid, parameterized models while

maintaining traceability to engineering requirements. Results demonstrate progressive geometric refinement

across iterations, with the diagnostic feedback mechanism effectively identifying and correcting topological

inconsistencies.

1 INTRODUCTION

In the context of Industry 4.0’s digitalization of in-

dustrial value chains, the integration between Model-

Based System Engineering (MBSE) and Computer-

Aided Design (CAD) becomes essential to facilitate

the digitization of physical product development pro-

cesses (Meussen, 2021).

3D CAD models are particularly critical as they

represent the exact geometric definition that will be

used throughout the product lifecycle, at each stage

of the digital chain (visualization, simulation, auto-

mated manufacturing, etc.). Integrating 3D represen-

tation within an MBSE approach therefore imposes

stringent requirements: models must comply with

structural and semantic consistency constraints with

other system views (functional, logical, physical ar-

chitectures); their construction must follow a trace-

able process, where each design choice can be jus-

tified against initial requirements; their maintenance

over time requires precise and unambiguous parame-

terization enabling adaptation to evolving needs. Cre-
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ating these 3D models requires significant technical

expertise, substantial time investment, and the use of

complex professional CAD software - making these

costly processes.

Concurrently, the development of Large Language

Models (LLMs) reveals remarkable opportunities in

the Industry 4.0 domain (Bourdin et al., 2024).

This paper thus aims to address two research ques-

tions: is it possible, using LLMs, to automate all or

part of the process of creating 3D models from a set of

requirements? If so, how can we ensure the explain-

ability of the provided solution to enable validation of

choices and therefore design traceability? Industrial

3D CAD processes utilize Boundary Representation

(B-Rep), as it offers mathematically exact geometry

representation. While recent AI advances have en-

abled notable progress in processing approximate ge-

ometries (particularly through meshes) with applica-

tions in entertainment, visualization, and 3D printing,

research concerning exact representation remains less

numerous and advanced.

As a consequence, the paper is structured as fol-

lows: Section 2 presents the state of the art regarding

LLM utilization for B-Rep generation and its current

limitations. Section 3 introduces our two scientific

contributions: a programmatic methodology coupled
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with an iterative context enrichment mechanism for

solution quality improvement. Section 4 details the

experimental validation protocol and results. Finally,

Section 5 discusses the contributions relative to ex-

isting approaches and identifies future research direc-

tions.

2 RELATED WORK

2.1 B-Rep Model

The BRep model describes the mathematically exact

geometry of a component through non-volumetric el-

ements that compose its surface. These elements con-

sist of faces, edges, and vertices arranged in an adja-

cency graph. A face corresponds to a surface patch, an

edge to an intersection curve segment between at least

two surfaces, and a vertex to an intersection point be-

tween two distinct curves (Mortenson, 1997).

2.2 Large Language Models

A Large Language Model (LLM) is an artificial in-

telligence system based on a transformer architecture,

trained on massive volumes of textual data (ranging

from hundreds of billions to several trillion tokens)

for self-supervised learning purposes. These models

are capable of Natural Language Processing (NLP)

and can perform various complex linguistic and cog-

nitive tasks such as translation, reasoning, program-

ming, and problem-solving, either in few-shot mode

(with few examples) or zero-shot mode (without ex-

amples). Their learning capacity emerges from at-

tention mechanisms allowing them to capture long-

term dependencies in textual sequences and acquire

sophisticated contextual representations of language

(Naveed et al., 2024).

Regarding coding tasks, (Liang et al., 2024) re-

veal that LLMs demonstrate their greatest efficiency

when tasks are structured with clear context, for ex-

ample targeted modifications of existing code, data

visualization tasks, or documented API implementa-

tion. Efficiency is maximized when source code is

available as context, objectives are well-defined, and

the user possesses sufficient technical expertise to for-

mulate precise queries.

2.3 LLMs for B-Rep Geometry

Generation

In the field of automatic BRep geometry generation,

scientific literature works can be classified into two

categories: a) those that directly produce BRep ge-

ometry; b) those that produce an intermediate artifact

that drives geometry creation.

B-Rep Geometry Generation. This approach is

chosen, for example, by (Xu et al., 2024) (Zhang

et al., 2023) (Zhang et al., 2024). The algorithm gen-

erates a graph representing BRep topology and ge-

ometry. These approaches use neural networks, but

not directly LLMs. A preliminary learning phase is

necessary, involving datasets of several hundred or

thousand examples. Then validation tests are per-

formed on data not included in the initial dataset.

These works face issues of precision, explainability,

and lack of formal guarantees on the production of

topologically valid CAD models (risks of generat-

ing non-manifold geometries, or surfaces with self-

intersections).

Indirect Generation. (Wu et al., 2023) introduce

CAD-MLLM, a system using multimodal LLMs

(text, image) to generate CAD models from various

inputs (text, images, point clouds). In this case, ge-

ometry is not directly generated by the LLM: the out-

put is a geometry description in the form of a ”com-

mand sequence,” which drives geometry construction

(a method that falls within the framework of Para-

metric Macro Approaches introduced by (Mun et al.,

2003)). Each sequence element is identified by a

mnemonic associated with a token in the fine-tuning

phase of the chosen LLM. According to the authors,

CAD-MLLM presents the following limitations: the

description in the form of basic operation sequences

uses an ad hoc model composed of a small number of

operations in linear form. It is work centered on exact

geometry reconstruction, but not generation from re-

quirements. (Yuan et al., 2024) Zhang et al. propose a

very similar approach and report the same limitations.

2.4 Open Issues

We identify three significant barriers in the presented

works:

• all works rely on a learning phase based on a large

dataset, which is a costly operation,

• produced geometries are limited to simple cases,

• it is not possible to guarantee the topological va-

lidity of generated shapes.

Finally, we note that in these works, geometry is never

related to the notions of function or requirement so

important in MBSE. In the remainder of this paper,

we propose a method to address the preceding barri-

ers.
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3 PROGRAMMATIC APPROACH

FOR BRep GENERATION

We therefore orient our work toward an approach that:

• generates parameterized geometry programmati-

cally (see section 3.1), enabling for instance the

creation of component catalogs with complex ge-

ometries, or inclusion in simulation optimization

loops (e.g., FEM),

• generates exact, topologically consistent geome-

try,

• does not require LLM fine-tuning or learning, nor

datasets. We prefer context augmentation.

3.1 Programmatic Approach

Principle. Following from the previous section, we

propose a path that falls within the ”indirect gen-

eration” category of geometry, different from those

proposed in section 2: a ”programmatic” approach.

Rather than asking the LLM to generate a command

sequence in an ad hoc model, we propose asking it to

generate a computer program to which form creation

is delegated. Two approaches can be considered:

• design a Domain Specific Language for 3D form

programming;

• use a common programming language

(JavaScript, Java, C, etc.) and a domain-specific

3D development library.

The design and implementation of a DSL present

two challenges: with its specific grammar, it re-

quires LLM fine-tuning, and thus the creation of a

sufficiently large dataset to ensure proper learning.

Additionally, a compiler or interpreter for this DSL

must be developed. To overcome these difficulties,

we choose the Python programming language in this

work.

Example and Limitations. To illustrate this ap-

proach, here is a basic ChatGPT prompt to generate

a 3D nut using Python and the free and open-source

3D CAD library pythonocc (Paviot, 2022) :

Write a python script, based on the pythonocc

library, to generate the parameterized 3D

geometry of a standard H-M10 nut.

The generated program is included in Appendix 1.

We observe that:

• the program is difficult for humans to read, except

for library specialists;

• the program, when executed, generates an error:

the BRepBuilderAPI MakePrism class does not

exist in the library, it is an LLM hallucination.

This programmatic approach shows its limitations

on a simple example: ChatGPT has only limited

knowledge of the utilized library and proposes a non-

existent class.

Dedicated API. To gain explainability, we seek to

obtain a more concise and clearer program. We pro-

pose relying on a dedicated API based on:

• a taxonomy of elementary operations for creation,

transformation, and measurement of basic shapes

• a naming convention for classes and functions

methods that is closest to natural language. This

proximity to natural language improves program

readability for humans;

Furthermore, we propose passing textual API doc-

umentation to the LLM. This contextual element

should enable the LLM to generate a program con-

forming to the provided specification, addressing the

problem raised in the previous section. The documen-

tation must be concise, to limit prompt length, and

exhaustive to cover all proposed functionalities.

3.2 Context, Metadata, Requirements,

and Knowledge

Context The structure of the prompt passed to the

LLM is therefore:

<instructions>[...]</instructions>

<api_documentation>[...]</api_documentation>

For example:

<instructions>

Generate a Python script to create the 3D

geometry of an H-M10 nut, using the library

whose documentation is given below

</instructions>

<api_documentation>

3D Modeling Library

=================

This API allows easy creation and manipulation

of 3D geometric objects.

[...]

</api_documentation>

Requirements and Knowledge. Requirements are

part of the prompt passed to the LLM, enclosed in

<requirements></requirements> tags. Specifica-

tions are of three types:

• functional requirements (maximum dimensions,

maximum mass)
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• technical requirements (technology used, materi-

als, etc.)

• various additional requirements (expected level of

detail, aesthetics, etc.)

Requirements are passed as text, which can rep-

resent structured (JSON, XML), semi-structured, or

unstructured information (natural language) depend-

ing on the context. Similarly, domain-specific knowl-

edge is passed between <knowledge></knowledge>

tags. For example, this could be an excerpt from the

standard specifying H-M10 nut dimensions. Thus, the

final structure of the prompt passed to the LLM looks

like (replace the #component token with any compo-

nent name, for example H-M10 nut):

<instructions>

Write a Python program to generate

the parameterized 3D geometry of a #component:

- using the API whose documentation is given

below

- using #component metadata

- using the given knowledge elements

- respecting all listed requirements

</instructions>

<metadata>[...]</metadata>

<api_documentation>[...]</api_documentation>

<knowledge>[...]</knowledge>

<requirements>[...]</requirements>

The Python program generated this way offers better

human readability and creates the following graphical

3D geometry (see 1):

Figure 1: Fixed 3D nut generation.

4 DIAGNOSIS-DRIVEN

AUGMENTED GENERATION

Despite the precautions taken previously (dedicated

API, concise documentation in context), output qual-

ity cannot be guaranteed: the generated program may

still present syntactic errors, the geometry creation

may prove mathematically unfeasible, or the geom-

etry may be topologically incorrect. To address these

deficiencies and enhance reliability, we propose aug-

menting the LLM with reflective capabilities by pro-

viding a set of information constructed a posteriori,

based on the LLM output. This involves enriching the

LLM prompt context with a diagnostic report com-

prising information on:

• syntactic compliance of the generated program,

utilizing static code analysis tools

• program execution success and geometry cre-

ation, derived from Python console output

• analysis of the produced geometry (topological

coherence, inertial elements, bounding volume,

etc.), performed by a dedicated software compo-

nent

The generated diagnosis thus comprises three dis-

tinct sections:

<diagnosis>

<static_analysis>[...]</static_analysis>

<runtime_analysis>[...]</runtime_analysis>

<geometric_analysis>[...]</geometric_analysis>

</diagnosis>

Once this diagnostic report is generated, it is

added to the context and returned to the LLM for po-

tential modification requests. This process iterates un-

til a satisfactory response is obtained, with the user

determining whether to initiate a new generation cy-

cle. Thus, during successive iterations, the prompt

passed to the LLM the second time (after the first it-

eration) follows this schematic XML model:

<input>

<instructions>[...]</instructions>

<metadata>[...]</metadata>

<api_documentation>[...]</api_documentation>

<knowledge>[...]</knowledge>

<requirements>[...]</requirements>

</input>

<output>[... first LLM response ...]</output>

<diagnosis>

<static_analysis>[...]</static_analysis>

<runtime_analysis>[...]</runtime_analysis>

<geometric_analysis>[...]</geometric_analysis>

</diagnosis>

<input>

<instructions>Given the diagnostic report,

update the 3D generation code.

</instructions>

</input>

After the second iteration, the following is added

to the previous prompt:

<output>[... second LLM response ...]</output>

<diagnosis>

<static_analysis>[...]</static_analysis>

<runtime_analysis>[...]</runtime_analysis>

<geometric_analysis>[...]</geometric_analysis>

</diagnosis>

<input>

<instructions>Given the second diagnostic

report, update the 3D generation code.

</instructions>

</input>
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and so forth. This workflow process can be il-

lustrated by the synoptic diagram in Figure 2, which

adopts closed-loop control system semantics.

5 EXPERIMENTS

The experimental validation was conducted using

Python 3.10 and the latest pythonocc version. The

Large Language Model used was Claude Haiku, se-

lected for its balance of performance and response

speed. Two distinct test cases were implemented to

evaluate the IDDAG methodology: a standardized

mechanical component (ball bearing) and an aerody-

namic surface (airplane wing). For each experiment,

we analyze the geometric evolution across successive

iterations and examine convergence characteristics.

Ball Bearing. The first experiment focused on gen-

erating a 6203-series radial ball bearing, chosen for

its well-defined geometric constraints and standard-

ized dimensions. This is the only requirement.

Table 1 illustrates the geometric evolution across

five iterations. Initial generation (n=1) produced a

simplified cylindrical representation lacking internal

components. Subsequent iterations progressively re-

fined the model: n=2: Addition of basic rolling el-

ement placeholders, n=3: Implementation of correct

race profiles, n=4: Refinement of ball geometry and

spacing n=5: Final optimization of contact surfaces

and clearances.

The diagnostic feedback loop identified and cor-

rected multiple issues, including topological inconsis-

tencies in race-to-ball interfaces (n=2→n=3) and ge-

ometric validity constraints for rolling element distri-

bution (n=3→n=4). 1

Airplane Wing. The second experiment involved

generating an aircraft wing section using the NACA

0012 airfoil profile, chosen for its well-documented

geometry and extensive validation data. The spec-

ification included a 1000mm span, 200mm chord

length, and precise adherence to the NACA 0012 co-

ordinate system. The evolution shown in Table 2

demonstrates significant challenges in initial geom-

etry creation: n=1: Failed mathematical generation

of intrados and extrados curves (not visualized), n=2:

Successfully generated planar surface but incorrect

extrusion direction, n=3: Corrected extrusion vector

orientation, resulting in topologically and geometri-

cally valid 3D form.

Discussion. The experimental results demonstrate

iterative geometric refinement across successive gen-

erations, though convergence is not consistently

achieved for all test cases. The ball bearing example

exhibited systematic improvement in geometric accu-

racy and topological validity over 5 iterations, pro-

gressing from a simplified cylindrical representation

to a complete model with proper race profiles and

ball spacing. In contrast, the aircraft wing case high-

lighted potential limitations, requiring only 3 itera-

tions but encountering initial mathematical generation

failures before achieving a valid 3D form. These pre-

liminary findings, while promising, warrant further

validation across a broader range of mechanical com-

ponents to comprehensively assess the methodology’s

robustness and generalizability. The results also sug-

gest that targeted human intervention, through man-

ual augmentation of diagnostic feedback, may en-

hance convergence by redirecting suboptimal initial

design choices. Additional experimentation is needed

to evaluate the approach’s scalability to more com-

plex geometries and to establish quantitative metrics

for convergence behavior.

6 CONCLUSION AND

PERSPECTIVES

This paper presented two scientific contributions en-

abling 3D geometry generation using Large Language

Models:

• A programmatic approach using a dedicated API

for geometry creation

• A closed-loop architecture for context augmen-

tation, termed Iterative Diagnosis-Driven Aug-

mented Generation (IDDAG)

This solution offers key advantages: without

requiring extensive training or fine-tuning, it pro-

duces human-readable, explainable, and parameter-

ized models that generate topologically valid geome-

tries. The 3D artifact generation maintains trace-

ability to requirements and refines through itera-

tions. The proposed methodology has been imple-

mented and validated on elementary test cases. Short

term research directions include formal analysis of

convergence properties and optimization of iteration

counts, more complex geometries and extension to

complex assemblies with multiple interacting compo-

nents. The diagnostic-driven augmentation approach

shows potential for transposition to other design do-

mains where systematic feedback can be generated.

Mid to long-term research priorities include establish-

ing formal convergence guarantees, evaluating sys-
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Figure 2: Closed-loop architecture of the Iterative Diagnosis-Driven Augmented Generation (IDDAG) system.

Table 1: Ball Bearing: Geometric Evolution Across Iterations.

n = 1 n = 2 n = 3 n = 4 n = 5

Table 2: Aircraft Wing: Geometric Evolution Across Iterations.

n = 2 n = 3

tem scalability for complex assemblies, and develop-

ing robust integration protocols with established CAD

workflows.
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APPENDIX

1 from OCC.Core.BRepBuilderAPI import

BRepBuilderAPI_MakePolygon ,

BRepBuilderAPI_MakeFace ,

BRepBuilderAPI_MakePrism

2 from OCC.Core.BRepPrimAPI import

BRepPrimAPI_MakeCylinder

3 from OCC.Core.BRepAlgoAPI import

BRepAlgoAPI_Cut

4 from OCC.Core.gp import gp_Pnt ,

gp_Vec , gp_Ax2 , gp_Dir

5 from OCC.Core.BRepOffsetAPI import

BRepOffsetAPI_MakeThickSolid

6

7 # Nut specifications

8 hex_radius = 8.0 # Distance from

center to a flat , in mm

9 nut_thickness = 8.0 # Thickness of

the nut, in mm

10 thread_diameter = 10.0 # Diameter

of the inner thread , in mm

11 thread_clearance = 1.0 # Additional

clearance for threading

12

13 # Create hexagonal base

14 hexagon = BRepBuilderAPI_MakePolygon

()

15 for i in range(6):

16 angle = i * (2 *

3.141592653589793 / 6)

17 x = hex_radius * math.cos(angle)

18 y = hex_radius * math.sin(angle)

19 hexagon.Add(gp_Pnt(x, y, 0))

20 hexagon.Close()

21 hex_face = BRepBuilderAPI_MakeFace (

hexagon.Wire ()).Face()

22

23 # Extrude to create the 3D hexagonal

prism

24 extrusion_vec = gp_Vec(0, 0,

nut_thickness )

25 hex_prism = BRepBuilderAPI_MakePrism

(hex_face , extrusion_vec ).Shape()

26

27 # Create cylindrical hole for

threading

28 cylinder = BRepPrimAPI_MakeCylinder (

gp_Ax2(gp_Pnt(0, 0, 0), gp_Dir(0,

0, 1)), thread_diameter / 2 +

thread_clearance , nut_thickness ).

Shape()

29

30 # Subtract cylinder from hexagonal

prism to form the nut body

31 nut = BRepAlgoAPI_Cut (hex_prism,

cylinder).Shape()
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