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Abstract: AI technology is increasingly being introduced into the automotive industry to support the product design 
process and address the challenges arising from growing product complexity. Systems Engineering is an 
interdisciplinary approach and methodology aimed at designing, developing, and managing complex systems 
throughout entire system lifecycle. The development of Model-Based Systems Engineering (MBSE) 
significantly enhances complexity management and requirement traceability in conceptual design phases.  In 
the design and analysis phases, the use of Multidisciplinary Design Analysis and Optimization (MDAO) 
effectively addresses challenges in multidisciplinary problems, identifies optimal solutions, and supports 
decision-making. Digital Twin (DT) technology is extensively studied and applied to monitor, analyse, and 
predict operational system behaviour. Integrating AI into system design, along with its combination with 
MBSE, MDAO, and DT technologies, not only addresses design challenges but also creates new opportunities 
to advance systems engineering. This paper focuses on how high-level architecture design supports different 
stages of system lifecycle. The study explores the roles AI can play in the process, as well as its integration 
with related technologies, and proposes an AI-integrated framework to ensure digital continuity throughout 
system lifecycle stages.  

1 INTRODUCTION 

With the increase in automotive functionalities and 
components, systems have become more complex, 
and advanced features such as autonomous driving 
systems and intelligent connectivity further 
complicate development challenges. To address these 
challenges, modern technologies such as Artificial 
Intelligence (AI), Model-Based Systems Engineering 
(MBSE), Multidisciplinary Design Analysis and 
Optimization (MDAO), and Digital Twin (DT) have 
been introduced. Their integration enhances 
efficiency and optimizes decision-making across all 
lifecycle stages, from design to operation.   
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Systems Engineering (SE) is a transdisciplinary 
and integrative approach to enable the successful 
realization, use, and retirement of engineered systems, 
using systems principles and concepts, and scientific, 
technological, and management methods (INCOSE, 
2023). Starting with requirements analysis, it covers 
conceptual design, system integration, verification 
and validation, and eventually operation and disposal. 
The primary objective is to manage complexity, 
ensuring that all functionalities and requirements are 
aligned, ultimately delivering a product that meets 
stakeholders’ expectations.   

MBSE is a model-centric approach to performing 
systems engineering (Douglass et al., 2022). MBSE 
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helps organize requirements and rapidly create and 
evaluate various architectural solutions. For instance, 
MBSE is applied in autonomous vehicles to ensure 
the integration of functionalities across software, 
hardware, and communication systems (Raza et al., 
2024), drive co-simulation of different disciplinary 
analysis models (Zhao et al., 2024), and optimize the 
thermal management system of vehicles by analyzing 
energy flow and heat dissipation efficiency in 
advance (Habermehl et al., 2022).   

MDAO is a methodology used during the design 
phase to foster collaboration across various 
disciplines such as aerodynamics, structural 
mechanics and cost optimization,  and identify 
optimal system designs (Simpson et al., 2011). 
MDAO addresses challenges in managing 
interactions among disciplines while ensuring 
optimized results across different design objectives. 
(Moerland et al., 2020) applied MDAO in the next 
generation of aircraft to provide significant 
reductions in aircraft development costs and time to 
market. Through MDAO analysis, the design 
optimization of fuel consumption, take-off weight, 
and rotor dynamics parameters was completed, 
achieving an integrated process of system design and 
optimization (Qi et al., 2024). 

DT refers to a virtual representation of a physical 
entity that is interconnected with its real-world 
counterpart through continuous and bidirectional data 
exchange in real time (Singh et al., 2021). DT can 
monitor vehicle conditions in real time and predict 
potential issues, and can optimize logistics vehicle 
routes and maintenance plans in fleet management 
(Alexandru et al., 2022). DT is also is beneficial to 
enhance the traditional product design and 
development processes (Tao et al., 2018).   

AI simulates human intelligence through 
technologies such as Machine Learning (ML), Deep 
Learning (DL), and Natural Language Processing 
(NLP) (Aurélien, 2019). Its primary methods include 
supervised learning, unsupervised learning, and 
Reinforcement Learning (RL). AI enhances system 
design efficiency, such as through automated 
requirement analysis and model generation (Zhao et 
al., 2021), and supports design decision-making via 
optimization algorithms (Mirjalili et al., 2020).   

This concept of AI4MBSE refers to leveraging AI 
to enhance MBSE. AI4MBSE focuses on improving 
tasks like requirements engineering, model 
generation, and decision-making by using ML and 
NLP. Examples include automated traceability of 
requirements and intelligent model recommendations 
to streamline systems engineering workflows. AI 
helps handle complexity and reduce errors in MBSE 

processes, especially in domains like transportation 
and aerospace (Li et al., 2022). Automates repetitive 
and error-prone MBSE tasks, such as requirements 
extraction and traceability (Ghanawi et al., 2024). 
Enhances decision-making through AI-driven model 
analysis (Raz et al., 2021). Improves MBSE modeling 
capabilities based on domain knowledge (Zhang et al., 
2024).  

This concept of MBSE4AI applies MBSE 
principles to design and develop AI systems 
themselves. It ensures that AI solutions are integrated 
systematically, considering requirements, constraints, 
and validation across the system lifecycle. MBSE4AI 
emphasizes structuring AI system designs to ensure 
safety, reliability, and interoperability in complex 
environments (Anton et al., 2023). Systematically 
integrates AI solutions into larger systems while 
managing risks and ensuring transparency, and 
enables continious validation and verification of AI 
components against system requirements (Torkjazi 
and Raz, 2024). 

AI is used to enhance the efficiency and accuracy 
of MDAO workflows. Accelerating optimization 
algorithms by using AI models to reduce computation 
time. Assisting in exploring diverse design spaces 
through AI-guided sampling and evaluation methods 
(Karali et al., 2024). This approach addresses 
challenges like high computational costs and the 
difficulty of identifying optimal solutions in complex 
systems.  

AI supports DT by improving real-time data 
analysis, anomaly detection, and predictive 
maintenance. It enhances simulation accuracy by 
using AI models to fill gaps in physical modeling or 
to simulate scenarios that are computationally 
intensive with traditional methods (Rasheed et al., 
2020). In operation, AI enables better system 
monitoring and decision-making, such as in fields 
like manufacturing, healthcare, and transportation. 

This research aims to explore the roles of AI in 
early stages of the system lifecycle based on their 
diverse capabilities. It focuses on leveraging AI to 
enhance MBSE capabilities, such as in requirements 
modeling and architecture modeling. Additionally, it 
seeks to improve the efficiency of MDAO processes 
using AI while accelerating design space exploration. 
Furthermore, the study investigates the application of 
AI to enhance the accuracy of DT models, as well as 
their updating and generation capabilities. Ultimately, 
this work aims to support digital continuity 
throughout the system lifecycle using AI technologies. 

This research investigates the integration of AI 
into system design processes, emphasizing its role in 
enhancing system design and aligning with specific 
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capabilities needs. By integrating AI into MBSE the 
study aims to improve modeling efficiency, maintain 
model consistency, and provide heuristic alternatives 
for decision-making. In the context of MDAO, AI is 
leveraged to enhance computational efficiency, 
reduce computational burdens, and enable 
multifidelity analysis for more effective design 
optimization. For DT applications, AI contributes to 
the generation of predictive models, enabling 
accurate system monitoring, forecasting, and 
optimization. Finally, an AI-integrated framework is 
proposed to facilitate interaction across lifecycle 
stages, ensuring cohesive system development and 
lifecycle management. 

This research addresses several problems 
regarding the integration of AI into system design 
processes. First, it should explore the current 
capabilities of AI and its developmental trends, 
investigating the roles AI can play in system design 
and the improvements it can bring to the process. In 
the field of MBSE, the study should examine pressing 
challenges that AI could address, identifying gaps in 
its current applications and unresolved issues. For 
MDAO, it investigates existing directions of AI 
application and explores potential areas for further 
enhancement. Within the DT technology, the research 
should explore into AI’s current applications and 
evaluates how AI can introduce new capabilities and 
improve performance. Finally, it needs to consider the 
interrelationships between different stages of the 
system lifecycle, analyzing how AI can enhance 
iteration across these stages to ensure a more efficient 
and integrated system design process. 

This paper focuses on how AI technology can 
support system design processes by enhancing 
various aspects of the system lifecycle. These include 
supporting MBSE models during the conceptual 
design phase, MDAO models during the design and 
analysis phase, and DT models during the operational 
phase. By leveraging AI to ensure digital continuity 
across design activities, this research aims to improve 
the efficiency and quality of product development. 
The integration of AI with MBSE, MDAO, and DT 
technologies has been widely studied and applied 
across various fields. While these applications share 
the use of AI, the field of AI encompasses a diverse 
array of methods and models, resulting in diverse 
solutions for each research focus or application case. 
This paper investigates how AI can support a cross-
lifecycle design framework for system development, 
exploring the roles AI can play within this framework 
and the potential outcomes that can be achieved. 
However, the application of MBSE to AI systems for 

specific design problems and case studies is beyond 
the scope of this paper.  

This paper discusses the roles that AI technology 
can play in system design processes, highlighting the 
improvements it can bring to areas such as MBSE, 
MDAO, and DT applications. Based on the current 
state of AI technology, it further elaborates on how 
high-dimensional system architectures can be applied 
effectively across different stages of the system 
lifecycle.  

This paper defines the application of AI in system 
design and explores how AI can be applied to 
different aspects of the system lifecycle. It addresses 
AI's roles in various stages, such as the MBSE model 
in the conceptual phase, the MDAO model in the 
design phase, and the DT model in the operational 
phase. The paper provides a definition of AI's role in 
these stages and presents an extendable AI supported 
framework that supports the interaction and 
integration of these three domains across the lifecycle. 
This framework ensures digital continuity in system 
design solutions throughout different stages of the 
lifecycle. 

2 STATE OF THE ART 

2.1 Artificial Intelligence 

AI technology is increasingly being introduced into 
the automotive industry to support the product design 
process and address the challenges posed by growing 
product complexity. Machine Learning (ML) is a 
subset of AI, where machines learn from data to 
perform pattern recognition, prediction, and decision-
making without explicit programming. ML provides 
solutions for many complex fields and drives the 
application of AI. 

One of the most popular ML algorithms today is 
Deep Learning (DL), where the ML model consists of 
an Artificial Neural Network (ANN) (Ian et al., 2017). 
These ANNs are widely used for tasks such as image 
recognition, natural language processing, and 
predictive analytics. 

Reinforcement Learning (RL) is a semi-
supervised learning model in which an agent 
continuously makes decisions and adjusts its actions 
through trial and error based on the environment's 
responses. The agent is the core component of the RL 
model, and it determines which actions to take based 
on a policy function (Sutton and Barto, 2018). Most 
RL algorithms can use an ANN, a method known as 
Deep Reinforcement Learning (DRL). 
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The goal of Transfer Learning (TL) is to leverage 
the knowledge of a pre-trained model to solve new 
but similar problems. This method can adapt the 
retrained model to a new problem by adding layers to 
the ANN (Wang and Chen, 2023). This approach 
significantly reduces the training time. TL is also a 
highly effective technique when there is limited data. 

Progressive Learning (PL) is a form of TL. ML 
models in TL are gradually retrained to solve 
increasingly complex tasks. PL can significantly 
reduce training time and, consequently, decrease the 
required computational resources (Fayek et al., 2020). 

The concept of advisor agents is a relatively new 
field, and new methodologies are still being explored. 
Advisor agents are trained agents that can support the 
training of a new primary agent. While agents and 
multi-agent systems have a long history as a major 
approach in distributed AI, the advisor agent 
framework represents a more recent advancement, 
offering a highly flexible architecture. The number of 
advisor agents and their interactions with the primary 
agent can be determined by the engineer (Zhang et al. 
2021). 

Surrogate models are widely used in optimization 
and engineering design, aiming to accelerate the 
computational process by replacing high 
computational cost models with simpler or less 
computationally expensive ones (Hao et al., 2022). 
Surrogate models can also be created using 
supervised ML algorithms. These ML models attempt 
to identify certain trends in large amounts of training 
data. When the trends generated by the underlying 
high-fidelity simulations are too complex, ML 
algorithms based on ANN can be selected. 

2.2 AI and MBSE 

International Council on Systems Engineering 
(INCOSE) has initiated two key initiatives, 
AI4MBSE and MBSE4AI, that explore the 
integration of AI with MBSE. AI4MBSE focuses on 
leveraging AI technologies to enhance MBSE 
processes, improving aspects such as system 
modelling, requirements analysis, and design 
optimization. This initiative aims to make MBSE 
more efficient and adaptive through the application of 
AI. On the other hand, MBSE4AI examines how 
MBSE methodologies can be used to support and 
improve AI systems, especially in terms of model 
validation, integration, and lifecycle management. 
Together, these initiatives aim to bridge the gap 
between AI and MBSE, creating a synergy that can 
optimize system engineering processes and enable 
smarter, more robust system designs. 

2.2.1 MBSE4AI 

Future system operations increasingly require the 
integration and interoperability of multiple intelligent 
systems driven by AI, which has become a core 
element of the system, spanning the entire system 
lifecycle. (Raz et al., 2021) discussed the challenges 
faced by AI-driven aerospace systems in systems 
engineering activities. To develop and implement AI 
to meet the conceptual design needs of aerospace 
systems, AI will be designed as one of the primary 
functional elements. To train and develop AI models, 
the system design process may undergo 
corresponding modifications, such as the AI pipeline 
(Blasch and Pokines, 2019). In this process, they 
propose Systems Engineering as Data Curator for AI 
to address challenges such as the availability of data, 
the type of data, and the role of SE. Data architecture 
is added to the MBSE model to establish relationships 
with operational concepts, functional architecture, 
physical architecture, and so on, to ensure that MBSE 
supports the overall R&D process of integrating AI 
systems. 

AI systems also have varying degrees of 
intelligence. (Torkjazi and Raz, 2024) based on the 
steps of the Object-Oriented Systems Engineering 
Method (OOSEM), utilized the Unified Architecture 
Framework (UAF) to model autonomy integration. 
They modelled autonomous systems through SE 
technical processes. To reflect the differences in 
autonomy between systems, they added accuracy 
Technical Performance Measures (TPMs) to the 
AI/ML components to assess different system 
solutions. 

A MBSE-Enhanced Long Short-Term Memory 
(LSTM) Framework has been provided for Satellite 
System Reliability and Failure Prediction, which 
offers a case study on how MBSE can support the 
design of AI-integrated systems (Alandihallaj et al., 
2024). The framework describes the predictive 
system architecture using LSTM networks, an AI 
technique, through the MBSE model. The integration 
of AI with MBSE, as demonstrated in this study, 
shows significant potential in enhancing the 
reliability and longevity of satellite systems. 

2.2.2 AI4MBSE 

MBSE can be applied to support AI-integrated 
systems, and conversely, AI can also enhance and 
support the MBSE processes and activities. (Chami et 
al., 2022) focus on the challenges faced by MBSE at 
different stages of its application and analyse the 
capabilities AI can offer and how these can be 
allocated to address the corresponding MBSE 
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challenges. The paper provides an outlook on how AI 
can support MBSE, relevant research has already 
been conducted in different fields for specific 
research questions. 

The first capability of AI applied to MBSE is 
ensuring data extraction for MBSE. MBSE models 
can establish traceability management between 
requirements and system design solutions. With the 
application of NLP-based models, research and 
applications for converting natural language into 
machine-readable language are becoming 
increasingly diverse. 

Standard documents, as an important source of 
requirements in various fields, serve as one of the key 
references for requirement engineers in requirement 
extraction. (Ghanawi et al., 2024) contribute to the 
integration of AI with MBSE, focusing solely on the 
extraction and transformation of medical standards 
information from documents into SysML norm 
models. They employed an open-source multimodal 
classifier model and a proprietary Large Language 
Model (LLM) to achieve this goal. Although the title 
retrieval performed well in terms of recall across 
different approaches, the precision was generally low. 
Future improvements to the proprietary AI model are 
needed to achieve better results, but this may increase 
the training and subsequent usage costs. 

(Chen et al., 2022) proposed an NLP-based 
framework for information extraction under the 
general condition that can automatically detect the 
actors and their responsible actions. To validate the 
performance of the developed model, the study 
compared the NLP-generated report with the 
manually created SysML model. The results showed 
that the precision and recall rates for extracting roles 
and responsibilities were 0.86 and 0.66, respectively, 
indicating that this text-to-model framework has the 
potential to accurately convert general policy 
documents into SysML. 

(Chami et al., 2019) also utilized NLP techniques 
to train a Named Entity Recognition (NER) model. 
However, their objective extended beyond just 
extracting requirements, stakeholder roles, and 
responsibilities. Their scope included identifying 
system actors, use cases, associations, and blocks, 
aiming to use AI technologies to generate parts of 
SysML models from text. This approach allows the 
model to be trained through label annotation, 
enabling semi-structured text to be converted into 
SysML model entities with minimal training effort. 

In addition to research on the automated 
supplementation and transformation of requirement 
models in MBSE using AI, another emerging trend is 
leveraging AI technology to enable the automatic 

generation of system design solutions or provide 
design references. Prior to the application of AI 
technology, rule-based generative design methods 
and tools already existed in various disciplines. These 
design tools often address specific disciplinary 
problems, enabling rapid design space exploration 
and generating many solutions that meet specified 
requirements. 

With the application of AI and ML technologies, 
data-driven generative techniques have also advanced. 
(Zhang et al. 2021) proposed an MBSE modeling 
process recommendation method based on domain 
knowledge and SysML models by using a Global 
Vectors for Word Representation (GLOVE) model 
pre-trained on both domain-specific and general 
knowledge, combined with the concept of a 
recommendation system. This method not only 
considers the influence of general and domain-
specific knowledge on the modeling process but also 
utilizes SysML models as training data to provide 
recommendations for subsequent modeling. These 
recommendations are generated based on textual 
training and proposed as suggested solutions derived 
from the knowledge. The information structure that a 
SysML model can encompass is closely related to the 
data structure of the knowledge base. 

For MBSE models, in addition to the logical 
architecture used to describe the composition of the 
system, the system architecture also includes other 
types of information such as system requirements and 
interfaces. To cover all the information in a SysML 
model, it is necessary to continuously refine the data 
structure of the knowledge base, which will also 
impose higher demands on the methods and costs of 
data training.  

The emergence of LLM, such as OpenAI's GPT 
series, has brought significant opportunities for 
transformation across multiple domains, driving 
industry professionals to explore their potential 
applications. (Johns et al., 2024) integrated OpenAI's 
GPT-4 Turbo with CATIA Magic for MBSE, creating 
the AI Systems Modeling Enhancer (AI-SME) to 
generate MBSE models. Compared to the time 
required for human modeling, AI-SME offers 
significant advantages. The results demonstrate that 
the requirements, structural, and interface definitions 
created by AI-SME maintain coherence and 
consistency, but they are not complete. AI-SME can 
serve as a modeling assistant to automate primary 
tasks and improve the efficiency of prototype 
architectural development. 

AI algorithms can also solve specific design 
problems. (Rudolph, 2024) introduced AI methods 
using three artificial intelligence search algorithms 
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(PMSO, SA, and A*) to automate packing, piping, 
and routing for arbitrarily complex 3D CAD 
geometries. Packing, piping, and routing problems 
are considered NP-complete problems. Models in 
these specific disciplines often have higher 
confidence but also require greater computational 
power. In the field of MBSE, multidisciplinary 
problems are often encountered, and solving these 
problems typically requires integration, verification, 
and validation. Solving NP problems in individual 
disciplines is a prerequisite for ensuring the efficiency 
of integration and verification. 

2.3 AI and MDAO 

Multidisciplinary Design Analysis and Optimization 
(MDAO) is a methodology used for designing 
complex engineering systems. During this process, 
there is a need to integrate multidisciplinary analysis 
models, which include many design variables, 
objective functions, and state variables arising from 
coupling relationships. These models exhibit high 
complexity in both structure and processes. (Karali et 
al., 2024) proposed an AI-driven multidisciplinary 
conceptual design framework for UAVs to ensure the 
MDAO process. They employed AI-based surrogate 
models, using Latin Hypercube Sampling (LHS) to 
optimize the design space exploration process, NN 
(neural networks) for black-box model training, and 
genetic algorithms to search for optimal solutions 
along the Pareto front. By introducing and 
implementing this intelligent conceptual design 
algorithm, numerical data can be incorporated into 
the early stages of the design process, significantly 
reducing reliance on manual intervention. 

In addition to optimizing the MDAO process 
through AI, AI technologies are also applied to 
address specific challenges arising from 
multidisciplinary interactions, improving the 
efficiency of MDAO analysis while ensuring the 
accuracy of results. For example, (Wang et al., 2023) 
leveraged AI technologies to tackle challenges 
associated with Uncertainty-based Multidisciplinary 
Design Optimization (UMDO). In this process, data 
is first processed using unsupervised learning for 
clustering analysis and dimensionality reduction. 
Subsequently, supervised learning is employed to 
train disciplinary models using pre-prepared datasets 
to reduce computational costs. Finally, evolutionary 
algorithms such as genetic algorithms are used to 
search for optimal solutions. 

In addition to optimizing the MDAO process and 
improving solution efficiency, the integration of AI 
technologies also provides new methods for surrogate 

model generation. (Sisk et al., 2023) utilized 
generative adversarial networks (GANs) to establish 
a training framework for model generation, 
addressing the challenges of urban air mobility 
(UAM). This training framework is like the XDSM 
structure commonly used in MDAO. By training 
flight trajectories through a twin generator and 
combining the generated model data with Deep 
Neural Network (DNN) methods, surrogate models 
are trained. These generated surrogate models can 
then be re-applied in the MDAO process. 

2.4 AI and DT 

DT refers to the virtual representation of a physical 
system that is connected in real-time to enable 
monitoring, prediction, and optimization. The 
development of AI technologies has significantly 
contributed to the application of DT by providing 
data-driven solutions. The process of constructing a 
DT is highly complex, and it varies depending on the 
application purpose and the selected technologies. 
(Orlova, 2022) conducted a comprehensive analysis 
of the design methods for DT of organizational and 
technical systems, defining the various stages of DT 
development as well as the relevant technologies that 
can be applied during the Design and Engineering 
phase. However, for complex organizational and 
technical systems operating under conditions of 
uncertainty, there is currently no comprehensive and 
universal methodological approach to address these 
challenges. 

Although current trends suggest that DT will be 
entirely controlled by AI, as with the integration of AI 
and MBSE, DT and AI influence each other mutually. 
(Bariah et al., 2024) explored the interrelationship 
between AI and DT in practical applications. On one 
hand, TL in AI can be used to address network 
updates in distributed DT, thereby reducing the 
training time required for model updates. On the other 
hand, leveraging communication technologies, DT 
can provide experience-driven learning methods and 
integrate model-based learning approaches, such as 
DT-enabled RL methods, to enhance reasoning 
capabilities in AI algorithms. This approach achieves 
a complementary combination of data-driven and 
model-driven methods, leveraging the advantages of 
both. 

(Groshev et al., 2021) applied DT to Cyber-
Physical Systems (CPS) by defining AI agents and 
provided the allocation relationships between 
applications, AI technologies, and physical devices. 
The AI agents were used for functional and 
infrastructure applications, with detailed definitions 
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of their usable input data and expected output data. 
The research results demonstrated that DT 
applications employing AI agents can effectively 
predict system dynamics. AI agents offer significant 
opportunities to enhance the reliability, robustness, 
and performance of DT. 

As an application model during the system 
operation phase, the DT model has stricter 
requirements for computation time and, like 
simulation analysis models, faces NP problems. 
(Karali et al., 2023) developed a data generation 
algorithm, which includes high-fidelity models based 
on Computational Fluid Dynamics (CFD) methods 
and low-fidelity models based on computational 
aerodynamics methods. Then, using multi-fidelity 
data, they generated a new surrogate model based on 
TL. Thanks to this approach, the developed AI model 
can use data from lower-fidelity models to more 
accurately predict missing flow conditions in the 
high-fidelity data. 

2.5 AI and Digital Continuity 

Digital Continuity refers to the ability to ensure that 
all digital information remains consistent, accessible, 
understandable, and usable throughout the entire 
product lifecycle or business process (Ren et al., 
2020). We mentioned the support of AI for MBSE, 
MDAO, and DT, which are situated at different stages 
of the system lifecycle. Various fields have also 
analysed the advantages and challenges brought by 
the integration of these processes. The integration of 
design activities at different stages of the system 
lifecycle has also introduced the issue of digital 
continuity. 

2.5.1 Interaction Across Lifecycle Stages 

MBSE is an effective approach for demonstrating 
multidisciplinary coupling relationships needed to 
meet specific requirements. By integrating MBSE 
with MDAO, it is possible to improve system 
architecting, streamline the development of agile 
MDAO design systems, to trace analysis results back 
to the corresponding requirements, revealing implicit 
relationships between different requirements that 
arise from the solution domain. (Fouda et al., 2024) 
proposed a novel MBSE-driven MDAO process 
design and implementation method to address the 
wing shape optimization problem. By establishing a 
metamodel of the MDAO process within the MBSE 
model environment, data consistency is ensured. The 
MDAO process is described using MBSE, which in 
turn drives multidisciplinary simulations. The 

integration of MBSE and MDAO provides significant 
flexibility in adapting to changing requirements, 
while also improving the traceability of design 
decisions throughout the product development 
lifecycle. 

(Wu et al., 2022) proposed a new 
multidisciplinary collaborative design method 
supported by DT. To describe complex products in a 
virtual environment, they further developed a 
systematized multidisciplinary collaborative design 
framework based on DT, integrating 
multidisciplinary collaboration into three stages: 
conceptual design, detailed design, and virtual 
validation. By utilizing DT for parallel design across 
different disciplines within the virtual environment, 
this approach can reduce anomalies caused by 
multidisciplinary integration. Although this 
multidisciplinary integrated design method does not 
directly employ AI technologies, it reveals that the 
same disciplinary problems can be described using 
both model-driven and data-driven methods, such as 
DT models. This provides the potential for iterative 
optimization between detailed design models and DT 
models, as well as a foundation for integrating AI 
technologies. 

The integration of MBSE and DTs has also seen 
significant development in various fields. For 
example, (Lopez and Akundi, 2022) have explored 
the use of MBSE in the development process of DT. 
(Bordeleau et al., 2020) research demonstrates that 
MBSE can manage heterogeneous models from 
different disciplines. MBSE models include the 
relationships between system components, enabling 
the driving of other design processes and providing a 
foundation for multidisciplinary simulation. 
However, challenges exist regarding the accuracy and 
sources of analysis models driven by MBSE, which 
DT can address. (Purohit and Madni., 2022) 
developed a DT prototype and obtained experimental 
results, collecting data from physical systems in the 
real world to update the DT model, enhancing 
operational analysis and modelling. DT models are 
also seen as an important application in supporting 
V&V processes. By incorporating DT into MBSE 
models, significantly reduced the time required for 
early-stage V&V (Bouhali et al., 2024). (Madni et al., 
2019) have also considered DT technology as an 
integral part of MBSE methodology and 
experimentation testbeds. 

2.5.2 Ai Integration 

According to current research, systematic methods to 
ensure digital continuity throughout the system's 
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lifecycle are still under exploration. The introduction 
of AI technologies has also brought new capabilities 
to address this issue. 

(Erikstad) explored whether LLM, particularly 
multi-agent LLM, can be combined with MBSE 
principles to address the high development costs and 
potential errors of optimization and simulation 
models. The system to be optimized is captured as 
classes and instances to serve as the syntax for the 
narrative-to-model mapping, while the MBSE models 
and views become the grammar. In the article, 
ChatGPT is used to directly create different AI 
agents, each of which can be considered as directly 
replacing the corresponding designer roles. The 
deliverables produced by these agents interact based 
on business processes and roles, thus achieving a 
complete design process. According to the research 
findings, the team of agents can complete the work 
and collaboratively develop solutions through 
autonomous coordination of processes. However, 
further in-depth research is needed to determine to 
what extent the capabilities and specialization of each 
agent should be enhanced. 

(Scott et al., 2016) proposed another use of agents, 
where a typed database is used as a knowledge 
representation to create agents that utilize AI 
techniques. These agents can check the quality of 
information and provide feedback, integrated within 
the tools of the lifecycle chain. This improves process 
quality and helps with design activities. 

2.6 Discussion 

This paper aims at supporting activities across 
different lifecycle stages of a system engineering 
using AI technology, such as the digital continuity 
between MBSE, MDAO, and DT. The application of 
AI across various topics effectively demonstrates the 
fundamental capabilities of AI and the challenges 
faced within each topic, while also providing a 
foundation for the digital continuity of activities at 
different lifecycle stages. By integrating AI to ensure 
digital continuity, it further advances the role of 
MBSE throughout the system's lifecycle. 

3 PROPOSED FRAMEWORKS 

3.1 Roles of AI 

For each system life cycle process, an Input-Process-
Output (IPO) diagram can illustrate the typical inputs, 
process activities, and typical outputs, as shown in 
Figure 1. Additionally, each activity includes controls 

and enablers. We aim to use this format to classify 
and define the capabilities AI can provide during the 
system design process, allowing us to better position 
AI within the entire life cycle. 

 
Figure 1: Roles of AI in IPO diagram. 

The AI-Connector functions at the input and 
output ends of each process activity, ensuring data 
continuity and simplifying data extraction processes 
through AI algorithms, such as natural language 
extraction and output. This category includes two 
roles: importer and exporter. These two roles may 
overlap from the perspective of different processes, as 
the exporter of the previous process can also serve as 
the importer for the next process.   

 Importer: Serves as the input for data, ensuring 
that the current activity has all the necessary 
inputs to initiate.  

 Exporter: Serves as the output for data, 
ensuring the continuity and consistency of 
output data.   

The AI-Assistant operates within each design 
process and aims to assist staff in design activities 
using AI technology, enhancing work efficiency and 
quality. This category includes two roles: generator 
and accelerator.   

 Generator: Directly generates part of the design 
solution by providing multiple alternative or 
optimal solutions based on given inputs and the 
current context.  

 Accelerator: Improves the efficiency and 
quality of solution generation.   

The AI-Controller is used to inspect and optimize 
design activities to ensure the quality of the design 
process. It can extract existing design standards to 
verify design content and optimize results or provide 
optimization suggestions. This optimization can 
target individual design activities or support the 
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optimization of multiple design activities. This 
category includes two roles: checker and optimizer.   

 Checker: Inspects the content of design 
activities.   

 Optimizer: Optimizes single or multiple design 
activities.   

The AI-Enabler incorporates one or more methods 
to ensure the execution of design tasks, providing 
references for the design process. For AI-Enabler, this 
can be implemented through advisor agents. 

3.2 AI in MBSE 

In the MBSE process, we can utilize NLP models to 
establish the importer and exporter roles in the 
requirements management process. NLP models can 
extract relevant requirements from stakeholder needs 
and narratives, transforming them into requirements 
models. In this process, NLP or LLM can also serve 
as generators, assisting in the creation of 
requirements models. By training on standards and 
norms related to requirements definition, a checker 
can be established to automatically verify the syntax, 
semantic, and conflicts within the model. 

Table 1: AI roles in MBSE. 

Roles Capabilities Potential 
method

RM 
importer Extract form needs NLP, ML, 

DL
RM 

exporter 
Transform requirements into 
MBSE model NLP, KE 

MBSE 
exporter 

Transform from MBSE to 
MDAO ML, NLP 

Generator 

Generate requirement model 
from text 

NLP, DL, 
KE

Generate behaviour from 
narrative NLP, ML 

Generate model structure RL, KE 

Advisor Provide references and 
alternatives DL 

Checker Syntax and semantic review NLP 

After obtaining itemized requirements, ML 
models or NLP models can be used to automatically 
transform requirements into SysML use cases. 
Furthermore, using Knowledge Engineering (KE) 
and RL methods, existing requirements and solution 
data can be trained to automatically construct system 
architectures from requirements, functioning as a 
generator. During this process, checkers implemented 
using NLP methods for SysML syntax and grammar 
remain applicable.  

Once the tasks within MBSE are completed, ML 
can be employed to transform specific MBSE 
information, such as the MDAO structure described 
by a parametric diagram, into the corresponding 
downstream design environment. To enable the 
smooth progression of the design process, an advisor 
can be implemented by adding LLM-based agents. 
Advisors share similar capabilities with generators, 
but specialized LLM training is more challenging, 
albeit more powerful. If the models generated by 
specialized LLM achieve a certain level of 
certification accuracy, these agents can also be 
applied as generators. 

3.3 AI in MDAO 

Table 2: AI roles in MDAO. 

Roles Capabilities Potential 
method

Importer Convert DSM ML 

Exporter 
Transfer results ML 

Transform SM ML, RL 
Accelera-

tor Enhance optimizer algorithm RL, DL 

Generator Generate SM for analyzer ML, RL, 
DL

Advisor Provide references and 
solutions DL 

In the MDAO process, the importer can transform 
input content into the format required by the MDAO 
workflow, such as converting the Design Structure 
Matrix (DSM) defined in the MBSE model into a data 
structure usable within the optimization environment, 
while ensuring information completeness. During the 
simulation process, the accelerator enhances 
efficiency by replacing traditional optimization 
algorithms with RL, thereby speeding up analysis and 
optimization. The generator can leverage model order 
reduction methods, also referred to as a trainer, to 
train surrogate models using ML, reducing the 
computational cost of discipline-specific analysis 
models. At the end of the MDAO process, the 
exporter can transfer the resulting data back to the 
MBSE environment to verify whether the 
requirements have been met. It can also transform the 
generated surrogate models into the DT environment 
to support system operation. Similarly, the MDAO 
process can incorporate agents as advisors to provide 
recommendations for solving multidisciplinary 
problems.  
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3.4 AI in DT 

In the context of DT, DT models are planned and 
developed during the design phase. As shown in table 
3, they can also be formed during the operational 
phase in a data-driven manner to address emerging 
issues. An importer functions as a tool to transform 
models defined during the design phase into 
operational formats within the DT space. A generator 
in this process can also act as a model trainer, 
continuously iterating and updating the DT model 
using operational data through methods such as RL 
or TL. High-fidelity DT models can replace 
traditional discipline-specific analysis models and 
participate in MDAO simulation and analysis 
processes. 

Table 3: AI roles in DT. 

Roles Capabilities Potential 
method

Importer Transform models in DT 
environment ML 

Exporter Output DT models ML 

Generator Train and upgrade DT RL, TL 

3.5 AI in Digital Continuity 

This study aims to leverage AI technologies to 
support digital continuity, facilitating the integration 
of MBSE, MDAO, and DT. Beyond the roles that AI 
can play in enhancing process efficiency and quality 
within these workflows, this framework also 
emphasizes the contribution of AI in ensuring digital 
continuity throughout the system's lifecycle, the AI 
integrated framework is defined as shown in Figure 2. 

From a methodological perspective, MBSE 
effectively describes the interactions between various 
components of the system, providing essential inputs 
for MDAO simulation structures. By ensuring digital 
continuity between MBSE and MDAO through AI, 
the establishment of MDAO simulation workflows 
can be made more efficient. During the MDAO 
process, AI can be used to generate lightweight, high-
fidelity surrogate models, reducing the computational 
cost associated with integrated simulations. 
Furthermore, AI algorithms can accelerate the 
exploration of the design space, enabling the 
identification of optimal solutions in a shorter 
timeframe. 

In the integration of MDAO and DTs, AI plays a 
critical role. Some DT applications during the 
operational phase are planned and developed during 
the design phase. By utilizing AI training techniques, 
surrogate models generated through MDAO can be 
applied to certain DT applications. Through ML 
methods such as TL, DT models can be continuously 
updated and optimized using the vast amounts of data 
generated during operation.  

Models that represent the same object, such as 
surrogate models generated from simulation data and 
those developed from operational data, can contribute 
to beneficial iterations in system design. By 
leveraging operational data validated during runtime 
to refine the analyzers in MDAO simulations, the 
confidence in the models can be enhanced while 
maintaining computational efficiency. This also 
provides a new pathway for the reuse of historical 
data and digital artifacts to meet new business 
objectives during the system design process.  

Figure 2: AI-Integrated Framework to support Digital Continuity.
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4 CONCLUSIONS 

Based on current development trends and the 
capabilities offered by AI, we proposed an AI-
integrated digital continuity framework. This 
framework connects MBSE, MDAO, and DT, 
enabling the utilization of high-dimensional 
architectural design information across different 
stages of the system lifecycle, and establishes data 
feedback loops for subsequent processes in the 
traditional system lifecycle, such as detailed design 
and system operational data, offering new options to 
support early-stage design verification and validation. 

Within this framework, we defined the roles that 
AI can play and the capabilities it provides. The AI-
integrated digital continuity framework supports 
object-oriented design methods, offering a holistic 
methodology for the evolution and optimization of 
systems at different design stages. 

In future work, we will apply AI algorithms to 
enhance the efficiency of each process while focusing 
on the practical value brought by this cross-lifecycle 
iterative design process in improving system design 
quality and efficiency, as well as uncovering 
opportunities for new solutions. 
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