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Abstract: Focusing on the emerging big data analytics scenario, this paper introduces ClassCube, an innovative 
methodology that combines OLAP analysis and classification algorithms for improving effectiveness, 
expressive power and accuracy of the main classification task over big datasets shaped in the form of big 
OLAP data cubes. The key idea of ClassCube relies on dimensionality reduction tools, which are deeply 
investigated in this paper. 

1 INTRODUCTION 

In today’s data-driven era, organizations across 
various sectors, such as finance, healthcare, and e-
commerce, rely heavily on analyzing large, 
multidimensional datasets to make strategic decisions. 
In this context, Online Analytical Processing (OLAP) 
data cubes have become fundamental tools, enabling 
complex queries and interactive exploration of data 
aggregate over multiple dimensions. These data cubes 
facilitate operations like slicing, dicing, and drilling 
down into data, which are essential for uncovering 
patterns and trends that lead to business insights. 

However, as the volume and dimensionality of 
data continue to grow exponentially, performing 
classification tasks directly on OLAP data cubes has 
become increasingly computationally expensive. 
High-dimensional data presents significant 
challenges, especially the curse of dimensionality, 
where the feature space becomes so huge that data 
points become sparse. This sparsity adversely affects 
the performance of classification algorithms, leading 
to longer computation times and potential overfitting. 
Consequently, there is a need for efficient techniques 
that can reduce computational costs while maintaining 
high performance of classification. 
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The main challenge focused on in this research 
regards the substantial computational load associated 
with performing classification on high-dimensional 
OLAP data cubes. Traditional classification methods 
struggle with scalability in such areas due to the 
extensive resources required for processing and the 
potential degradation in accuracy caused by the high 
number of dimensions. This issue is particularly acute 
in real-time and mobile environments (e.g., 
(Mutersbaugh et al., 2023; Hussenet et al., 2024; Kim 
et al., 2024)), where computational resources are 
limited. Therefore, enhancing classification processes 
to handle high-dimensional data efficiently is crucial 
for enhancing the effectiveness of data analysis in 
various applications. 

Several research efforts have focused on 
addressing the computational challenges associated 
with high-dimensional data classification, particularly 
in the context of large datasets (e.g., (Chen et al., 
2024; Shi et al., 2025)). Dimensionality reduction 
techniques (e.g., (Sorzano et al., 2014)), such as 
Principal Component Analysis (PCA) (Abdi & 
Williams, 2010) and Feature Selection Algorithms 
(e.g., (Molina et al., 2002; Song et al., 2024)), have 
been widely employed to mitigate the curse of 
dimensionality. For instance, (Cardone & Di Martino, 
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2023) integrate PCA into a multidimensional F1-
transform classifier, effectively reducing 
computational loads and improving classification 
accuracy over traditional algorithms. Similarly, (Khan 
& Nisha, 2024) develop a hybrid optimization-based 
feature selection method to identify relevant feature 
subsets, resulting in improved convergence speed and 
classification performance on high-dimensional 
datasets. Beyond using dimensionality reduction 
methods, some studies have explored the integration 
of these techniques with classification algorithms to 
further enhance efficiency. (Tutsoy & Koç, 2024) 
introduce deep self-supervised machine learning 
models enriched with novel feature elimination and 
selection strategies, effectively reducing 
dimensionality and improving classification accuracy 
for multidimensional health risk assessments. 
Additionally, advanced data structuring methods have 
been proposed to manage high-dimensional data more 
effectively. (Ding et al., 2024) present an adaptive 
granularity and dimension decoupling network for 
multidimensional time series classification (e.g., 
(Elborough et al., 2024)), which extracts features at 
various scales and decouples dimensions to prevent 
dominant features from overshadowing others. 

To tackle the aforementioned challenges, we 
propose ClassCube, a novel methodology that 
integrates multidimensional OLAP analysis (Gray et 
al., 1997) and classification algorithms (Hassan et al., 
2018; Bohrer & Dorn, 2024) to effectively and 
efficiently support big data analytics in real-life 
scenarios. The key idea of ClassCube relies on 
dimensionality reduction tools (e.g., (Sorzano et al., 
2014)). At a practical level, we leverage on so-called 
big OLAP data cubes (Cuzzocrea, 2023) for big data 
applications, and we address the issue of effectively 
and efficiently classifying big multidimensional data 
(Cuzzocrea et al., 2011) in Cloud environments (e.g., 
(Nodarakis et al., 2014)). With this goal in mind, we 
propose the anatomy and main functionalities of 
ClassCube, an innovative methodology for supporting 
advanced big data analytics via intelligent 
classification tools over big OLAP data cubes. 

In our study, we focus on leveraging the logical 
cuboid lattice (Gray et al., 1997), a hierarchical 
structure that represents all possible aggregations of 
the data across different combinations of dimensions. 
Each cuboid in the lattice corresponds to a specific 
aggregation level, offering a multi-resolution view of 
the data. This structure leads the model to more 
efficient data management and analysis by enabling 
operations at different levels of granularity (e.g., 
(Wang & Cao, 2023; Tang et al., 2024)). However, 
even with this hierarchical approach, performing 

classification directly on the entire lattice remains 
resource-intensive. It should be noted that the 
selection process focuses on identifying specific 
dimensions from the OLAP data cube to define the 
cuboids of interest. This criterion can be guided by 
user/application input or determined based on state-
of-the-art models (e.g., (Lin & Kuo, 2004; Talebi et 
al., 2008)). 

Our proposed methodology integrates 
dimensionality reduction with hierarchical data cube 
structuring to perform an efficient classification 
process. Specifically, we extract the logical cuboid 
lattice from the original OLAP data cube using 
Principal Component Analysis to construct a new, 
reduced-dimensionality data cube. PCA effectively 
reduces the number of dimensions by projecting the 
most significant features that contribute to data 
variance, to a reduced feature space. Thus, mitigating 
the curse of dimensionality. On the other hand, we 
apply a dimension selection method to extract the 
reduced-dimensionality data cubes, which then the 
classification performance is compared with the one 
resulting from PCA utilization. Thus, the reduced data 
cube serves as the basis for our classification tasks. 

We then perform classification using algorithms 
such as Logistic Regression (LR) and Support Vector 
Machines (SVM) on the cuboids of interest. The 
reduced dimensionality substantially lowers 
computational costs while aiming to preserve 
classification accuracy. 

The key contributions of this research are as 
follows: 
 first, we introduce an efficient dimensionality 

reduction framework that employs a 
hierarchical data cube structure to be used in 
classification applications on high-dimensional 
OLAP data cubes; 

 second, our methodology applies classification 
algorithms on the cuboids of interest from the 
extracted lattice of cuboids; 

 third, we establish a practical evaluation 
methodology by comparing the reduced data 
cubes (i.e., cuboids) from the lattice, providing 
meaningful insights into the effectiveness of 
our approach. 

By addressing the computational inefficiencies 
associated with high-dimensional data cube 
classification, this research aims to enhance the 
effectiveness of data analysis techniques in various 
data-intensive applications, particularly those 
operating under resource constraints. Our approach 
provides a viable solution for contexts seeking to 
leverage large, multidimensional datasets without 
incurring prohibitive computational costs. 

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

352



 
Figure 1: ClassCube Methodology. 

2 CLASSCUBE: ANATOMY AND 
MAIN FUNCTIONALITIES 

In this Section, we present the ClassCube 
methodology for classification of high-dimensional 
OLAP data cubes by integrating dimensionality 
reduction techniques with hierarchical data cube 
structuring. Our approach aims to mitigate 
computational costs on big OLAP data cube 
classification while preserving the algorithm’s 
performance. 

2.1 Overview 

Consider a big multidimensional OLAP data cube 𝑂 
with 𝑁 dimensions, denoted as 𝐷 = {𝑑ଵ, 𝑑ଶ, … , 𝑑ே}. 
This data cube contains aggregate data across all 
possible combinations of these dimensions, 
simplifying complex analytical queries such as 
slicing, dicing, and drilling down into data. However, 
performing classification directly on 𝑂  is 
computationally expensive due to the high 
dimensionality. 

To address this challenge, we consider a logical 
cuboid lattice 𝐿 from 𝑂. The lattice 𝐿 is a hierarchical 
structure representing all possible aggregations of 𝑂 
over different combinations of dimensions. Each 
cuboid within 𝐿  corresponds to a specific level, 
providing comprehensive multiple views of the data. 
By working with cuboids of reduced dimensionality, 
we aim to alleviate the computational costs associated 
with high-dimensional data. 

To provide more details, a cuboid 𝐶  is an 
aggregation of the data over a subset 𝐷′ ⊆ 𝐷, where 𝐷′ contains a specified combination of dimensions. 
The aggregation within a cuboid may involve 

operations such as sum, average, or count, over the 
dimensions in 𝐷′ . The hierarchical relationship 
among cuboids is based on the principle of dimension 
aggregation, where lower-dimensional cuboids are 
derived by aggregating higher-dimensional ones over 
one or more dimensions. 

2.2 Construction of the Lattice Levels 

The logical lattice 𝐿  is defined by hierarchically 
structured cuboids at different levels as illustrated in 
Fig. 1. This hierarchical structure enables analysis at 
various levels of granularity, providing flexibility in 
the selection of cuboids for classification tasks and 
addressing challenges related to high dimensionality 
and computational cost. 

To achieve our goal of efficient classification, we 
propose two approaches to obtain cuboids with the 
same dimensionality: 
 Dimension Selection; 
 Principal Component Analysis. 

 
In both approaches, a specific level 𝑘  (with 

dimensionality 𝑘ௗ) of the lattice 𝐿 is selected using 
the selection criterion, which is obtained as 
user/application input or determined as previously 
described based on state-of-the-art models (e.g., (Lin 
& Kuo, 2004; Talebi et al., 2008)). Then, a 
classification algorithm is applied to each cuboid 𝐶௞௜ at level 𝑘. 

2.2.1 Dimension Selection Approach 

The dimension selection method involves selecting 
specific subsets of dimensions from 𝐷  to create 
reduced versions of 𝑂. For each level 𝑘 in the lattice 
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𝐿, where 𝑘 = 1,2, … , 𝐾 and 𝐾 ≤ 𝑁, we define 𝑚௞ as 
the number of dimensions at level 𝑘 (i.e., 𝑚௞ = 𝑘ௗ). 

At each level 𝑘 , we select all possible 
combinations of 𝑚௞  dimensions from 𝐷 . Each 
combination 𝐷௞௜ ⊂ 𝐷  defines a cuboid 𝐶௞௜  , where 𝑖 = 1,2, … , 𝐼௞  , 𝐼௞ = ቀ ே௠ೖቁ  is the number of 
combinations at level 𝑘. The cuboid 𝐶௞௜  is obtained 
by aggregating 𝑂  over the dimensions included in 𝐷௞௜. 

Therefore, the set of cuboids at level 𝑘  is as 
follows: 𝐿௞ = {𝐶௞௜|𝐷௞௜ ⊂ 𝐷, |𝐷௞௜| = 𝑚௞} (1)

Each cuboid 𝐶௞௜  has dimensionality 𝑚௞  and 
provides a view of the data over 𝑚௞  (= 𝑘ௗ ) 
dimensions. By working with this lower-dimensional 
cuboid, we reduce the computational complexity of 
the classification task. 

2.2.2 Cuboid Representation Using 
Principal Component Analysis (PCA) 

In our second approach, we use PCA to obtain a 
reduced-dimensionality representation of the data 
cube 𝑂  with the same dimensionality 𝑘ௗ  as in the 
dimension selection approach. PCA is applied to 𝑂 to 
reduce its dimensionality by transforming the original 
data into a new set of orthogonal components that 
capture the maximum variance. 

We compute the covariance matrix Ʃ  of 𝑂  and 
solve for its eigenvalues and eigenvectors. The top 𝑘ௗ 
eigenvectors corresponding to the largest eigenvalues 
form the transformation matrix 𝑃. The reduced data 
cube 𝐶௉஼஺ is obtained by projecting 𝑂 onto the new 
feature space which provides 𝐶௉஼஺ as follows: 𝐶௉஼஺ = 𝑂 × 𝑃 (2)

This projection results in a single reduced-
dimensionality representation, capturing the most 
significant patterns in the data. By comparing the 
classification performance using the cuboids from the 
dimension selection approach and the PCA-reduced 
data cube, we evaluate the effectiveness of our 
methodology. 

2.3 Classification Algorithms 

We apply classification algorithms to the selected 
cuboids 𝑆  to evaluate the effectiveness of our 
dimensionality reduction approach. Specifically, we 
use Logistic Regression and Support Vector 

Machines, which are well-suited for handling 
reduced-dimensionality data. 

2.3.1 Logistic Regression 

Logistic Regression models the probability 𝑃(𝑦 =1 ∣ 𝑥) of a binary outcome using the logistic function 
as follows: 𝑃( 𝑦 = 1 ∣∣ 𝒙 ) = 11 + 𝑒ି(ఉబାఉ೅𝒙) (3)

where 𝛽଴ is the intercept, 𝛽 is the coefficient vector, 
and 𝑥 is the feature vector from a cuboid 𝐶௞௜ . The 
parameters 𝛽଴  and 𝛽  are estimated using Maximum 
Likelihood Estimation (MLE). The likelihood 
function for a set of observations {(𝒙௜, 𝑦௜)}, 𝑖 =1, 2, … , 𝑛 is given by: 𝐿(𝛽଴, 𝛽) = ෑ 𝑃(𝑦௜|𝒙௜)௬೔[1 − 𝑃(𝑦௜|𝒙௜)]ଵି௬೔௡

௜ୀଵ  (4)

Maximizing the likelihood function (or 
equivalently, the log-likelihood) obtains estimates of 
the parameters that best fit the observed data. The 
optimization is typically performed using iterative 
algorithms like Newton-Raphson or gradient descent. 
To further prevent overfitting, regularization methods 
can be imposed into the LR model. The common 
regularization terms are as follows: 
 L1 Regularization (Lasso Regression): Adds a 

penalty equal to the absolute value of the 
magnitude of coefficients. It performs feature 
selection by shrinking some coefficients to 
zero. 

 L2 Regularization (Ridge Regression): Adds a 
penalty equal to the square of the magnitude of 
coefficients. It prevents large coefficients but 
does not enforce sparsity. 

 
The regularized cost function becomes as follows: 

𝐽(𝛽଴, 𝛽) = − 1𝑛 ෍[𝑦௜ log 𝑃(𝑦௜|𝑥௜) +௡
௜ୀଵ (1 − 𝑦௜) log(1 −𝑃(𝑦௜|𝑥௜))] + 𝜆𝑅(𝛽)  (5)

where 𝑅(𝛽)  is the regularization term and 𝜆  is the 
regularization parameter controlling the trade-off 
between fitting the data and keeping the model 
coefficients small. 

2.3.2 Support Vector Machines 

SVM are powerful supervised learning models used 
for classification and regression tasks. They are 
particularly effective in high-dimensional spaces and 
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are robust against overfitting, especially in cases 
where the number of dimensions exceeds the number 
of observations. SVMs are well-suited for our 
methodology, which involves reduced-
dimensionality data cubes derived from high-
dimensional OLAP systems. 

SVM algorithm seeks an optimal hyperplane that 
maximally separates data points of different classes. 
For linearly separable data, the objective is to 
maximize the margin between the closest points 
(support vectors) of the two classes. The optimization 
problem is formulated as: min𝒘,௕ 12 ‖𝒘‖ଶ  𝑠. 𝑡.   𝑦௜(𝒘்𝒙௜ + 𝒃) ≥ 1,   ∀𝑖,  (6)

where 𝒘 is the normal vector to the hyperplane, 𝑏 is 
the bias term, 𝒙௜  are the feature vectors, and 𝑦௜ ∈{−1,1} are the class labels. By solving this convex 
optimization problem, SVM identifies the hyperplane 
that not only separates the classes but does so with the 
greatest possible margin, enhancing the model's 
generalization capabilities. 

Real-world data often cannot be perfectly 
separated by a linear hyperplane. To address this, 
SVM introduces the concept of kernel functions. 
Kernel function projects the original feature space 
into a higher-dimensional space where linear 
separation is possible. Common kernels include: 
 Linear Kernel: 𝐾൫𝒙௜, 𝒙௝൯ = 𝒙௜𝑻𝒙௝ 
 Polynomial Kernel: 𝐾൫𝒙௜, 𝒙௝൯ = (𝛾𝒙௜𝑻𝒙௝ + 𝑟)ௗ 
 Radial Basis Function (RBF) Kernel: 𝐾൫𝒙௜, 𝒙௝൯ = 𝑒𝑥𝑝(−𝛾ฮ𝒙௝ − 𝒙௝ฮ𝟐) 

 
Selecting appropriate hyperparameters is crucial 

for SVM performance: (i) Regularization Parameter 𝐶 : Determines the penalty for misclassification. A 
large 𝐶  prioritizes classification accuracy on the 
training data, potentially at the expense of 
generalization. (ii) Kernel Parameters: Parameters 
like 𝛾 in the RBF kernel or 𝑑 in the polynomial kernel 
affect the flexibility of the decision boundary. (iii) 
Cross-Validation: Techniques such as 𝑘-fold cross-
validation are used to systematically explore 
combinations of hyperparameters to identify the 
optimal model settings. 

2.5 Integration with Big Data Analytics 

Our methodology is designed to integrate with big 
data analytics frameworks to handle large-scale 
OLAP data cubes. By leveraging distributed 
computing platforms such as Apache Hadoop or 

Apache Spark, our method is enriched and capable of 
applying classification and analytics more efficiently 
and effectively than the traditional methods. This 
integration enhances scalability and performance, 
making the approach suitable for real-world 
applications where data volume and complexity are 
substantial. 

3 CONCLUSIONS 

In this paper, we propose ClassCube, an innovative 
methodology for effective big OLAP data cube 
classification via dimensionality reduction 
techniques. Our proposed approach leverages logical 
cuboid lattices to represent data at multiple 
aggregation levels, which enables efficient selection 
of dimensions and cuboids for classification tasks. 
The actual study highlights the trade-off between 
reduced computational overhead and maintained 
classification accuracy. The use of Logistic 
Regression and Support Vector Machines on reduced-
dimensional cuboids highlights that our approach 
effectively preserves performance while significantly 
reducing resource requirements. 

Future work is mainly oriented through extending 
our methodology with advanced machine learning 
models to further enhance flexibility and scalability as 
well as integrate emerging big data trends (e.g., 
(Cuzzocrea, 2006; Cuzzocrea, 2009; Cuzzocrea et al., 
2004; Cuzzocrea et al., 2007; Yu et al., 2012)). 
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