Automatic Item Generation Integrated into the E-Assessment-System
JACK

Michael Striewe

a

Trier University of Applied Sciences, Department of Computer Science, Trier, Germany

Keywords:

Abstract:

Automatic Item Generation, E-Assessment System, Educational Technology Engineering.

Automatic item generation (AIG) can save time in the production of high-quality assessment items, but re-

quires to create and maintain appropriate software tools that fit into a larger context in which the generated
items are to be used. Hence, sustainable AIG solutions not only require sophisticated item generation capa-
bilities, but also appropriate software design. This paper presents a concept for AIG that is integrated into an
e-assessment system and promotes reusability and extensibility as its main software quality properties. The
paper demonstrates the practicality of the concept and discusses the underlying software structure.

1 INTRODUCTION

Automatic item generation (AIG) is well-known for
saving the time required to produce high-quality as-
sessment items with defined properties, but it comes
at the cost of time required for item modeling and tool
development (Kosh et al., 2019). Item modeling is
an integral part of a particular approach to automatic
item generation (Gierl and Lai, 2012a) and thus can-
not be eliminated if that approach is to be used. In-
stead, there is a chance to reduce the need for tool
development by proper software engineering with a
focus on reusability and integration. However, there
are many single-purpose tools that are not specifi-
cally designed to be reusable or integrated. Never-
theless, using such a tool in practice sometimes ‘“re-
quires [...] digital ecosystem around the tool” (Kiyak
and Kononowicz, 2024), which is a strong argument
to not only focus on generation capabilities but also
on software design quality in automatic item genera-
tion.

Reusability is improved with universal AIG tools
like IGOR (Mortimer et al., 2012), which is still a
standalone tool. Another universal AIG tool is CAFA
(Choi and Zhang, 2019), which is not only reusable
but also offers integration as it can serve as a platform
that can be used by different client systems, such as
item management systems or interactive workbooks
(Choi et al., 2018).

In addition to reusability and integration, the ex-

(2 https://orcid.org/0000-0001-8866-6971

Striewe, M.

Automatic ltem Generation Integrated into the E-Assessment-System JACK.
DOI: 10.5220/0013454600003932

Paper published under CC license (CC BY-NC-ND 4.0)

tensibility of item generators is an additional concern.
The current state-of-the-art in automatic item genera-
tion knows many different approaches, although it is
dominated by “template or rule-based approaches as
the primary method for creating item models” (Circi
et al., 2023). These may be somewhat limited with re-
spect to the complexity of the generated items (Baum
et al., 2021). The reason may be that existing tools
are not well designed to be extended by emerging ap-
proaches that can help to add complexity. This in-
evitable leads to situations in which new tools are
designed (rather than existing ones are extended) as
soon as an important delta between existing methods
and the specific requirements in a particular domain
is detected (Christ et al., 2024).

Extensibility is improved with AIG frameworks
like SARAC (Liu, 2009), which uses individual com-
ponents for the parameterizable elements that occur
within an item model.

This paper presents an entirely different approach,
in which item generation features have been added to
an existing e-assessment system. In this way, auto-
matic item generation is integrated directly into a tool
that actually uses the items, reusable across all items
created in that tool in any domain of study, and ex-
tensible with clearly defined interfaces to add more
functionality in the future.

The remainder of this paper is organized as fol-
lows: Section 2 describes the concept of item gener-
ation used within the system. Section 3 provides two
examples on how to use the concept in practice. Sec-
tion 4 explains the software structure that is used to

747

In Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) - Volume 1, pages 747-753

ISBN: 978-989-758-746-7; ISSN: 2184-5026

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

AIG 2025 - Special Session on Automatic Item Generation

implement the concept. The section also explains the
software interfaces that allow to extend item genera-
tion. Section 5 discusses limitations of the approach,
and Section 6 concludes the paper.

2 CONCEPT OF ITEM
GENERATION

The e-assessment system JACK is a web-based,
general-purpose assessment system that can be used
in virtually any domain of study (Striewe, 2016).
Thus, its item types are not limited to those that are
typically used with automatic item generation, but
range from universal types like multiple choice and
fill-in-the-blanks to domain-specific types that ask
students to write program code or draw molecules.
The system does not provide a fixed set of items or
item templates, but includes authoring features that
allow teachers to define their own assessment items.
In addition, actual assessment items can consist of
several parts, where each part may be of a different
type and where the sequence of parts is determined
adaptively based on previous student input. For most
item types, automatic grading and feedback genera-
tion are available. In fact, the ability to provide de-
tailed and elaborated feedback for complex item types
is one of JACK’s most prominent features. Again,
the system does not do so based on fixed algorithms
in most cases but provides authoring features so that
teachers can prepare detailed feedback definitions.

Consequently, the concept of item generation in
JACK had to fulfill several requirements:

1. Item generation must happen online at runtime
each time a student starts to interact with a new
part of an assessment item.

2. Item generation must be based on functions that
are independent of the actual type of the gener-
ated items so that it can be used with any type,
including types that may be added in the future.

3. Item generation must cover both the item contents
shown to students and the internal parts of an item
that are used during automated grading and feed-
back generation.

Based on these requirements, JACK uses a
template-based approach by introducing so-called
item variables. For each assessment item (that may
consist of several parts as mentioned above), authors
can define an arbitrary number of such variables.
Each variable definition must include a so-called eval-
uator function that determines its value. These func-
tions may refer to other variables, so that constraint or

748

dependent variables are possible. The actual contents
of item variables are typically numbers or strings, but
may also be complex mathematical formulas. In ad-
dition to item variables, authors may also define so-
called dynamic objects that will render graphical ele-
ments in the final output such as mathematical graphs
or chemical molecules. The method for defining dy-
namic objects is less generic than the evaluator func-
tions for item variables, but may still refer to item
variables, so that dynamic objects can be constraint
and dependent as well. Finally, authors can use place-
holders in virtually any part of their item definition
(i.e. in all texts prepared for students and in all rules
for grading and feedback generation) to turn an item
into a templates from which different instances can be
derived at runtime. In summary, the only pre-defined
parts provided by the e-assessment system are gen-
eral item types, types of dynamic objects, and evalua-
tor functions for the generation of variable values, but
no pre-defined item templates, item models or other
kinds of structures. Authors are free to combine any
of these provided parts in any way they like to de-
fine item templates with placeholders that are filled
by variable values. Authors are also free to define ar-
bitrary complex combinations of functions to define
variable values.

Notably, it is left to the item authors to decide if
they apply a strong theory approach (Gierl and Lai,
2012b) and derive the item variables from an item
model they manage externally, or if they apply a weak
theory approach and just turn a fixed item in JACK
into a parent item by adding some variables. Since it
is not mandatory to use each and every item variable
for at least one placeholder, it is also possible to define
a set of item variables that actually encode a complex
item model directly in JACK. Whether this is actually
meaningful depends on the complexity of the model
and the availability of appropriate evaluator functions
to express the relations between the model elements.

3 EXAMPLES

This section illustrates the concept of item generation
by two examples. Both examples involve dynamic
objects of different kind. The first example is a fill-
in-the-blanks item that includes a dynamic object and
involves automatic grading. The second example is
a simple multiple choice item that also features a dy-
namic object and automatic grading, but additionally
involves the use of external data sources during item
generation.

Automatic Item Generation Integrated into the E-Assessment-System JACK

Consider the following parabola given by its standard form f(z) = %z2 + %x + %

o+ < 11 -

Convert it to vertex form: f(z) = x| (z+ fx)2+ fx

Figure 1: Student view on a sample instance of an item on
the forms of parabola equations.

3.1 Example 1: Parabola Curves

The first example comes from mathematics education.
The item is a fill-in-the-blanks item and asks students
to convert a parabola equation from standard form to
vertex form (see Figure 1). The item template is di-
vided into two parts to cover both the item presenta-
tion and the automated grading. Both parts of the tem-
plate refer to item variables. For item presentation,
authors define the item stem which includes not only
references to item variables, but also a placeholder for
the curve plot as well as three input fields (see Figure
2). Authors can decide to use IATgX formatting for the
formula and can equip the input fields with a formula
editor, so that students can enter rational numbers and
alike in a convenient manner. For automated grading,
authors specify rules that refer to the input fields and
compare their values to expected values that may be
fixed or stored in item variables (see Figure 3 for an
example with one rule for the correct answer). Note
that rules can refer to any input fields they like, so
that there can be more than one correct solution per
input field. Similarly, there can be multiple rules re-
ferring to the same input fields, resulting in elaborate
feedback for different (wrong) inputs.

The complete list of item variable definitions is
given in Figure 4. The variables are based on a math-
ematical model that makes sure that the equation will
not get trivial but also not too hard to calculate. Con-
sequently, the first four variables (“az”, “an”, “d”, and
“e””) make random selections from carefully selected
value ranges. Note that the value 0 is excluded in all
cases, since it could cause invalid results. The next
nine variables all compute derived values based on
the previous variables. All of these variables are used
internally either to prepare the curve plot (see Fig-
ure 5) or the rules for grading and feedback genera-
tion. In particular, some of the variables capture typ-
ical miscalculations students can make, so that stu-

Task Description

o1 B I YU SXX §FFTETEE ZE = w»w @
BB s - 1= System Font 12pt Avev L 3Q
Consider the following parabola given by its standard form $f(x)=[var=output1,latex]xA2+ [var=output2,Jatex}+
[var=output3,latex]$.

[graph=box1]

Convert it to vertex form: $f(x)=$ [field1 | $ (x+ $ [field2 | $)42+$ [field3

AddFill-In Field | Add Drop-Down Field | Add Molecule Field

Fill-In Fields

Formula Editor: basic v

Fill-In Field Name Field Size Maximum input length Formular Editor

field1 5 Formula Editor Vv ﬂ

Figure 2: Authoring view on the item template for the item
shown in Figure 1.

Feedback for Correct Answer

Evaluator expression and domain
[input=field1]==([var=az])/([var=an]) & [input=Ffield2]==[var=d] && MATH v ﬂ
[input=Field3]==([var=F])/([var=an])

Correct Answer Text

That's correct. Great job!

Feedback for Wrong Answer (Default Case)

Sorry, that's wrong. First exclude the factor in front of the z (note: you must divide the factor from the whole term!).

the equation to vertex form. At the end, you have to multiply the
et
par = outputd, latez)

You can the
factor that you excluded at the beginning. Here yo
f(z) = [var = outputl, latez|(z + [var = d))*

Grade Points: 0

Figure 3: Authoring view on one of the feedback rules for
the item shown in Figure 1.

he quadratic addition to cony

dent input can be compared to these values as well
to generate specific feedback for these cases. The fi-
nal four variables (“outputl” to “output4”) are used
within the item template to display information to stu-
dents. They make use of a special evaluator function
“rational” which makes sure that its parameters will
be printed as rational number and not as decimal num-
ber.

3.2 Example 2: Molecules

The second examples comes from chemistry educa-
tion. The item asks students to indicate the correct
name for a given chemical compound (see Figure 6).
The corresponding template is quite simple with an
item stem and four answer options (see Figure 7). The
item stem includes a placeholder referring to a dy-
namic object of type “molecule” and all four answer
options refer to item variables.

749

AIG 2025 - Special Session on Automatic Item Generation

az randomIntegerBetween(2,16)

an randomIntegerBetween(1,21)

d getRandomFromList(list(-5,-4,-3,-2,-1,1,2,3,4,5))
e getRandomFromList(list(-5,-4,-3,-2,-1,1,2,3,4,5))
f ([var=az])*([var=e])

b 2*([var=d])*([var=az])

c (([var=d])*([var=d])+[var=e])*([var=az])

negd (-1)*([var=d])

2 [var=c]/[var=az]

b2 [var=b]/[var=az]

b3 [var=b2]*[var=b2]

nege [var=b3]+[var=c2]

2 [var=nege]*[var=az]

output1 rational([var=az],[var=an])

output2 rational([var=b],[var=an])

output3 rational([var=c], [var=an])

output4 rational([var=f],[var=an])

Figure 4: Authoring view on the item variables used in con-
junction with the item template in Figure 2 and Figure 3.

Field Field

N JSXGraph Text
- Width Height P

var brd = JXGJSXGraph.initBoard('boxT",

[-10,10,10,-10]axis:true})var graph =
boxled 200 300 brd.create(functiongraph’ function({return [var=az}/[var=an] G

x x + [var=b]/[var=an] * x + [var=c)/[var=an]}})var p =

Figure 5: Authoring view on the dynamic object that ren-
ders the parabola in Figure 1.

The complete list of item variable definitions is
given in Figure 8. It starts with drawing a random
value for variable “size” that will roughly determine
the complexity of the molecules that will appear in the
item. Note that this is a simple heuristic that does not
match academic standards in item writing, but is used
here just for the sake of brevity. The main complex-

What is the correct name for the following chemical compound?

(0]

Br

4-Bromotetrahydropyran

Formic acid--2-bromoethan-1-ol (1/1)
3-Bromopropyl isothiocyanate
5-Chloropent-4-en-2-yn-1-amine

Figure 6: Student view on a sample instance of an item on
chemical compounds.

750

Task Description

What is the correct name for the following chemical compound?
molecule=molecule1]
Answer Options
Answer Is Correct
[var=p1]
No [RCEMN Variable ﬂ T
[var=p2]
[var=p3]
[var=p4]
+ Add answer option
More Settings
Shuffle Answer Options for Display

Display in Single Choice Mode

Figure 7: Authoring view on the item template for the item
shown in Figure 6.

ity of the item generation is encoded in the second
variable “tuples” that makes use of a call to an ex-
ternal data source. Precisely, a SPARQL query is is-
sued against the Wikidata database to retrieve chemi-
cal compounds, their names, and their structural iden-
tifiers. Using SPARQL queries to generate items has
been explored earlier (Foulonneau and Ras, 2013) and
is thus not a unique feature of automatic item genera-
tion with JACK.

The remaining variables read four random com-
pounds from the query result (“c1” to “c4”), extract
their names (“p1” to “p4”) as well as the structural
identifier for one of them in variable “n1”. The lat-
ter is used subsequently in the definition of a dynamic
object that turns the identifier into its graphical repre-
sentation (see Figure 9).

A similar visual result can be achieved by using
image links that are available in Wikidata as well and
that link to images of chemical compounds that are
located at Wikimedia Commons. However, that has
several major drawbacks: First, image links are ul-
timately resolved by the client browser and thus in-
dependent of the e-assessment system. Any failure
in resolving the links may result in an incomplete
item on the client side without any chance for the e-
assessment system to notice. With dynamic objects,
the whole output is prepared by the e-assessment sys-
tem and any failure in rendering the output can be
logged. Second, Wikimedia may block large num-
bers of requests for any reason, especially if they ap-
pear within a short period of time from a single IP
location, as it would be the case in exam situations.
With dynamic objects, no third-party server is in-
volved that can block requests. Third, images in Wiki-
media Commons may or may not show the molecule

Automatic Item Generation Integrated into the E-Assessment-System JACK

size rint(random()*6)+6

querySparqgl(‘https://query-main.wikidata.org/sparql’,
concat('PREFIX rdfs: <http://www.w3.org/2000/01/rdf-
schema#> PREFIX wdt: <http://www.wikidata.org/prop/
direct/> PREFIX wikibase: <http://wikiba.se/ontology#>
PREFIX wd: <http://www.wikidata.org/entity/> PREFIX bd:
<http://www.bigdata.com/rdf#> SELECT DISTINCT ?label ?
tuples struktur ?smiles WHERE { ?chemische_Verbindung wdt:P279
wd:Q11173. ?chemische_Verbindung wdt:P234 ?struktur. ?
chemische_Verbindung wdt:P233 ?smiles. ?
chemische_Verbindung rdfs:label ?label. FILTER (LANG(?
label)="en") FILTER (STRLEN(?smiles)=', [var=size], ')
FILTER (CONTAINS(?smiles, "CC"))}'))

ol getRandomFromList([var=tuples])

2 chooseFromComplement ([var=tuples], list([var=c1l]))

chooseFromComplement ([var=tuples], list([var=cl],
[var=c2]))

chooseFromComplement ([var=tuples], list([var=cl],
[var=c2],[var=c3]))

n1 getFromList(1, [var=cl])

p1 getFromList(@, [var=cl])
p2 getFromList(@, [var=c2])
p3 getFromList(@, [var=c3])
p4 getFromList(@, [var=c4])

Figure 8: Authoring view on the item variables used in con-
junction with the item template in Figure 7.

N Field Field Rotati InChl or JSON cod Format
ame Width tight otation InChl or JSON code orma
moleculel 4 150 100 0 War=n1l InChl

Figure 9: Authoring view on the dynamic object that ren-
ders the graphical representation of the molecule in Figure

in the expected notation. With dynamic objects, item
authors can be sure that all molecules will be shown in
the same notation. Finally, files loaded from Wikime-
dia or any third-party server may have file names that
reveal solutions to students how are able to inspect the
file names with their browser tools. With dynamic ob-
jects, molecules and alike is rendered directly within
the final output and no file names can be seen.

4 SOFTWARE STRUCTURE

Item variables and dynamic objects are handled dif-
ferently within the e-assessment system for technical
reasons, although both can ultimately be used to fill
placeholders in an item template.

4.1 Data Types

There is only one generic data type for item variables
that holds the variable name and the corresponding
evaluator function. The latter is a string following

some expression language that allows to make ref-
erences to function names, variable names and con-
stants. At runtime, these strings are passed to a dedi-
cated evaluator component that parses the string, calls
the required functions and returns the resulting value.

Dynamic objects are represented by individual
data types due to their larger complexity. While they
share a name, a width, and a height as common at-
tributes, their individual content definition can be very
different.

4.2 Template Instantiation Process

When a student starts to interact with an assessment
item, a new instance of an object representing that
item is created (even if it is a static item where no item
generation takes place). Then, the evaluator functions
for all variables are called, and the resulting values
are stored within the object representing the item. The
object is persisted, so all values are available for later
manual inspection if necessary.

Then, the item contents that need to be presented
to the student are looked up in the item definition. It
depends on the item type which contents are relevant
here. Usually, there will be some item stem or prompt.
In multiple choice items, there will also be answer
options that will not be present in other item types.
In turn, some other item type may provide additional
files for download to the student.

In a first pass, each content element is scanned for
placeholders that refer to dynamic objects. Each oc-
currence of a placeholder will be replaced by a new
instance of the respective dynamic object. Notably,
the content definition for a dynamic object may in-
clude references to item variables, which need to be
resolved first.

In a second pass, each content element is scanned
for remaining placeholders that refer to item vari-
ables. These are replaced by the respective variable
values, including graphical conversions like IXIEX
formatting for mathematical formulas. Authors can
add flags to each placeholder to indicate which kind
of conversion they would like to use in each individ-
ual place.

4.3 Extensibility

The software structure presented above includes three
dedicated interfaces for extensions. First, new eval-
uator functions can be added that define new ways
to compute or derive variable values. Second, new
types of dynamic objects can be added that render
new types of graphical output. Third, new conversion
flags can be added that allow to present variable val-

751

AIG 2025 - Special Session on Automatic Item Generation

ues in different, potentially domain-specific format-
ting. Following the software structure, making use of
these interfaces happens in three distinct places.

Evaluator functions are added within the evalua-
tor component. Each new function is implemented
in a separate code file and registered in a dictio-
nary of available function names. Functions may be
simple with just one line of code or may be com-
plex, e.g. including calls to external software li-
braries. As demonstrated above, functions even can
make calls to external databases and could make calls
to Al-powered services and alike in a similar manner.
Since they are implemented in the dedicated evaluator
component, they can be added and updated indepen-
dently of the actual e-assessment system. Thus, new
functions for item generation can be added on-the-fly
without the need to update the entire system.

Dynamic objects are added within the core of the
e-assessment system, since they are more complex
and provide individual settings that must be stored in
the system’s database. Adding a new type of dynamic
objects thus requires to implement some technical in-
terface, to define the object’s properties and to define
the output rendering for that object. In addition, input
elements in the authoring interface must be defined so
that teachers can actually make use of the new objects.
Consequently, adding new dynamic objects is not as
easy as adding new evaluator functions and requires
to update and restart the entire e-assessment system.

Conversion flags are added within the converter
component, which is a separate component similar to
the evaluator component. However, flags are not in-
dependent of each other and thus there is a single con-
version algorithm that handles all flags at once. That
algorithm needs to be extended if new flags are re-
quired. Similar to the evaluator component, the con-
verter component can be updated independent of the
actual e-assessment system and thus provide new con-
versions at any time.

S CURRENT USAGE AND
LIMITATIONS

The approach is fully operational and in use. Among
others, the mathematics department at University of
Duisburg-Essen currently maintains a pool with about
300 item templates that are used for item generation
for homework exercises. The economics department
of the same university maintains smaller pools of item
templates for various assignments in microeconomics
as well as for homework exercises and exams in statis-
tics. These pools have already been used with an older
version of JACK (Massing et al., 2018) and helped to

752

design the current software structure.

Although the approach is fully operational, it
comes with three notable limitations.

On the technical level, item variables are some-
what limited in the amount of data they can handle ef-
ficiently. While it is technically possible to create an
evaluator function that e. g. generates a large image
and returns it in Base64 encoding, it is not efficient
to do so, because the variable value would then be a
very long string that must be stored in a single field in
the system’s database. Using compressible SVG may
help here and add additional options for styling the
image on the client-side. Still, that also does not solve
the general problem that a single database field is not
the optimal choice to store hundreds of kilobytes of
data in a single string. That does not only apply to
images, but also to evaluator functions that may e. g.
return thousands of result entries for a single query to
an external database.

The latter example may also have an impact on
user experience. As defined in the requirements in
Section 2, item generation happens online right be-
fore an item is displayed to a student. Hence, item
generation is limited to cases in which the processing
of evaluator functions can be completed in a reason-
able short period of time. This applies both to the
complexity of calculations and the delay created by
connecting to external data sources or alike. The more
item variables are defined in an item, the faster each
variable value must be computed to achieve an over-
all acceptable user experience. Experience shows that
waiting for about 5 seconds for an item to be loaded is
acceptable for most students in homework exercises,
but already causes distress for some students in exam
situations.

On the conceptual level, the whole process of
item generation is performed without manual super-
vision. There is no intermediate step in which gener-
ated items are reviewed by human experts before they
are displayed to students. Hence, the applicability of
the approach is limited to cases in which either a high
item quality can be guaranteed by careful item tem-
plate design and careful checking of all data sources,
or in which a reduced item quality is acceptable as
it may be the case in some specific formative assess-
ment scenarios. In particular, students and teachers
must be aware that low quality items can appear and
students must have options to skip such items if they
cannot be answered in a meaningful way. Notably,
all generated items including all variable values are
available in the e-assessment system for later manual
inspection, so that quality checks can be made in ret-
rospective. Based on these checks, item definitions
can be amended in order to improve item generation.

Automatic Item Generation Integrated into the E-Assessment-System JACK

6 CONCLUSIONS AND FUTURE
WORK

This paper presented the automatic item generation
concepts within the e-assessment system JACK. The
focus was not on new capabilities in item generation,
but on the software design. In particular, the con-
cept can be considered more sustainable than com-
mon standalone, single-purpose solutions, as it is in-
tegrated, reusable and extensible:

» The concept is integrated, because item genera-
tion happens directly within an e-assessment sys-
tem that is also responsible for delivering assess-
ment items to students and for automatic grading
and feedback generation. Thus, there is no need
to create an ecosystem around the tool as it might
be the case with other approaches.

* The concept supports reusability, because any of
its features is realized in a distinct component that
can be combined freely. The core concepts of item
variables and dynamic objects are generic for as-
sessment items and can be used regardless of the
item types of their parts.

» The concept supports extensibility, because each
component can be updated without interfering
with the remaining system. There is no need to
build a new system just for new types of depen-
dencies between item variables. Instead, evaluator
functions can be added as needed. There is also no
need to build a new system just for new types of
content elements. Instead, evaluator functions or
dynamic objects can be added as needed. There is
also no need for a new system just because of dif-
ferent representations. Instead, dynamic objects
or output conversions can be added as needed.

Besides a general extension of JACK’s item gen-
eration capabilities in terms of new evaluator func-
tions, future work particularly includes the inclusion
of a new type of dynamic objects for data structures in
computer science education. While visualizing data
structures in general is not a hard problem, it puts
more emphasis on the internal structure of item vari-
ables (e. g. it might become important in what order a
list contains elements).

A current research project tackles the automatic
generation of questions on program code submitted
by students in response to programming assignments.
While the research project is concerned with more
fundamental aspects of asking questions about pro-
gram code, the creation of practical demonstrators
may require to extend the current item generation ca-
pabilities of JACK with specific features for handling
program code.

REFERENCES

Baum, H., Damnik, G., Gierl, M., and Braun, 1. (2021). A
shift in automatic item generation towards more com-
plex tasks. In INTED2021 Proceedings, 15th Interna-
tional Technology, Education and Development Con-
ference, pages 3235-3241. IATED.

Choi, J., Kim, H., and Pak, S. (2018). Evaluation of Auto-
matic Item Generation Utilities in Formative Assess-
ment Application for Korean High School Students.
Journal of Educational Issues, 4(1).

Choi, J. and Zhang, X. (2019). Computerized Item Mod-
eling Practices using Computer Adaptive Formative
Assessment Automatic Item Generation System: A
Tutorial. The Quantitative Methods for Psychology,
15(3):214-225.

Christ, P., Munkelt, T., and Haake, J. M. (2024). Gener-
alized Automatic Item Generation for Graphical Con-
ceptual Modeling Tasks. In Proceedings of the 16th
International Conference on Computer Supported Ed-
ucation, CSEDU 2024, Angers, France, May 2-4,
2024, Volume 1, pages 807-818. SCITEPRESS.

Circi, R., Hicks, J., and Sikali, E. (2023). Automatic item
generation: foundations and machine learning-based
approaches for assessments. Front. in Educ., 8.

Foulonneau, M. and Ras, E. (2013). Using Educational Do-
main Models for Automatic Item Generation Beyond
Factual Knowledge Assessment. In Proceedings of
EC-TEL 2013: Scaling up Learning for Sustained Im-
pact, pages 442—447. Springer Berlin Heidelberg.

Gierl, M. J. and Lai, H. (2012a). The Role of Item Models
in Automatic Item Generation. International Journal
of Testing, 12(3):273-298.

Gierl, M. J. and Lai, H. (2012b). Using Weak and Strong
Theory to Create Item Models for Automatic Item
Generation: Some Practical Guidelines with Exam-
ples. In Automatic Item Generation. Routledge.

Kosh, A. E., Simpson, M. A., Bickel, L., Kellogg, M., and
Sanford-Moore, E. (2019). A Cost-Benefit Analysis
of Automatic Item Generation. Educational Measure-
ment: Issues and Practice, 38(1):48-53.

Kiyak, Y. S. and Kononowicz, A. A. (2024). Case-based
MCQ generator: A custom ChatGPT based on pub-
lished prompts in the literature for automatic item gen-
eration. Medical Teacher, 46(8):1018-1020. PMID:
38340312.

Liu, B. (2009). SARAC: A Framework for Automatic Item
Generation. In 2009 Ninth IEEE International Confer-
ence on Advanced Learning Technologies, pages 556—
558.

Massing, T., Schwinning, N., Striewe, M., Hanck, C., and
Goedicke, M. (2018). E-Assessment Using Variable-
Content Exercises in Mathematical Statistics. Journal
of Statistics Education, 26(3):174—189.

Mortimer, T., Stroulia, E., and Yazdchi, M. V. (2012).
IGOR: A Web-Based Automatic Item Generation
Tool. In Automatic Item Generation. Routledge.

Striewe, M. (2016). An architecture for modular grading
and feedback generation for complex exercises. Sci-
ence of Computer Programming, 129:35-47.

753

