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Abstract: This paper describes the concept and use of Indicators for cybersecurity decision support. We define an 
Indicator as observable information about a Device Under Test (DUT) or System Under Test (SUT) that 
potentially can underpin insight on its cybersecurity posture. We describe different types of Indicators, how 
they are generated by tools and components in a cybersecurity testing and monitoring framework, how they 
may be transformed to increase their utility and illustrate their use via an exemplary case in smart 
manufacturing. We summarise key observations and properties of Indicators based on collaborative 
multidisciplinary work that has brought together developers of tools that generate Indicators, tools that 
consume and analyse indicators, and representatives of users who have motivating scenarios where Indicators 
may inform about their cybersecurity posture. 

1 INTRODUCTION 

In the context of cybersecurity and privacy 
protection, IoT devices have the potential to expand 
the landscape of risks related to both security and data 
privacy. As the number of IoT devices grows within 
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an ecosystem, with devices communicating and 
collaborating not only internally but also externally, 
the lack of proper security can expose the entire 
ecosystem to significant risks, including privacy 
violations due to data leaks. To mitigate these risks, 
the infrastructure, including the devices and the 
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broader IoT ecosystem must be secured against 
intrusions and malicious activities.  

This paper builds on previous work by the authors 
around the topic of whole-lifecycle IoT cybersecurity 
testing, anomaly detection and cybersecurity risk 
management. Taylor et al (Taylor et al., 2024a) 
described the challenges and an initial approach. A 
framework architecture and toolset were described in 
Taylor et al (Taylor et al., 2024b) that addresses the 
challenges from Taylor et al (Taylor et al., 2024a). 
This paper develops the architecture further via a 
discussion of the notion of Cybersecurity Indicators, 
which provide information relevant to the 
cybersecurity posture of the device or system under 
test. and serve as a means of communication either 
between components in the framework or for 
communication to the framework’s user, with the 
purpose of providing decision support.  

 The paper is structured as follows. Section 2 
defines the concept of “Indicators” and Section 3 
provides a specification of Indicators. Section 4 
describes how the testing framework presented 
previously in Taylor et al (Taylor et al., 2024b) has 
evolved to accommodate Indicators by showing how 
the notion of Indicators fits within it. Within this 
architecture, several tools generate and consume 
Indicators, and these are discussed in Section 5 and 
Section 6 respectively. Section 0 describes examples 
of indicator usage in an illustrative use case in Smart 
Manufacturing. Section 8 discusses developments 
from previous work and the observations made 
regarding the key properties of Indicators. Finally, 
there is a brief summary of the work done to date and 
next steps in Section 9. 

2 INDICATOR CONCEPT 

2.1 Indicator Definition 

Indicators represent observable information about 
the Device Under Test (DUT) or System Under Test 
(SUT) that potentially can underpin insight on its 
cybersecurity posture. As a working definition of 
“cybersecurity posture”, the following from 
Crowdstrike is appropriate: “An organization’s 
security posture represents the overall security status 
of its networks, systems, and procedures. It is a 
holistic snapshot of your security strengths and 
vulnerabilities across hardware, software, data, and 
user behavior.” (Imtiaz, 2023). RFC 4949 defines 
“indicator” as “(N) An action -- either specific, 
generalized, or theoretical -- that an adversary might 
be expected to take in preparation for an attack. […]” 

(Shirey, 2007). This definition solely pertains to the 
potential for attack or threat, but for the purposes of 
testing and monitoring, a wider interpretation 
covering the overall status of the DUT / SUT is 
needed, so the preference here is for the Crowdstrike 
interpretation pertaining to security posture. 

Indicators comprise information of relevance for 
assessment of cyber security status or risk. A 
fundamental purpose of Indicators is to provide 
decision support information to help practitioners 
reduce security risks. Indicators may provide this 
decision support directly by being directly presented 
on the framework’s dashboard as signals e.g. of 
intrusions, failures, anomalous behaviour but can also 
serve as input to security analysis components in the 
framework, whose results are also presented as 
decision support information for practitioners.  

At the current time, we have identified several 
subtypes of indicator, described as follows. 
• Signals of Threats “Potential cause of an 

unwanted incident, which may result in harm to 
a system or organisation.” (ISO/IEC 
27000:2018) present in the SUT. 

• Detected Vulnerabilities “Weakness of an asset 
or control that can be exploited by one or more 
threats.” (ISO/IEC 27000:2018) in the SUT. 
Known vulnerabilities may be represented as 
CVEs - Common Vulnerabilities and Exposures 
(CVE Program Mission, 2025) but previously 
unknown vulnerabilities may be additionally 
detected and reported. 

• Confirmation of expected state / behaviour. This 
is an indication of normal operation, indicating 
the absence of anomalies, or incidents or misuse. 

• Signals of Incidents “1. A security event that 
involves a security violation. […] In other words, 
a security event in which the system's security 
policy is disobeyed or otherwise breached. 2. 
Any adverse event [that] compromises some 
aspect of computer or network security.” (RFC 
4949 - Shirey, 2007) detected in the SUT. 

• Detected Anomalies “[…] activity that is 
different from the normal behavior of system 
entities and system resources. (See: IDS. 
Compare: misuse detection.)” (RFC 4949 - 
Shirey, 2007) detected in the SUT. The tools 
provide different types of anomaly detection, 
including anomalies in component behaviour, 
network traffic and user behaviour. 

• Effects of Control measures on the SUT: 
“Measure that is modifying risk. May include any 
process, policy, device, practice or other action” 
(ISO/IEC 27000:2018), “The management, 
operational, and technical controls (safeguards 
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or countermeasures) prescribed for an 
information system which, taken together, satisfy 
the specified security requirements and 
adequately protect the confidentiality, integrity, 
and availability of the system and its 
information.” (RFC 4949 - Shirey, 2007). 

3 INDICATOR SPECIFICATION  

We have proposed a template to facilitate 
communication, storage and retrieval of 
cybersecurity Indicators. This template is utilised in 
subsequent sections describing tools that generate or 
consume Indicators. The indicator specification 
template consists of the following fields:  
• Unique indicator ID (mandatory): Unique 

identifier of the indicator 
• Short name (mandatory): A short name of the 

indicator. 
• Definition (mandatory): Definition of the 

indicator - qualitative/quantitative, as well as a 
definition of the variables/parameters involved. 

• Purpose (mandatory): Defines the purpose that 
the indicator serves. 

• Data source (mandatory): Specifies where to 
retrieve the indicator values from. 

• Retrieval procedure (mandatory): Specifies 
how to obtain the indicator values.  

• Expected change frequency (mandatory): 
Specifies how often the indicator values are 
expected to change. 

• Update/retrieval frequency (mandatory): 
Specifies and recommends how often to retrieve 
the indicator values. 

• Unit of measure (optional): Specifies the unit of 
measure of the indicator. 

• Interpretation (optional): Specifies the 
interpretation of indicator values, e.g. which 
values or ranges of values are desirable, 
expected, acceptable, unacceptable, etc. 

• Scale (optional): Specifies the measurement 
scale for the indicator. 

• Uncertainty (optional): Specifies the 
uncertainty and the sources of uncertainty. Can 
e.g. be expressed in the form of intervals, 
confidence level, variance etc. 

4 INDICATOR ARCHITECTURE 

Figure 1 reprises the architecture of our testing and 
monitoring framework from Taylor et al (2024b), 

here updated to describe how Indicators are utilised 
as communication between the components of the 
framework. 

Testing Tools (blue) are invoked by the user of 
the framework to test some characteristic of the DUT 
/ SUT and with the expectation of specific outputs. 

Monitoring, Analysis and Detection Tools 
(green) observe the DUT / SUT as it is operating and 
raise events if specified conditions or anomalous 
conditions occur 

Security Controls (yellow) may be applied to the 
DUT / SUT to manage risks identified.  

Indicator Analysis & Decision Support (purple) 
consume Indicators generated by other tools, analyse 
them and provide decision support, either directly to 
the dashboard, or via derived Indicators. A common 
thread amongst these tools is that they evaluate trust 
and risks from different perspectives, for example 
evaluation of impact and likelihood of compromises 
detected by the testing or monitoring & detection 
tools on the DUT or the SUT, along with 
recommendations of controls if the resulting risk level 
is unacceptably high. 

Testing / Evaluation Environments – (light grey) 
are dedicated testbeds, cyber ranges, emulation 
environments that enable testing under controlled but 
conditions representative of real deployment 
conditions. 

Data Aggregation provides summarisation of 
alerts and insights reported by the upstream tools, for 
example consuming multiple events within a time 
window and issuing digest messages describing 
trends or the content of a repeated alert along with 
counts of occurrence. 

Auditable Data infrastructure (dark grey) 
provides means for secure and auditable data 
exchange for tools and other components and to 
interact with testing users. It is based on Distributed 
Ledger Technology (DLT), which offers 
immutability of records on the ledger, thereby 
facilitating a reliable and auditable record of events. 
The immutability feature of DLT facilitates tamper-
proof records of events and actions. Its distributed 
nature adds resilience, and it also allows tools in 
different locations to contribute to the same records 
and share data such as test results or alerts among 
themselves. 

For interchange and storage, context and meta 
data structures are defined to map between indicator 
specifications and the data structures that are to be 
used in the data infrastructure. Any information that 
should be recorded in relation to an indicator should 
be reflected in the context. As such, there is a 
minimum set of information required: 

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

418



 
Figure 1: Conceptual Security Testing / Monitoring Architecture Using Indicators as Communication (Reprised and revised 
from Taylor, 2024b).

• Type of indicator 
• Severity – A string denoting an assessment of the 

level of severity or impact 
• Source of the indicator – The entity reporting it 
• Subject – Item (device) the indicator refers to 
• Timestamp – ISO date-time string 
• A generic free text field that allows any kind of 

supplementary detail as supplied by the tool. 
Component Execution Control (light blue grey) 

is infrastructure that enables tools and other 
components to be configured and executed in 
different monitoring and testing sequences depending 
on the needs of the situation at hand. 

4.1 Indicators Within Security Testing / 
Monitoring Architecture 

The relationship between the DUT / SUT, tools and 
Indicators is shown in Figure 2. This illustrates that 
there are tools that monitor (green) or test (blue) the 
DUT / SUT and generate Indicators, which are termed 
Observed Indicators because they are observations 
resulting from testing or monitoring a DUT / SUT. 

Other tools filter and aggregate Indicators, leading 
to Compound Indicators. This aggregation / filtering 
is needed because some Observed Indicators result 
from tools that can flood downstream components 
with repeated event messages that may describe an 

unchanging situation, causing unnecessary demands 
on storage and potentially leading to unintended 
denial of service on those components. 

Further tools consume Indicators, analyse them 
and generate output for decision support or Derived 
Indicators, which are new Indicators that are the 
result of analysis of other Indicators. Tools that 
generate Derived Indicators are the Trust and Security 
Analyser, the SUT / DUT Risk Assessment and 
Access Control Risk Assessment Methodology 
(ACRAM).  

All Indicators (whether observed, compound or 
derived) are stored in the Auditable Data 
Infrastructure. This is a shared data infrastructure to 
which all components have access.  

The tools that generate Observed or Derived 
Indicators are described in the following sections, 
with specifications of the Indicators they produce. An 
example of Compound Indicator aggregation is 
provided later in the example in Section 0. 

5 OBSERVED INDICATOR 
GENERATORS 

The tools & components of the framework that 
generate Observed Indicators are described in this 
section. These are broken into Testing Tools that are  
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Figure 2: Indicator Generation / Consumption / Filtration / Aggregation / Usage 

executed by an operator to evaluate specific 
properties of the DUT / SUT and that produce test 
results; and Monitoring Tools that operate at runtime 
to observe the SUT / DUT and generate Indicators if 
the observation meets certain conditions (e.g. 
anomalous conditions). Each tool has been described 
fully in Taylor et al (Taylor et al., 2024b) but is briefly 
introduced here along with its Indicator Output 
Specification, a description of the Indicator it 
produces 

5.1 Testing Tools 

5.1.1 Network Fuzzer 

The Network Fuzzer (following e.g. Miller et al., 
1990) facilitates security testing of network interfaces 
by assisting with the detection of unknown 
vulnerabilities by sending a large amount of 
specifically crafted requests to the interface under test 
and observing whether it responds or behaves in an 
unexpected way. Such unexpected behaviour can 
indicate the presence of a vulnerability, which an 
analyst in turn can investigate further. 
Indicator output Specification. Definition: 
Running a Fuzzer on a network interface. Purpose: 
Find anomalous behaviour. Data source: The service 
running on the network interface. Retrieval 
Procedure: Running the Fuzzer. Expected Change 
Frequency: Run when significant updates to the SUT 
are undertaken. Measurement frequency: After 
every change (update). Unit of Measure: Number of 
crashes during a specific interval containing a 

description of the observed behaviour and an 
associated packet capture file with the packets 
required for reproducing the reported behaviour. 
Interpretation: All crashes are treated as equally 
severe. Scale: Ordinal. Uncertainty: Random and 
large amount of input combinations that can lead to 
varied and unforeseen outcomes. 

5.1.2 SBOM Generator 

A Software Bill of Materials (SBOM) is a structured 
overview of all external libraries or software 
components used in a software program/system. The 
SBOM generator provides such a manifest by 
applying reverse engineering approach when source 
code is not available, which in turn allows the tool to 
list known vulnerabilities present in the software 
product via queries using libraries and versions to 
CVE repositories, e.g. NVD. 
Indicator output Specification. Definition: 
Generate CVE from SBOM. Purpose: Find software 
components and known vulnerabilities in firmware. 
Data source: Firmware file of a testing device. 
Retrieval Procedure: Running SBOM Generation & 
CVE identification tool. Expected Change 
Frequency: when the firmware is updated. 
Measurement frequency: As often as needed. Unit of 
Measure: Two output files: an SBOM file and a list 
of identified CVE numbers. Interpretation:  The 
CVE numbers provide unique identifiers associated 
with specific vulnerabilities in software components. 
Scale: N/A. Uncertainty: Software components 
listed in the SBOM file may not be accurate. 
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5.2 Monitoring, Analysis & Detection 
Tools 

5.2.1 Anomaly-Based Intrusion Detection 

This tool trains and executes Federated Learning 
(Yang, 2019) based models to detect anomalies in 
network traffic data, which has emerged as relevant 
topic in recent papers on IoT security such as Rey 
(Rey, 2022). It is based on behavioural patterns 
identified in historic usage scenarios such as normal 
activities of devices and infrastructure. It takes as 
input a dataset of network traffic (pcap, csv) for 
offline analysis and/or real time network traffic; and 
generates alerts of anomalous events detected, 
including information related to the event and 
potentially the high-level type of the event.  
Indicator Output Specification: Definition: 
Deviation from normal activities in terms of 
communication with unrecognized sources / 
destinations. Purpose: Find anomalous behaviour 
that can indicate potential threats or attacks. Data 
source: Network traffic data. Retrieval procedure: 
Running the anomaly detection models (inference). 
Expected change frequency: Depends on network 
traffic behaviour. Measurement frequency: 
measurement or analysis is done in real-time or semi-
real time (or offline). Unit of measure: {0,1} for each 
element of a given dataset; or alerts for packets. 
Interpretation: i) online analysis - an alert for each 
irregular pattern packet identified or for X packets; ii) 
offline analysis - 0 means normal, 1 means irregular 
pattern in the packet. Scale: N/A. Uncertainty: False 
positives and false negatives 

5.2.2 Anomaly Detection Pipeline 

The Anomaly Detection Pipeline generates a 
fingerprint of a DUT during normal operation using 
machine learning to predict a selected sensor value 
based on all other sensor values using the 
measurements of one sensor as label. A deviation of 
the measured value from the predicted (and expected) 
value indicates an anomaly. 
Indicator Output Specification: Definition: Near 
real time detection of anomalies in measurements 
from IoT devices. Purpose: Detection of anomalies in 
IoT devices Data source: IoT Sensors; Retrieval 
procedure: Comparison with fingerprint recorded 
during normal operation. Expected change 
frequency: Event-driven – if anomalous behaviour is 
detected in DUT, a report is issued. Unit of measure: 
3 levels of alarms with increasing severity 
represented by green, yellow, orange and red. 

Interpretation: off =normal operation to red=serious 
alarm. Uncertainty: confidence level of an alarm. 

5.2.3 Misuse Detection ML Toolkit 

The Misuse Detection ML Toolkit is a set of runtime 
libraries offering AI/ML algorithms for training 
models to detect the misuse of software systems. It 
focuses on intrusion detection (Vinayakumar, 2019), 
by identifying deviations from baseline normal usage 
patterns derived from historical scenarios, user 
activities, and log files via analysis of functional 
footprints, temporal behaviours and statistical data 
distributions using principles akin to social 
engineering. Alerts are raised, published and relayed 
downstream when anomalies are detected.  
Indicator Output Specification. Definition: Near 
real time detection of abnormal behaviour against 
normal recorded user activity in measurements from 
IoT devices. Purpose: Detection of misuse of 
devices. Data source: IoT Sensors. Retrieval 
Procedure: Comparison with fingerprint recorded 
during normal operation. Expected Change 
Frequency: Dependent on user behaviour. 
Measurement frequency: Continuous. Unit of 
Measure: True / False. Interpretation: Anomalous 
behaviour detected / not detected. Scale: Interval. 
Uncertainty: Confidence level of alarm.  

5.2.4 SNORT Detection and Ruleset 

This component builds on SNORT (Caswell 2006) 
and utilizes rulesets such as (Wang, 2013) and 
(Huang, 2012) to deliver Indicators based on network 
traffic. Rulesets can include blacklisted traffic, 
forbidden protocols, vulnerabilities or bad actors. 
Additional rules can be Indicators for non-malicious 
activity but indicate the existence of a specified 
software or system state. 
Definition: Rules running in the SNORT toolset. 
Purpose: Alarm of packets that are suspicious, known 
malicious and suspicious based on AI rulings. Data 
source: PCAP, mirror port. Retrieval Procedure: 
network stream parsed and checked by SNORT. 
Expected Change Frequency: Dependent on ruleset 
and traffic. Measurement frequency: Continuous. 
Unit of measure: Rules can be of different classes, 
and each can have severity levels, such as suspicious. 
Interpretation: Rules describe circumstances an alert 
is generated under, plus rules are classified into types, 
e.g. threat, attack or system update. Uncertainty: Rule 
matching is a deterministic process with low 
uncertainty, but the Indicator statement may include 
uncertainty about whether a compromise happened, 
which is eliminated in upstream tools. 
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5.2.5 r-Monitoring - Monitoring & Analysis 
of System Processes, Metrics and 
Network Traffic 

The r-Monitoring tool aims to enhance system 
security by comprehensively monitoring and 
analysing system processes, metrics, and network 
traffic following patterns suggested by Shao et al. 
(Shao et al., 2010). It includes dynamic file 
monitoring, tracking changes to critical system files 
and directories in real-time where unauthorized or 
suspicious modifications are flagged and alerted to 
the system administrator. It also continuously scans 
and evaluates running processes against known 
malware signatures and anomalous behaviour 
patterns to identify potential threats, ensuring 
proactive detection and response. 

Indicator output Specification. Definition: Real 
time monitoring of IoT and computing devices. 
Purpose: Alarm of abnormal resource consumption. 
Data source: r-Monitoring Tool agent. Retrieval 
Procedure: measurements parsed and checked by the 
Tool agent. Expected Change Frequency: depends 
on detected abnormalities. Measurement frequency: 
constant (real-time). Unit of Measure: each outcome 
will contain a description of the observed behaviour 
and of the status. Interpretation: binary result 
indicating the process causing irregular behaviour of 
resource consumption. Scale: Ordinal. Uncertainty: 
legitimate user operations generating increased 
resource consumption and/or modification of critical 
system files for admin functions. 

5.2.6  r-Anomaly Detection 

This tool is designed to monitor network traffic and 
identify unusual patterns that deviate from 
established norms. The tool pinpoints specific 
features that contribute to each detected anomaly (e.g. 
Lundberg & Lee, 2017), using intrusion detection 
approaches exemplified by Fuentes-García et al. 
(Fuentes-García et al., 2021) against a predefined 
baseline of typical activity. It employs machine 
learning algorithms (see e.g. Wang et al, 2021) to 
identify deviations and the underlying causes of these 
irregularities, that may suggest security threats or 
system malfunctions. It monitors network traffic, 
which consists of data packets, each containing 
parameters from various layers, and produces output 
indicating whether an anomaly was detected, 
describing the severity of the deviation from the 
defined baseline and defining the list of parameters 
that are considered abnormal.  

Indicator Output Specification. Definition: 
Identifying traffic that deviates from the established 
baseline of normal behaviour. Purpose: Enhance 
network security and reliability by promptly flagging 
potential attacks or other issues. Data source: PCAP, 
mirror port. Retrieval procedure: Network stream 
parsed and checked by the service. Expected change 
frequency: When the established baseline changes or 
additional data are available to finetune model. 
Measurement frequency: Each time a network 
stream is initiated. Unit of measure: Values 
indicating detection, severity, and the abnormal 
parameters of each network stream. Interpretation: 
All results are binary, accompanied by the feature(s) 
causing the anomaly and severity value. Scale: 
Ordinal. Uncertainty: false positives, false negatives. 

6 INDICATOR CONSUMERS, 
ANALYSIS & DECISION 
SUPPORT  

This section describes tools that consume Observed 
Indicators, undertake analysis of their parameters and 
values, and provide decision support or generate 
Derived Indicators. 

6.1 Trust Analyser 

Trust is shaped by the trustor’s experiences and 
perceptions, making it vital to develop systems that 
support informed trust-based decisions (Özer et al., 
2011). The Trust Analyzer (TA) assesses confidence 
in the integrity, reliability, and performance of 
entities, identifying risks from misplaced or excessive 
trust via seven Trust Evaluation Categories (TECs): 
Security, Reliability, Resilience, Uncertainty and 
Dependability, Goal Analysis, Safety (passive 
monitoring), and Privacy (passive monitoring). Five 
TECs actively monitor system behaviour, while two 
passively provide updates. These TECs are based on 
the IIC trust framework (Buchheit et al., 2021) with 
additional system considerations and requirements 
(Kuruppuarachchi, 2024). 

The TA collects data from indicators grouped into 
TECs and aggregates this information to calculate a 
trust score using a weighted average method. System 
owners can assign weights to TECs based on their 
relevance to the application, enabling the trust score 
to guide informed operational decisions. For ML 
tasks, the trust score can also function as a data 
quality metric. 
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Definition: Trustworthiness value for a 
component of the SUT; Purpose: Indicate whether a 
component is trustworthy; Data Source: All the 
available indicators in the SUT; Retrieval Procedure: 
Retrieving reports from indicators and applying trust 
model; Expected Change/Measurement Frequency: 
Based on the use case such as when there is new 
information available from indicators or considering 
a specific time frame (daily, weekly, etc.); Unit of 
Measure: Unitless numeric value or percentage; 
Interpretation: High values indicate trustworthiness, 
low values indicate lack of trust; Scale: 0 to 1. 
Uncertainty: Depends on input indicator accuracy. 

6.2 ACRAM (Access Control Risk 
Assessment Methodology) 

Complex IT infrastructures obviously require a 
comprehensive access control solution. A 
methodology is proposed, according to which 
Subjects (users) and Objects (services) are evaluated 
according to significant factors and with the help of a 
mathematical model based on fuzzy logic, the risk of 
providing access is assessed. ACRAM uses 
Indicators (input signals) that characterize the state of 
the information system during initiation and 
operational phases. The two main groups of input 
Indicators (dynamic and static) used as facts in the 
fuzzy rules as follows: 

1. Object anomaly behaviour via network 
traffic, process & misuse detection. Subject 
anomaly behaviour and Object access 
frequency for User Access Management 
(UAM) Systems. Vulnerabilities (CVE Lists) 
of subjects is derived from SBOM scanning. 

2. Password management policy from an access 
control list. Information sensitivity level, for 
example, different data bases with personal 
data etc. Level of object dependency is 
calculated based on the system architecture 
using graph theory. 

ACRAM estimates a baseline risk level and 
during the operation phase ACRAM recalculates the 
initial risk levels considering the system anomaly 
level correlated with active policies. The risk levels 
are transmitted to the Risk Assessment as Indicators 
to determine overall risk levels of the SUT. 

Indicator Specification Template. Definition: 
Measures the risk level of the access control system. 
Purpose: identify weaknesses in the access control 
system. Data source: ACRAM. Retrieval procedure: 
Running the ACRAM. Expected change frequency: 
discrete or event-based. Measurement frequency: 
deployment of IT infrastructures, changes in the IT 

architecture, receiving signals about anomalies from 
the partners' real-time tools. Unit of measure: %.  
Interpretation: based on fuzzy rules. Scale: 0-1. 
Uncertainty: 0.0 -1.0.  

6.3 DUT / SUT Risk Assessment 

The risk assessment is performed by a comprehensive 
automated risk management toolkit (Phillips et al, 
2024) designed to enhance a system's security via the 
assessment of risks and recommendations of controls 
to lower the likelihood of risks with an unacceptably 
high level. Dynamic context and threat propagation 
via interdependencies of assets and consequences 
offers a continuous monitoring and updating of risk 
assessments as new threats emerge or as changes 
occur in the system.  

This toolkit has been extended by investigating 
how to use Indicators to inform changes in risk. In 
order for the Indicators to be meaningful to the risk 
assessment, they need to be mapped to elements 
inside a risk model. The representation scheme 
follows CVSS to represent vulnerabilities in the risk 
model, which facilitates this mapping, but the 
mapping is highly domain and application specific. 
Utilisation of Observed / Compound Indicators in risk 
assessment follows. 

The SBOM generation tool can analyse the DUT 
and provide an SBOM, which provides information 
of software libraries that represent the functional 
blocks of the DUT, which can then be linked to 
vulnerabilities via queries to CVEs databases with the 
software libraries and versions as parameters. The 
results of these queries are CVEs with associated 
CVSS scores, which can then be mapped into the 
models via support of CVSS. 

Risk models including access control components 
can be constructed. When ACRAM predicts a high 
risk of access control failure, vulnerabilities 
associated with the access control system can be 
adjusted accordingly and the overall risks in the 
system recomputed.  

A model of the SUT including the files being 
monitored can be constructed. Files are data objects 
and have vulnerabilities associated with their 
Confidentiality, Availability and Integrity. Should the 
r-Monitoring detect e.g. tampering or unauthorised 
access, the associated vulnerability in the file in 
question can be adjusted in the model, and the system 
risks recomputed. 
Indicator Output Specification. Definition: 
Qualitative risk levels expressed as: Type of risk; 
Impact of risk; Likelihood of risk. Purpose: Describe 
different types of risks in the SUT along with their  
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Figure 3: Smart Manufacturing Scenario. 

assessed level. Data Source: Risk Management Tool. 
Retrieval Procedure: Running the risk calculation. 
May be triggered by an incoming event that adjusts 
vulnerability levels in risk model, which will mean 
that the risk levels need to be re- calculated as a result 
of the change. Expected Change Frequency: 
Depends on frequency of notification reports. 
Measurement Frequency: Upon receipt of 
notification of change of a specified vulnerability 
relevant in the risk model. Unit of Measure: Discrete 
values: “Safe”, “Low”, “Medium”, “High”, “Very 
High”. Interpretation: The output represents the 
current status of the risk model in terms of different 
risk present in the SUT / DUT and their risk levels, 
plus recommendations of possible controls and 
residual risk resulting from their implementation. 

7 INDICATOR USAGE EXAMPLE 
– SMART MANUFACTURING 

We illustrate the use of Indicators in a Smart 
Manufacturing scenario where production machines 
can become targets of attacks, which if successful can 
result in degraded product quality or interruptions in 
operation of the machine, leading to increased failure 
rates and loss of trust and reputation for the factory.  

The indicators generated by the anomaly 
detection identify deviations in the operational 
parameters of machines, e.g. in the way a production 
robot moves its arms: a change in these patterns that 
deviate from normal and expected operation can 
signal potentially malicious alterations to production 
parameters. Another issue is the manipulation of 
production machines to leak sensitive production 
information to third parties. Further, the Smart 
Factory is in itself a heterogeneous software and 

hardware landscape, which often consists of a mix of 
custom-built programs, purchased standard software, 
robots, sensors and actuators, all interacting. These 
components can have vulnerabilities, which serves as 
attack points for adversaries. It is therefore important 
to identify newly discovered critical vulnerabilities in 
software as soon as possible. This task is handled by 
the SBOM module, which compares the current 
Software Bill of Materials (SBOM) of the Smart 
Factory against a CVE database and reports newly 
identified vulnerabilities in the form of indicators. 

An exemplar architecture of the Indicator usage in 
Smart Manufacturing is illustrated by the architecture 
in Figure 3. This shows its schematic structure, where 
anomaly detection tools for network traffic as well as 
for operational data of a production machine, are 
employed. The Indicators are delivered to the Data 
Aggregator, combined as necessary, and forwarded to 
the Auditable Data Infrastructure. The SBOM tool 
works offline and delivers its indicators directly to the 
Auditable Data Infrastructure. All Indicators are 
forwarded to the Trust Analyser, ACRAM and Risk 
Assessment tools, where they are processed to 
determine Derived Indicators for risks in the smart 
factory and suggestions for mitigating these risks. 

Observed Indicators 

Device Anomaly. Detected abnormal operational 
behaviour of a production robot, e.g., moves too fast, 
moves too slow, moves differently than initially 
programmed. 
Network Anomaly. Detected abnormal behaviour of 
a network component e.g., a device starts transmitting 
more data than usual. 
Software Component Vulnerability. A set of 
vulnerabilities in the CVE format derived from 
analysis of the software components in the DUT. 
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Compound Indicators 

The two Observed Indicators described above are 
aggregated because they are the result of monitoring 
components that frequently generate output and so for 
reasons described above regarding data volumes and 
network congestion, are aggregated into Compound 
Observed Indicators, where summary information is 
created based on a time window and a set of source 
Observed Indicators. 

Derived Indicators 

Trust Analyser. Indicators of the trustworthiness of 
the SUT can assist decision-making when it comes to 
assigning workloads to the SUT. If a SUT 
experiences vulnerabilities or attacks during data 
collection, this will be reflected in the trust score 
during trust analysis. Therefore, the trust score serves 
as a valuable data quality feature when training ML 
models. The frequency of trust score calculation 
depends on use case requirements, often involving 
long-term evaluation of the SUT. This helps build the 
SUT's reputation by analysing trust score 
fluctuations. 
ACRAM. Determines Derived Indicators based on 
assessment of access control systems in the DUT / 
SUT. Risk Indicators of access control policies and 
enforcement to the critical components in the smart 
manufacturing environment of the SUT. An example 
concerns risks in terms of the access control system 
on the example of a production line consisting of a 3D 
printer and industrial robot associated with access 
control of three users. Observed Indicators describing 
anomalous behaviour in the operation of an industrial 
robot using Device Anomaly Detection. These are 
processed by the ACRAM tool, which determines the 
resulting access control risk. 

Figure 4 and Figure 5 demonstrate the risk levels 
of two Compound Indicators, Robot-User_3 and 
3D_Printer-User_3, respectively, before and after 
detection of anomalous behaviour. 

In both Figure 4 and Figure 5 we can see a high 
level of risk in the pair 3D_Printer-User_3, which is 
due to the detection of a specific vulnerability during 
the system initialization phase by SBOM tools.  The 
implementation of the identified vulnerability of 
3D_Printer assumed full access rights for a user who 
had full rights to administer printer services, so the 
methodology recalculated and significantly increased 
the threat level even during the system initiation 
phase. Figure 5 shows an increase in risk of Robot-
User_3 over Figure 4 due to the anomaly detection 

where the risk is greater due to anomalous behaviour 
of User 3. 

 
Figure 4: Access Control Risk Before Anomaly Detection. 

 
Figure 5: Access Control Risk After Anomaly Detection. 

Risk Assessment. Provides evaluation of the risk 
level of the smart factory based on the Observed 
Indicators and suggestions for mitigation. An 
example is illustrated in Figure 6, where the Indicator 
from Device Anomaly Detection leads to a 
Consequence (risk) of “Loss of Control” of the Robot 
at a very high level. Other Indicators can be consulted 
to investigate for the cause of the anomaly, e.g. via 
file scanning of the Robot Control Data. 

 
Figure 6: Loss of Control of Robot. 
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Indicator Storage & Presentation 

For storage in the Auditable Data Infrastructure, the 
following contexts are defined: 

1. Device anomalies (Compound Observed); 
2. Network anomalies (Compound Observed); 
3. SBOM output (Observed); 
4. ACRAM (Derived); 
5. Trust assessments (Derived); 
6. Risk assessments (Derived). 

The first two reach the Data Infrastructure via the 
Aggregator because they may repeat at high 
frequency, so are aggregated into Compound 
Observed Indicators. SBOM output is less frequent, 
as it is the result of a manual scan, so aggregation is 
not required, and it is recorded as an Observed 
Indicator. Derived Indicators are the outputs of the 
three tools as described above, and their results may 
be subsequently used in further analysis. All 
Indicators stored within the Data Infrastructure may 
be presented to the user on demand or by navigation. 

8 DISCUSSION 

The work reported here builds on previous work 
(Omerovic et al. 2017) in that here we have 
determined a testing framework, determined types of 
Indicators (i.e. observed, compound and derived) and 
characterised indicators in terms of properties (next 
section). 

Previous work focused on a top-down approach 
where the decision support has driven and identified 
the need for Indicators which align the decision 
models (risk, prediction, compliance analysis) with 
the actual context. This presupposed that the need for 
an Indicator type was known a priori. Here, we have 
followed a bottom-up approach, where Indicators 
measurable by the tools have been gathered and 
specified and their (example) measurements were 
documented using templates. A key goal was to 
evaluate whether the Indicators were applicable in the 
context of the test cases. Initial results from the trials 
have shown that the capabilities of the tools have 
provided the demonstration case owners with insight 
on what types of Indicators can be measured, much of 
which was previously unknown to them, and the 
demonstration case owners have suggested 
requirements for enhancements of the tools and 
associated additional Indicators to the tool developers. 
This collaborative approach has proven useful for both 
types of party. 

Both top down and bottom up approaches have 
advantages and disadvantages, in that top down 

requires knowledge of the Indicator required and 
bottom up describes what can be measured but not 
whether it is useful. It is expected that future work 
will utilise a mix of both approaches as appropriate. 

9 CONCLUSIONS 

This paper has described the concept of Indicators in 
cybersecurity testing & monitoring and described 
how they may be used to provide decision support, 
both individually and together. This work has brought 
to light a set of observations that either characterise 
Indicators or describe how they may be beneficially 
used in the cybersecurity testing and monitoring of 
devices and systems. 
• Indicators are types of signals that may be used 

as evidence in a decision-making process that 
may result in corrective action being taken.  

• Indicators may be derived from other Indicators. 
Tools may consume one or more Indicators and 
produce Derived Indicators based upon them.  

• Some Indicators require aggregation because 
they are frequently occurring, resource expensive 
and individually are of marginal value. 

• Indicators may be aggregated to provide 
empirical evidence, which is a composition of 
several pre-defined Indicators. For example, one 
event may not generate an important alarm, but 
the conjunction and correlation of different 
events may cause an alarm. 

• Indicators may be used in multiple ways: as 
direct evidence to the operator of the framework; 
as input to tools, where they may be processed 
and generate output as e.g. reports or derived 
Indicators. The operator of the framework is free 
to use Indicators as they see fit. 

• Indicators either pertain to an individual device 
(i.e. Device Under Test – DUT) or a larger 
system into which the device is deployed (i.e. 
System Under Test – SUT). 

• Indicators are likely subject to change over time, 
due to a change in the SUT / DUT, security 
events such as attacks occurring or new 
vulnerabilities being detected. The changed 
values need to be captured in a timely way, in 
order to provide up to date information, and the 
trend over time may in itself be an indicator. 

Overall, the Indicator concept has proven useful 
in our specification and construction of the testing 
and monitoring framework, as both a decision support 
mechanism for practitioners but also as a 
communication means between components.  
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