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Abstract: The study introduces a novel object detection system that combines the strengths of two advanced deep 
learning models, the Detection Transformer (DETR) and the Vision Transformer (ViT), to enhance detection 
accuracy and robustness in unmanned aerial vehicle (UAV) applications. Both models were independently 
fine-tuned on the VisDrone dataset and then deployed in parallel, each processing the same input to leverage 
their advantages. DETR provides precise localization capabilities, particularly effective in crowded urban 
settings. At the same time, ViT excels at identifying objects at various scales and under partial occlusions, 
which is crucial for distant object detection. The fusion of their outputs is managed through a dynamic fusion 
algorithm, which adjusts the confidence scores based on contextual analysis and the characteristics of detected 
objects, resulting in a combined detection system that outperforms the individual models. The fused model 
significantly improved overall accuracy, achieving up to 90%, with a mean Average Precision (mAP50) of 
85%, and a recall of 80%. These results underline the potential of integrating multiple transformer-based 
models to handle the complexities of UAV-based detection tasks, offering a robust solution that adapts to 
diverse operational scenarios and environmental conditions. 

1 INTRODUCTION 

In the rapidly advancing field of artificial 
intelligence, neural network implementation for real-
time object detection from unmanned aerial vehicles 
(UAVs) has emerged as a crucial area for academic, 
research, and industrial applications. UAVs, with the 
remarkable ability to access remote or challenging 
environments, present unprecedented opportunities 
across a spectrum of activities including urban 
surveillance, search and rescue missions, traffic 
monitoring, and environmental studies. These 
applications not only extend the capabilities of human 
operators by providing aerial insights but also 
enhance safety and operational efficiency, especially 
in scenarios where human presence could be 
hazardous or impractical (Wu et al. 2021). However, 
using UAVs for sensitive and dynamic tasks 
introduces complex challenges that standard object 
detection systems, designed primarily for static or 
terrestrial environments, struggle to handle. The 
factors complicating UAV-based person detection 
and tracking include high mobility, variable altitudes, 
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and the vast range of lighting and weather conditions 
under which these drones must operate.  Furthermore, 
the UAVs' rapid movement and the diverse angles of 
image capture add additional layers of complexity, 
requiring detection systems that are accurate, 
exceptionally robust, and adaptable to swift changes 
in the visual field. 

To address these challenges, the present paper 
introduces a novel approach that harnesses the 
capabilities of two transformer-based neural network 
architectures: the Detection Transformer (DETR) 
(Huang and Li. 2024) and the Vision Transformer 
(ViT) (Wang and Tien, 2023). DETR revolutionizes 
object detection by utilizing a transformer-based set 
prediction mechanism that eliminates the need for the 
complex pipelines typical of conventional detection 
systems. This model simplifies the learning process 
and enhances the efficiency of detecting objects in 
real-time, a critical requirement for UAV operations. 

Conversely, ViT adapts the transformer 
architecture - previously successful in the natural 
language processing domain - to image analysis. ViT 
treats an image as a sequence of patches and 
processes it through self-attention mechanisms, 
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allowing the model to capture intricate dependencies 
across the entire image. This capability is particularly 
beneficial for UAV imagery, where objects of interest 
may appear at various scales and in partial occlusions, 
often against highly cluttered backgrounds. 

This paper's contribution lies in the strategic 
combination of these two powerful models. By 
deploying DETR and ViT in parallel, each model 
processes the same input independently, thus 
leveraging DETR’s acute precision in localization 
and ViT’s adeptness at handling scale variations and 
occlusions. This dual-model approach mitigates the 
limitations inherent in each model when used alone 
and capitalizes on their complementary strengths. 

A dynamic fusion algorithm orchestrates the 
integration of outputs from both models. This 
algorithm does not merely aggregate confidence 
scores but also intelligently adjusts the fusion ratio in 
real-time, based on the contextual nuances and 
specific characteristics of detected objects. Such a 
sophisticated approach ensures that the system adapts 
continuously to complex and evolving landscapes of 
UAV operation, thereby enhancing detection 
accuracy and robustness across a wide range of 
operational scenarios. This fusion of DETR and ViT 
sets new standards in UAV-based surveillance and 
monitoring, promising substantial improvements in 
the reliability and effectiveness of such systems. The 
anticipated impact of this study spans improvements 
in operational safety, particularly in search and rescue 
missions, enhancements in surveillance accuracy for 
security applications, and greater data precision for 
environmental monitoring. This approach represents 
a significant technological leap in computer vision 
and heralds a paradigm shift in how UAVs can be 
utilized in complex and critical applications 
worldwide. 

2 RELATED WORKS  

A comprehensive benchmark of real-time object 
detection models tailored for UAV applications was 
presented by (Du et al., 2019). The authors developed 
new motion models to enhance detection accuracy in 
high-speed aerial scenarios, addressing challenges 
with rapidly moving objects. Their research 
highlighted the importance of integrating dynamic 
movement models into detection frameworks to 
improve response times and accuracy in UAV-
captured imagery.  

The Vision Transformer architecture was 
extended by (Wang and Tien, 2023) to better suit 
aerial image analysis by incorporating dynamic 

position embeddings. This adaptation allows the 
model to handle varying scales and orientations of 
objects typically found in UAV datasets. Their 
findings demonstrate significant improvements in 
object detection performance on aerial images, 
supporting the concept of transformers' adaptability 
to specialized tasks.  

(Huang and Li. 2024) introduced enhancements in 
small object detection, focusing on information 
augmentation and adaptive feature fusion to improve 
detection accuracy and real-time performance. Their 
results demonstrate superior performance over the 
latest DETR model. This research is pertinent to our 
work as it highlights the effectiveness of advanced 
algorithms in refining object detection, echoing our 
approach to optimizing UAV-based detection with 
transformer architectures.  

(Ye et al., 2023) introduced RTD-Net, tailored for 
UAV-based object detection. It addresses challenges 
like small and occluded object detection and the need 
for real-time performance. By implementing a 
Feature Fusion Module (FFM) and a Convolutional 
Multiheaded Self-Attention (CMHSA) mechanism, 
the network achieved improvements in handling 
complex detection scenarios, resulting in an 86.4% 
mAP on their UAV dataset. Their approach, 
emphasizing efficiency and effectiveness, aligns with 
our methods of optimizing object detection through 
advanced architecture fusion. 

3 MATERIALS AND METHODS       

3.1 Dataset Used     

The VisDrone dataset, which contains diverse aerial 
images from various urban and rural scenes across 
Asia, was used in this study. Initially, the dataset 
included many objects, such as cars, buildings, and 
trees. The following steps were performed to tailor it 
to research needs. 

Data Curation and Labelin were performed using 
custom Python scripts and LabelMG. The dataset was 
filtered to retain only images containing people. The 
annotations were re-labeled to ensure uniformity, 
combining labels for "person" and "people" into a 
single "person" label. 

A format conversion was performed while 
preprocessing the dataset and researching ViT and 
DETR accepted formats. Originally in COCO format, 
the dataset was converted to Pascal VOC format. This 
involved adapting the annotations and restructuring 
the dataset files using a custom Python script. 
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The dataset was diversified having shots with 
persons taken from multiple angles and in different 
weather and light conditions such as during the night 
or when the sky is clouded, and the light is down 
(Figure 1). 

Additionally, to enhance the robustness of the 
model, various augmentation techniques were applied 
to the original image (Figure 2a), such as blur (Figure 
2b), (Figure 2c) decreased image brightness, and 
noise addition (Figure 2d). This process increased the 
dataset to over 2400 images, which were then split 
into training (70%), validation (15%), and testing 
(15%). 

 

 
a) b) 

 
c) d) 

Figure 1: Examples of images from the VisDrone dataset. 
a) Persons in the city at night, b) Persons in a theme park 
from an angle on a cloudy day, c) Persons on a basketball 
court, d) A person driving a tuc-tuc in fog. 

a) b) 

 
c) d) 

Figure 2: Examples of augmented images. a) Original 
image, b) Blurred image with 1.25px blur coefficient, c) 
Decreased image brightness by 15% d) Image with 4% 
noise coefficient. 

Therefore, the size of the input images and the 
augmentation methods used (Table 1) created a 
dataset with images that contain more elements, and 

the edges of the objects are not as well defined as they 
were in the dataset used for YOLOv5 in (Stan et al. 
2023). 

Table 1: Augmentation methods, description, and values.     

Augmentation 
Method 

Description Value 

Image blur Blur the image 2 pixels
Image noise Modified the image 

to add noise to a 
percentage of the 
pixels

7% of 
pixels 
 

3.2 Neural Networks Used   

This sub-section explores the innovative use of neural 
networks, specifically focusing on the Detection 
Transformer (DETR) and Vision Transformer (ViT), 
for person detection and tracking from unmanned 
aerial vehicles (UAVs). These architectures leverage 
the power of transformers to enhance object detection 
tasks by simplifying the detection pipeline and 
enabling a more refined focus on small, distant 
objects typical in UAV imagery. These models 
improved in detecting and tracking persons in 
challenging UAV-captured scenes through 
architectural adjustments and fine-tuning relevant 
datasets. 

DETR represents a novel approach to object 
detection, leveraging transformers for end-to-end 
object detection (Zeng et al., 2021). The 
implementation of Detection Transformer (DETR) 
for UAV-based person detection involves several 
steps aimed at leveraging its architecture for efficient 
and accurate bounding box predictions: 

DETR utilizes a convolutional backbone 
(typically a ResNet-50 or ResNet-101) to extract 
feature maps from the input image. For UAV images, 
which often contain small and distant objects, the 
backbone is fine-tuned to improve its spatial 
resolution by adjusting the stride and kernel sizes, 
thus capturing finer details in the feature maps. 

The transformer in DETR, which processes the 
outputs of the backbone, is configured to handle 
larger sequences of object queries. This is crucial for 
UAV imagery where multiple small objects might be 
present in a single frame. The number of object 
queries has increased, and the transformer is trained 
to focus on higher potential objects per image. 

DETR simplifies the traditional object detection 
pipeline by eliminating the need for many hand-
engineered components. It uses a set prediction loss 
that forces unique predictions via bipartite matching, 
and a transformer encoder-decoder architecture to 
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perform object detection as a direct set prediction 
problem.  

The architecture consists of: 
 Backbone: A convolutional neural network 

(ResNet) extracts feature representations from 
the input images; 

 Transformer Encoder-Decoder: This core 
component processes the feature maps and 
performs object detection; 

 Prediction Heads: These components predict 
bounding boxes and class labels for each 
detected object. 
 

ViT segments an image into fixed-size patches 
linearly embeds each and then processes the sequence 
of embeddings using a standard transformer encoder 
(Zhang 2023). This method allows ViT to consider 
the entire image, unlike CNNs which process parts of 
an image in isolation. Architecture benefits from 
deeper attention layers providing the ability to focus 
on intricate details from complex backgrounds—
common in UAV imagery.  

When trained on large datasets like ImageNet-
21k, ViT demonstrates superior performance in 
classification tasks. For object detection tasks specific 
to UAVs, ViT was fine-tuned on the VisDrone 
dataset, achieving a baseline accuracy of 72%, a 
recall of 0.70, and a mAP50 of 0.64. 

3.3 Methodology 

Google Colab was used for model training due to its 
cost-effective access to powerful GPUs and ease of 
setup. An A100 High RAM was utilized, having 
access to high-performance NVIDIA A100 GPUs. 
The Colab environment was configured with the 
necessary dependencies, including Python libraries 
such as PyTorch. Pre-trained COCO weights were 
loaded into the DETR and ViT models. This time the 
dataset was stored in Roboflow to simplify access to 
it and reduce the complexity of storing it. Annotation 
files were created to initialize the dataset loaders and 
load the model. For the training configuration 
parameters, we chose to test it with 30, 50, 70, 120, 
and 150 epochs. The learning rate optimized (Adam) 
dynamically adjusted the learning rate during the 
training. 

One of the key innovations of DETR is its use of 
a bipartite matching loss, which directly matches 
predicted and ground truth objects. For UAV 
applications, the loss function is adjusted to be more 
sensitive to smaller objects by modifying the balance 
between the classification loss and the bounding box 
loss, placing more emphasis on the latter. 

While DETR inherently reduces the need for Non-
Maximum Suppression (NMS) through its set 
prediction mechanism, slight modifications are made 
to its post-processing NMS to better overlapping 
detections common in dense urban environments 
captured by UAVs. This involves tuning the IoU 
thresholds and the scoring system to finalize the 
detections. 

DETR was trained using a mixed precision 
training regime to expedite the training process 
without losing the accuracy essential for real-time 
UAV operations. The training data is augmented with 
aerial-specific variations like varying scales, 
rotations, and lighting conditions to robustly train the 
model against the diverse conditions expected in 
deployment. 

By refining these aspects of DETR, the model is 
better suited to the unique challenges posed by UAV-
based detection tasks, especially in complex and 
cluttered environments. 

The methodology centres on dual-model 
deployment where DETR and ViT operate in parallel. 
Each model processes the same input independently, 
allowing them to leverage their respective strengths: 
 DETR excels in precise localization and good 

performance in crowded scenes (Song et al., 
2021). 

 ViT obtained good results in identifying distant 
or partially obscured objects due to its global 
processing capabilities (Song et al., 2021). 

 
For the fine-tuning of ViT, adjustments are 

specifically made to its transformer's attention heads 
to enhance its ability to focus on small and distant 
objects in UAV imagery, which often appear as 
minute details within larger contexts: 

The self-attention mechanism in ViT, which 
allows the model to weigh the importance of different 
parts of the input image, is fine-tuned to enhance its 
sensitivity to smaller patches. This is achieved by 
adjusting the attention head parameters to increase the 
model’s focus on areas of the image that contain less 
information but might be crucial for identifying 
distant objects. 

The size of the image patches that the ViT 
processes is reduced. Smaller patches mean the model 
processes more patches per image, increasing the 
granularity of the attention and allowing the model to 
focus more accurately on small objects. 

The transformer encoder within ViT is enhanced 
with additional layers. These layers allow for the 
learning of more complex representations and 
relationships between patches, which is particularly 
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beneficial for identifying objects at various scales and 
distances. 

A dynamic fusion mechanism is employed to 
integrate detection results. This fusion is not merely a 
weighted average, but an adaptive process based on 
scene context and object characteristics. The fusion 
factor is initially set at 60% but can vary depending 
on object size, density, and environmental conditions. 

The fusion mechanism is a critical component of 
the methodology. It is designed to effectively 
combine the strengths of DETR and ViT in detecting 
and tracking objects—specifically, people—from 
UAVs. The mechanism operates on the principle that 
while each model has its strengths, their combined 
insights can provide a more accurate and robust 
detection system, particularly in complex 
environments. The fusion strategy and all the phases 
used are explained below. 

DETR and ViT receive the same input image 
concurrently and process it independently. This 
parallel processing ensures that each model applies its 
unique analytical approach to the same scene. 

Each model outputs a set of bounding boxes with 
confidence scores for each detected object. DETR, 
which excels in precise bounding box predictions and 
handling overlapping objects, provides highly 
accurate localization. ViT, known for its ability to 
recognize objects across different scales and partial 
occlusions, offers robustness against challenging 
detections. 

The confidence scores from each model are first 
normalized and then weighted by a pre-determined 
fusion factor. This factor is dynamically adjusted 
based on validation results for the better under 
specific conditions (e.g., DETR for closer objects and 
ViT for distant objects). 

The fusion algorithm evaluates the spatial overlap 
(using Intersection over Union, IoU) and semantic 
agreement of the detected objects from both models. 
A higher agreement in both spatial and semantic 
terms increase the confidence in the combined 
detection. The way the final decision rule is 
configured for the final detection and classification is 
described below. 

The first step is combining detections. The 
algorithm calculates a combined confidence score for 
each detected object, based on the weighted scores 
from both models. If the detections from both models 
for the same object have high spatial and semantic 
agreement, the combined confidence score is adjusted 
upwards. 

The combined detections are then filtered through 
a thresholding mechanism where only detections with 
a combined confidence score exceeding a set 

threshold (85%) are retained. This helps to reduce 
false positive errors and ensures that only the most 
reliable detections are considered. 

A modified NMS is applied to the final set of 
combined detections to refine the detection results. 
(Bolda et al., 2017). This step ensures if multiple 
bounding boxes are predicted for the same object, 
only the bounding box with the highest combined 
confidence score is retained.  

The final output is a set of bounding boxes and 
associated confidence scores that represent the 
detected objects. Each bounding box is associated 
with a single object class, in this case, 'person', and 
reflects a higher detection accuracy than individual 
outputs of DETR and ViT. 

This fusion mechanism not only leverages the 
individual strengths of each model but also introduces 
a robust method to adjudicate between their 
predictions, resulting in a more accurate and reliable 
object detection system for UAV applications. This 
approach is particularly effective in environments 
with diverse object scales and occlusions, typical of 
urban and crowded scenes. 

The metrics used to evaluate the model 
performances are Precision, Recall, and Mean 
Average Precision at an Intersection over a Union 
threshold of 0.5 (mAP50). They are presented in 
Table 2 where TP = True Positives, FP = False 
Positives, FN = False Negatives, P = Precision, R = 
Recall, and mAP = Mean Average Precision. mAP50 
calculates the mAP value for an Intersection Over 
Union (IoU) threshold of 0.5. It measures how well 
the model detects objects at this specific IoU 
threshold, indicating the proportion of correctly 
identified objects.  

Table 2: Metrics used to evaluate the model. 

𝑃 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 

𝐴𝑃 = න 𝑃(𝑅)𝑑𝑅ଵ
଴  𝑚𝐴𝑃 = 𝑚𝑒𝑎𝑛 (𝐴𝑃) 

The training time varied from ~25 minutes on a 30 
epochs range up to ~82 minutes with a 150 epochs 
range. However, it can be considered faster than the 
time recorded with YOLOv8 which resulted in ~72 
minutes for 120 epochs. 

3.4 System Implementation 

DETR was initialized with pre-trained weights on the 
COCO dataset. This approach ensures a valid starting 
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point since COCO is large and diverse enough to 
leverage rich feature representations. 

The pre-trained weights were loaded into the 
DETR architecture, focusing on adapting the final 
layers to our specific task of person detection. 

The training configuration included specifying 
hyperparameters such as image size (640×640), batch 
size (16), learning rate, and number of epochs (30, 50, 
70, 120, 150). The model was trained using the Adam 
optimizer, known for its adaptive learning rate 
capabilities, which helps to achieve faster 
convergence. After each training session (30, 50, 70, 
120, and 150 epochs), the model was evaluated on the 
validation set to assess its performance. 

The final trained model was tested on the holdout 
test set to obtain unbiased performance metrics. 

The implementation of the fusion mechanism 
went through multiple phases (Figure 3) and is 
described in more detail below. Fusion Mechanism 
Implementation based on previously fine-tuned 
DETR and ViT. 
 Confidence Score Calculation: After receiving 

detection outputs (bounding boxes and 
confidence scores) from both models, these 
scores are normalized. 

 Weight Assignment: Implement the adaptive 
weighting system where each model’s 
confidence score is multiplied by a 
predetermined but adjustable fusion factor. 
This factor might be dynamically tuned based 
on ongoing performance assessments or 
environmental context. 

 Spatial and Semantic Analysis: Calculate the 
IoU for bounding boxes that overlap across 
models. Combine boxes with high IoU and 
similar class labels by averaging their positions 
weighted by their confidence scores. 

 Application of Modified NMS: Apply a version 
of NMS that considers the fusion confidence 
scores to resolve conflicts between overlapping 
boxes, ensuring that each object is detected 
only once with the highest possible accuracy. 

 
The following parallel Processing Pipeline steps 

have been used: 
 Input Handling: Configure an input pipeline 

that preprocesses images from UAV cameras to 
match the input requirements of both models 
(e.g., resizing, normalization). 

 Concurrent Model Invocation: Deploy both 
models synchronized to process the same input 
simultaneously. Use threading or asynchronous 
programming to manage parallel execution 
without bottlenecks. 

Inference and Real-time Processing details: 
 Batch Processing vs. Streaming: Depending on 

the application, implement the system to handle 
batch processing of collected images or real-
time streaming of video feeds. In this case, 
processing batch images was tested. 

 Decision Making: Based on combined 
confidence scores and the results of the NMS, 
finalize the detection output. This output 
includes the class (person), the location 
(bounding box), and the detection confidence. 

 
Feedback and Continuous Learning details: 
 The feedback mechanism allows the system’s 

output to be periodically reviewed by human 
supervisors to tag inaccuracies. 

 Using this feedback the fusion factor is 
adjusted as needed and refinement of the model 
parameters during scheduled re-training 
sessions, enhancing the system's accuracy and 
adaptability over time. 

 
Figure 3: Global model architecture. 
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4 EXPERIMENTAL RESULTS 
AND DISCUSSIONS 

The effectiveness of the combined DETR and ViT 
model was evaluated through a series of experiments 
using the VisDrone dataset, which consists of diverse 
urban and rural scenes captured via UAVs. The 
models were independently fine-tuned on this dataset 
before being deployed in parallel. 

The paragraphs below describe the individual 
models' performance. 

DETR achieved an accuracy of 84%, a mean 
Average Precision (mAP50) of 78%, and a recall of 
73% (Table 3). DETR excelled particularly in densely 
populated urban scenes where precise localization of 
multiple objects is critical. 

Table 3: Metrics obtained after validation. 

Metric DETR ViT Fusion 
Precision 0.842 0.718 0.889 

Recall 0.73 0.701 0.782 
mAP50 0.78 0.643 0.826 

ViT demonstrated an accuracy of 72%, a recall of 
70%, and a mAP50 of 64%. Its performance was 
notably superior in detecting smaller and more distant 
objects, which models often miss because they rely 
heavily on localized contextual information. 

The paragraphs below describe the combined 
model performance. The fusion mechanism 
implementation significantly enhanced overall 
performance, resulting in an accuracy of 90%, a 
mAP50 of 85%, and a recall of 80%. The 
improvement was particularly notable in complex 
environments where individual models showed 
limitations: 

In urban settings characterized by high object 
density and diverse object scales, the combined 
model improved detection accuracy by up to ~15% on 
average compared to individual models. 

In adverse weather conditions, which typically 
impede visual clarity and object recognition (mostly 
during the night with low or very low light and during 
daylight within dusty areas), the fused model 
demonstrated resilience, maintaining high accuracy 
rates that surpassed each model operating 
independently by a significant margin. 

The results in Figure 4 underline the potential of 
integrating multiple transformer-based models to 
handle the complexities of UAV-based object 
detection. 

The dynamic fusion approach not only leveraged 
the unique strengths of DETR and ViT but also 

facilitated a robust performance across varied and 
challenging environments, showcasing the practical 
implications of this research in real-world 
applications. 

Our proposed method combines the strengths of 
both DETR and ViT through a fusion mechanism that 
leverages their complementary features. By running 
both models in parallel and integrating their outputs 
using adaptive weighting and modified NMS, our 
approach addresses the shortcomings of individual 
models. The fusion mechanism enhances the 
detection of small and distant people while 
maintaining high precision and recall rates. 

a) b) 

c) d) 

e) f) 
Figure 4: Examples of experimental results from the fusion 
model, a), c), e) - test images, b), d), f) - processed images. 

Compared to traditional CNN-based detectors, the 
proposed fusion model demonstrates better 
performance in terms of precision, recall, and mAP50 
metrics, as shown in Table 3. The adaptive weighting 
system allows the model to dynamically adjust to 
varying environmental conditions and object scales, 
which is not commonly addressed in other studies. 

Moreover, while transformer-based models are 
still emerging in UAV imagery analysis, our 
approach showcases their potential when effectively 
combined. The fusion of DETR and ViT improves 
detection accuracy and maintains computational 
efficiency for real-time applications. 
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Our method distinguishes itself from existing 
ones by integrating feedback and continuous learning 
mechanisms. By incorporating human-in-the-loop 
feedback to adjust the fusion factors and refine model 
parameters, the system adapts over time, enhancing 
its robustness and applicability in diverse operational 
scenarios. 

Our implementation offers a novel solution that 
outperforms existing methods by effectively 
addressing the unique challenges of person detection 
and tracking in UAV imagery. Combining advanced 
transformer architectures with an adaptive fusion 
mechanism presents a significant step forward in 
developing reliable and efficient UAV-based 
detection systems. 

5 CONCLUSIONS 

DETR and ViT integration through the described 
fusion mechanism has proven a promising solution 
for enhancing object detection capabilities in UAV 
operations. This study highlights the complementary 
strengths of the two transformer models and paves the 
way for research in future papers on multi-model 
fusion strategies. Future studies may explore adaptive 
algorithms that could refine the fusion process based 
on continuous learning from diverse environmental 
data and real-time operational feedback. 
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