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Abstract: This paper introduces an advanced framework for optimizing task offloading and service caching in Vehicle-
to-Vehicle (V2V) communication networks. The proposed approach leverages a greedy algorithm to address 
key challenges such as offloading latency, energy consumption, and system overhead. By incorporating 
practical factors such as task size, server storage capacity, and task popularity, the framework efficiently 
allocates tasks, thereby reducing computational delays and enhancing network performance. The 
effectiveness of the algorithm is validated through comprehensive simulations that demonstrate significant 
improvements in both time efficiency and resource utilization compared to existing methodologies. The 
results underscore the potential for future advancements in V2V networks, particularly in enhancing network 
stability under high-speed conditions and developing robust communication systems that maximize the use 
of roadside computational resources. 

1 INTRODUCTION 

The computational demands for information 
transmission are rapidly increasing with the 
proliferation of the Internet of Things (IoT). While the 
existing cloud server infrastructure remains an 
efficient and cost-effective solution for handling most 
user requests, the growing number of local devices 
with stringent computational needs—including 
augmented reality, virtual reality, autonomous 
vehicles, and vehicle communication—has created 
new challenges. These applications require ultra-
reliable and low-latency communications (URLLC) to 
ensure low latency, reduced power consumption, and 
adequate computational resources without 
compromising performance (Zeng, Zhang, Wang, Liu, 
Wang, 2020). In this context, Mobile Edge Computing 
(MEC) is becoming a critical component of modern 
networks, serving as a distributed computational 
infrastructure embedded within hosts (He, Li, Chen, 
Wang, 2019). Tasks can be offloaded to these edge 
servers, a process known as Mobile Edge Computing 
Offloading (MECO) (He et al, 2019), allowing highly 
demanding tasks to be processed and subsequently 
downloaded to local devices. 
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However, current URLLC devices and services 
face several significant challenges. Firstly, many 
communication networks are burdened with a 
substantial number of computation-intensive tasks, 
which strains the computational capacity of nodes or 
hosts. This strain, coupled with the network's 
intermittent availability, can result in inaccurate 
communication processes (Zeng et al, 2020). 
Secondly, the network often operates near full 
capacity, making immediate transmission and 
processing of data nearly impossible due to 
congestion (Zeng et al, 2020; He et al, 2019). Thirdly, 
although the existing capacity allocation algorithms 
within MEC networks are sophisticated, they fall 
short in accounting for long-term effectiveness, 
leading to suboptimal resource allocation over 
extended periods (He et al, 2019). 

Vehicle-to-vehicle (V2V) communication, which 
is crucial for the advancement of driverless vehicles 
and the improvement of traffic conditions, is 
particularly affected by these challenges. V2V 
communication requires stable connections between 
vehicles, which function as both hosts and nodes 
while in motion (Liu, Wang Chen, Bensaou 2021). 
Current vehicular ad hoc networks rely on cellular 
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networks for direct data transfer. However, this 
approach is limited, often leading to inefficiencies 
and wasted computational resources within the 
network (Pachat, Chen, Chen, 2020). 

To address these challenges and integrate mobile 
edge networks into vehicular systems, our research 
proposes a robust framework for task offloading and 
service caching within both edge and cloud networks. 
This framework is designed to reduce latency and 
energy consumption, thereby minimizing time delays 
and resource demands during information 
transmission. Based on computational capabilities, 
data packets will dynamically choose the most 
optimal processing route—whether locally, at the 
edge server, or within the cloud—correlating 
computational power with transmission time. The 
proposed framework incorporates a non-cooperative 
game theory-based algorithm to efficiently distribute 
packets across various endpoints. Additionally, 
considering the limited energy resources at the edge 
servers, the framework leverages a 0-1 knapsack 
algorithm to refine the initial selection process, 
implementing dynamic service caching based on task 
popularity (i.e., frequency of service requests) to 
ensure that the endpoint can handle the required data 
volume. The final offloading decision is derived from 
a comprehensive analysis of both service caching and 
the original selection. 

1.1 Accessibility 

Vehicle-to-Vehicle (V2V) communication is a form 
of Mobile Edge Computing (MEC) that leverages 
resources from vehicles and roadside infrastructure to 
collect and disseminate traffic information, thereby 
supporting self-driving vehicles and enhancing traffic 
conditions. Currently, V2V communication demands 
low latency and energy-efficient transmission, but 
existing algorithms struggle to fully meet these 
requirements. However, through the optimization and 
refinement of these algorithms, V2V communication 
can be made faster and more energy-efficient.  

To improve the accessibility of V2V 
communication, task offloading should be prioritized 
based on the popularity or importance of the tasks, 
ensuring a more rational processing by the algorithm. 
Additionally, the algorithm must operate within 
reasonable computational requirements to reduce 
processing time and further minimize latency. 

1.2 Inserting V2V Concepts 

V2V communication, short for Vehicle-to-Vehicle 
communication, is a subset of Mobile Edge 

Computing (MEC) that offers an alternative to 
Mobile Cloud Communication (MCC). An MEC 
system comprises not only a cloud center but also 
various edge devices, such as base stations and 
mobile phones. Tasks requiring computation are 
partitioned, with some processed locally while others, 
particularly those that are computation-intensive, are 
offloaded to MEC servers or cloud servers to utilize 
higher computational power. Key factors in 
determining the optimal task partitioning include the 
offloading ratio, CPU-cycle frequency, and 
transmission power. This approach results in lower 
latency, reduced energy consumption, and shorter 
transmission distances. Consequently, the system is 
transformed into an information-centric architecture 
capable of partitioning and offloading tasks more 
efficiently, rather than rigidly transferring all tasks 
from one end to another. 

2 RELATED WORK 

Vehicle-to-Vehicle (V2V) communication 
addressing specific traffic issues has been extensively 
studied in various contexts. Dey et al. explored 
wireless communication within a heterogeneous 
network (Het-Net) environment, utilizing Wi-Fi, 
DSRC, and LTE for the transmission of accident 
information between vehicles. Their research 
demonstrated that this system effectively reduces the 
dependency on infrastructure communication and 
establishes a stable connection between rapidly 
moving vehicles (Dey, Ding, Zheng, 2016). Navas et 
al. developed a device equipped with an adaptive 
cruise control (ACC) system that can be easily 
installed on vehicles to mitigate poor traffic 
conditions (Navas, Milanés, 2019). Notably, this 
device remains effective even when preceding 
vehicles are not equipped with it, enhancing its 
acceptability and widespread adop8tion (Navas et al, 
2019). 

In 2017, Perfecto et al. proposed a framework for 
beam alignment in millimeter-wave V2V networks, 
which improves millimeter-wave communication by 
addressing issues related to directionality, blockage, 
and alignment delay (Perfecto, Del Ser, Bennis 2017). 
This framework has proven effective under complex 
conditions in high-density, multi-lane highway 
scenarios (Perfecto et al, 2017). Ahmad et al. 
recommended a validation method for congestion 
control and performance in V2V systems through 
vehicle-level testing, which enables congestion 
detection within a 1.5-meter range and achieves a 
transmission latency of 600ms (Ahmad, 
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Bakhshizadeh, Yilmaz, 2019). Bian et al. introduced 
a linear feedback controller designed to reduce time 
headway in V2V communication under various 
conditions. Their approach includes a novel definition 
of the inter-vehicle distance, which helps prevent 
undesirable intermittent fluctuations in distance 
detection (Bian, Wu, Zheng 2019). By increasing the 
number of predecessors, their method ensures internal 
asymptotic stability and meets string stability 
requirements (Bian et al, 2019). Gao et al. proposed 
an enhanced GPSR-based wireless routing scheme 
that incorporates newly introduced parameters, such 
as a prediction mechanism and computed weights, to 
improve wireless communication stability (Gao, 
Zhao, Yin, 2021). Their approach demonstrated 
superior performance in terms of packet delivery 
ratio, wireless hops, and time delay (Gao et al, 2021). 
Bazzi et al. conducted a comparison between the 
IEEE 802.11 standard and the proposed V2V 
communication network, revealing that the proposed 
network outperforms IEEE 802.11 in terms of 
maximum awareness range and vehicle density, given 
identical inputs and external conditions (Bazzi, 
Wong, 2017). 

3 ALGORITHMS 

In this part, it shows the part of original code of the 
purposed algorithm. The principle of this part of code 
illustrates how the decision is made based on the task 
size and capacity requirement. In Q1, it is a 2-
dimensional array which contains size and capacity 
requirement information about the task. 

In this section, we present a segment of the 
original code implementing the proposed algorithm. 
This code illustrates the core decision-making 
mechanism, which is based on the task size and the 
corresponding capacity requirements. The algorithm 
operates on a two-dimensional array, denoted as Q1, 
which encapsulates the size and capacity 
requirements of the tasks. The iterative nature of the 
algorithm allows for dynamic adjustments to be made 
as tasks are processed. 

To evaluate the proposed framework, we consider 
a V2V communication system comprising vehicles 
and roadside edge servers. Vehicles are assumed to 
move at varying speeds with densities ranging from 
sparse rural areas to dense urban environments. In this 
model, each vehicle generates tasks with specific 
computational requirements, including CPU cycles 
and storage needs. Edge servers are equipped limited 
storage and processing capacities which influencing 
task offloading decisions. Moreover, we built a traffic 

model simulates real-world scenarios where vehicles 
dynamically interact with edge servers, enabling 
comprehensive analysis of system performance. 

Our proposed algorithm incorporates three main 
modules: Task Offloading, Dynamic Service 
Caching, and Adjustment of Task Offloading. These 
modules work together to optimize computational 
resource utilization. The algorithm begins by 
evaluating task size and capacity requirements 
through a two-dimensional array. Probabilities are 
calculated to determine task selection, and a random 
selection mechanism ensures balanced resource 
allocation. 

As Algorithm 1 shown, this algorithm begins by 
resetting the two-dimensional array Q1 through the 
Restart function, ensuring that all task-related data is 
cleared before processing. The main decision-making 
process occurs in the UpdateAction1 function, where 
tasks are evaluated based on their size and capacity 
requirements stored in Q1.  

Probabilities are calculated to determine which 
tasks are likely to be selected for execution, and a 
random selection mechanism is employed to choose 
the next task, ensuring a balanced distribution of 
computational resources. This approach enables the 
algorithm to adapt dynamically to varying task 
demands, optimizing performance in a V2V 
communication environment. 
 

Data: task size and capacity requirements 
Result: how to select the next task; 
while not iterate over all the tasks do 

read the task index; 
if the loaded task is not current task then 

calculate the resource ratio; 
compute the probability for task selection 
update the probability list 

else 
select a new task 

end 
end 

Algorithm 1: How to select a new task 

4 METHODOLOGY 

This section outlines the methodology of the 
proposed framework, including the algorithm's 
processing flow and structure, which encompasses: 

1. Task Offloading: Using non-cooperative 
game theory to minimize latency. 

2. Dynamic Service Caching: Employing the 
0-1 knapsack algorithm to cache tasks based 
on popularity and storage capacity. 

A Greedy Dynamic Task Offloading and Service Management in V2V Networks

655



3. Adjustment of Task Offloading: Refining 
initial decisions to optimize resource 
utilization. 

4.1 Algorithm Process 

The principles and procedures of the framework are 
briefly introduced below with corresponding 
diagrams: The process begins with tasks that are 
candidates for offloading to an edge server. The IoT 
device first identifies and confirms the edge server 
before initiating task transmission. Upon receiving 
the notification, the edge server evaluates the service 
request based on its frequency of occurrence. A 
higher frequency increases the likelihood that the task 
will be offloaded to that particular edge server. The 
edge server then downloads services from the cloud 
server to cache them, considering both the popularity 
of the services and the storage limitations of the edge 
server. If the requested service for a task is already 
cached in the edge server, the task can be offloaded 
to it. Otherwise, the task will need to be offloaded to 
another endpoint. 

4.2 Algorithm Structure 

The algorithm first identifies the optimal terminal for 
task offloading and then caches the task accordingly. 
The objective is to minimize energy consumption 
while maximizing task popularity, using the 0-1 
knapsack algorithm and incorporating game theory. 
Based on these factors, the algorithm provides the 
most effective strategy for task offloading. 

4.2.1 Algorithm Explanation 

In this algorithm, five IoT devices are assumed to 
handle local processing. Additionally, both edge 
servers and cloud servers are available for task 
offloading. The values 0, 1, and -1 represent local 
processing, edge server processing, and cloud server 
processing, respectively, for each task.  

The algorithm is composed of three main modules: 
Task Offloading, Dynamic Service Caching, and 
Adjustment of Task Offloading. The Task Offloading 
module employs a non-cooperative game theory 
approach to make initial task offloading decisions, 
aiming to minimize system overhead. The Dynamic 
Service Caching module uses the 0-1 knapsack 
algorithm to maximize the popularity of task-
requested services by implementing dynamic service 
caching in edge servers. Finally, the Adjustment of 
Task Offloading module fine-tunes the initial 

offloading decisions based on the caching outcomes at 
the edge server. 

The following algorithms are used for 
comparative experiments:  

• The TOCS algorithm, which 
comprehensively addresses task offloading 
and service caching within a mobile edge 
computing network without relying on cloud 
server assistance.  

• The TO algorithm, which focuses solely on 
the offloading problem within a mobile edge 
computing network.  

• The LP algorithm, where all tasks are 
processed on local IoT devices. 

5 EXPERIMENT 

This section presents two experiments designed to 
validate the algorithm under different conditions and 
scenarios. It begins with an introduction to the 
parameters and key components of the algorithm and 
the experimental setup. Following this, the specific 
steps of the experiments are detailed, along with an 
analysis of the results. 

Two experiments were conducted to evaluate the 
proposed framework under different conditions. Key 
parameters include CPU capacity, task size, and 
server storage. The experiments simulate task 
generation and offloading in both sparse and dense 
traffic scenarios. 

5.1 Experiment Introduction 

This subsection describes two experiments conducted 
under varying conditions, along with the primary 
results. Figure 1 illustrates the algorithm's flowchart 
and provides an overview of the experimental 
procedure. Initially, devices and vehicles request 
services from nearby edge servers, such as base 
stations. These tasks are subsequently aggregated  

 
Figure 1: Flowchart of the Algorithm. 
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at the base station, where they are ranked based on 
their popularity, size, and the storage capacity of the 
base station. The algorithm subsequently generates a 
decision based on this ranking. The appropriate 
services are then downloaded from the cloud server 
and processed on different hosts, ensuring that tasks 
are executed where energy consumption and 
processing time are minimized. 

The parameters used in the experiments are listed 
in Table 1 below. Each parameter plays a critical role 
in influencing task offloading latency. For example, 
the Task CPU parameter affects the processing time 
and directly impacts the task offloading decision, 
especially since the edge server may not provide 
sufficient computational capacity for certain tasks. 

The Task Size parameter indicates the storage 
requirement for hosting the task. Task Popularity 
reflects the importance of each task, determining 
which tasks should be prioritized in the scheduling 
process. 

Table 1: Factors to select the best server of task. 

Factor Name Definition 
Task CPU Required CPU capacity for task
Task Size Required server size for storing
Task Popularity Importance of task
Server CPU CPU capacity offered by server
Server Storage Storage size offered by server

5.2 The Capacity Experiment 

In the first experiment, the algorithm's performance is 
evaluated by varying the CPU capacity for task 
requests. By adjusting the CPU value, different task 
offloading decisions are observed. Here, 3 types of 
extant method, that are introduced in chapter 4.2.1, 
are imported to compare with the proposed algorithm. 

Initially, the algorithm is run to determine a 
selection that minimizes system overhead. In this 
phase, the capacities of the cloud server, edge server, 
and local devices are predefined. Here, "Task CPU" 
refers to the required processing capacity, while 
"Task Size" indicates the storage requirement for 
each task. The algorithm employs a non-cooperative 
game theory approach, making decisions based on 
single-oriented connections. To assess the impact of 
CPU requirements, the fifth task is treated as a 
variable, with its required CPU capacity adjusted 
from 0.1GHz to 1GHz.  

After iterating the selection process three times, 
the resulting task allocation is 0-0-1-0-0, indicating 
that the third task is offloaded to the edge server while 
the others are processed locally.  

Following the initial result, the algorithm 
considers task popularity and the storage capacity of 
edge servers in the Dynamic Services Caching phase. 
The outcome of this phase is 0-1-1-0-0, meaning that 
tasks 2 and 3 cache their services on the edge server, 
while the others do not.  

Finally, combining the initial result with the 
caching outcome, the final task offloading decision is 
made, yielding the selection 0-0-1-0-0, where only 
the third task is offloaded to the edge server, and the 
remaining tasks are processed locally. As depicted in 
Figure 2, when the CPU requirement is not 
excessively high, the algorithm achieves the lowest 
task offloading cost compared to other methods. 
However, when the CPU requirement exceeds a 
certain threshold, the cost becomes constrained by the 
limited storage capacity of the edge server, leading to 
no further cost reduction. 

Table 2: Factors to select the best server of task. 

    Method 
Storage Propose TOSC TO LP 

0.1 3.75602 3.75602 5.0203 6.48231 

0.2 4.04102 4.04102 5.3053 6.76731 

0.3 4.32602 4.32602 5.5903 7.05231 

0.4 4.38102 4.61102 5.8753 7.33731 

0.5 4.38102 4.89602 6.1603 7.62231 

0.6 4.38102 5.18102 6.4453 7.90731 

0.7 4.38102 5.46602 6.7303 8.19231 

0.8 4.38102 5.75102 7.0153 8.47731 

0.9 4.38102 6.03602 7.3003 8.76231 

1.0 4.38102 6.32102 7.5853 9.04731 

 
Figure 2: The cost of the task offloading with the change of 
CPU requirement. 
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5.3 The Storage Experiment 

In the second experiment, the performance of the 
algorithm is assessed by varying the storage capacity 
of the edge servers. The process for determining the 
final task offloading decision follows the same steps 
as in the first experiment, but with a key difference: 
the storage capacity of the edge servers is altered in 
each iteration. This adjustment is crucial, as the 
storage capacity directly impacts the number of tasks 
that can be offloaded, as well as the popularity of 
those tasks within the network.  

For this experiment, the storage unit is set to 3, 
meaning that each edge server has the capacity to 
accommodate three tasks. Each task has a uniform 
size of 1, while their respective values are assigned as 
1, 2, 0, 0, and 1. These values represent the 
importance or priority of the tasks in the system, 
which influences the offloading decisions.  

The experiment begins with the execution of the 
Dynamic Service Caching algorithm. This step 
determines which tasks should be cached on the edge 
servers based on their popularity and the available 
storage space. The outcome of this step guides the 
subsequent task offloading process by ensuring that 
high-priority tasks are positioned where they can be 
processed most efficiently.  

Following the caching decisions, the Adjustment 
of Task Offloading phase is conducted. In this phase, 
the algorithm refines the initial offloading decisions, 
taking into account the caching results and the storage 
constraints of the edge servers. The final offloading 
decisions, under these conditions, are determined to 
be 0-0-0-1-1. This result indicates that the last two 
tasks will be offloaded to the edge server, while the 
first three tasks will remain for local processing.  

The experiment also explores how different 
storage conditions, combined with a fixed CPU 
capacity of 0.3, influence the overall cost associated 
with each offloading decision. The analysis reveals 
that as the storage capacity and task values vary, the 
cost of offloading decisions fluctuates accordingly. 
This relationship underscores the importance of 
optimizing both storage and processing capacities to 
minimize costs and maximize efficiency in the V2V 
communication system. 

This experiment highlights the critical role of 
edge server storage in the task offloading process. By 
adjusting storage capacity and analyzing its impact on 
task allocation, the algorithm demonstrates its ability 
to adapt to varying network conditions, thereby 
ensuring efficient resource utilization and optimal 
performance across different scenarios. 

 

Table 3: Factors to select the best server of task. 

Storage 
Methods 1 2 3 4 

Proposed 7.68642 7.59442 7.40793 7.40793 
TOSC 8.8587 7.59442 7.40793 7.40793 
TO 8.86992 8.8587 8.6722 7.40793 
LP 10.3207 10.3207 10.3207 10.3207 

5.4 Analysis 

In the first experiment, the results, as illustrated in 
Figure 2, demonstrate the impact of varying CPU 
capacity in the edge server using different data 
transfer methods. The proposed algorithm 
consistently achieves the lowest transmission cost 
compared to a singular processing method. 
Furthermore, the cost of task offloading peaks when 
the CPU capacity is sufficiently high, as the CPU can 
easily handle the tasks without requiring additional 
resources.  

In the second experiment, the results, presented in 
Figure 3, focus on the influence and effectiveness of 
server storage. Under identical storage conditions, the 
proposed algorithm outperforms other algorithms by 
minimizing the cost of task offloading. Similar to the 
first experiment, when the storage capacity is 
sufficiently large, the cost stabilizes because the tasks 
no longer fully occupy the available server space.  

These experiments collectively demonstrate the 
validity and effectiveness of the proposed algorithm 
in optimizing task offloading in V2V communication 
systems. The algorithm's ability to minimize costs 
while effectively utilizing CPU capacity and server 
storage underscores its potential for practical 
applications in edge computing environments.  

 
Figure 3: The cost of the task offloading with the change of 
server storage. 
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However, sufficient edge computing capacity is 
currently a challenge and the relative movement 
between vehicles and vehicles causes the challenge of 
stable information connection and further influences 
the entire communication network of V2V. 

6 CONCLUSIONS 

This paper presents an effective algorithm and 
framework for task offloading and service 
downloading, inspired by multi-predecessor 
investigations and research. The algorithm considers 
various factors, including task size, server storage, 
and task popularity, to optimize task offloading 
decisions. These considerations allow for intelligent 
service downloading decisions based on the specific 
conditions of the network. As demonstrated through 
experimental simulation and validation, the proposed 
algorithm can effectively minimize both time delays 
and energy consumption by making informed, 
strategic decisions.  

Looking ahead, further improvements could be 
made to enhance the stability of V2V networks, 
particularly in scenarios where vehicles are moving at 
high speeds. Additionally, the development of 
vehicle-to-infrastructure communication holds 
promise for fully leveraging the computational 
resources of roadside infrastructures. 
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