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Abstract: Accurately predicting patterns from large and complex datasets remains a significant challenge, particularly 
in environments where real-time predictions are crucial. Despite advancements in predictive modeling, there 
remains a gap in effectively integrating clustering techniques with advanced similarity metrics to enhance 
prediction accuracy. This research introduces a clustering-based pattern prediction framework integrating K-
means with our Overall Difference with Crossover Penalty (OD with CP) similarity metric to predict data 
patterns. In the experiment, we demonstrated its application in air pollution pattern prediction by comparing 
15 different model-cluster combinations. We employed five predictive models: Euclidean Distance, Markov 
Chain, XGBoost, Random Forest, and LSTM to predict the next day's pollution pattern across three cluster 
sizes (K = 10, 20, and 30). Our aim was to address the limitation of traditional clustering methods in pattern 
prediction by evaluating the performance of each model-cluster combination to determine the most accurate 
predictions. The results showed that our framework identified the most accurate model-cluster combination. 
Therefore, the study highlighted the generalizability of our framework and indicated its adaptability in pattern 
prediction. In the future, we aim to apply our framework to a Large Language Model (LLM) combined with 
Retrieval Augmented Generation (RAG) to enhance in-depth result interpretation. Furthermore, we intend to 
expand the study to include client engagement strategy to further validate the effectiveness of our study in 
real-world applications. 

1 INTRODUCTION 

The Internet of Things (IoT) is a revolutionary 
network of interconnected devices with sensors and 
software integrated in, enabling continuous data 
exchange and driving innovation across industries. 
However, the vast data volumes generated by IoT 
systems require advanced techniques to extract and 
predict meaningful patterns within complex datasets. 
Pattern analysis plays a critical role in addressing this 
challenge. It offers systematic approaches to identify 
relationships, trends, and structures within diverse 
sources of information (Han et al., 2012). Pattern 
analysis has an extensive range of applications, 
including data mining, image processing, signal 
analysis, bioinformatics, and machine learning 
(Wang et al., 2022; M. Wang et al., 2021; Li et al., 
2022). The ability to detect meaningful patterns 
within complex and massive datasets is a crucial skill 
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in today's data-driven world, driving innovation and 
facilitating knowledge discovery across scientific and 
industrial sectors (Qiu et al., 2016). 

Many previous studies have successfully utilized 
pattern analysis approaches to identify recurring 
structures in data using machine learning techniques 
(Zeng et al., 2022; Feng et al., 2021).  

For instance, some studies in environmental 
science aim to find fluctuations and trends in air 
pollution levels over time and predict their patterns 
using historical data combined with real-time 
environmental variables (Bhatti et al., 2021; Ma & 
Liu, 2021).  However, the use of clustering techniques 
like K-means has been limited in prediction tasks. 
Using K-means clustering can help identify patterns 
in complex data and better encapsulate the main 
characteristics of each cluster (Kobylin & Lyashenko, 
2017). One of the key components of K-means 
clustering is the calculation of centroids, which           
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Figure 1: Process pipeline of clustering-based pattern prediction framework. 

represent the average of every data point in a cluster 
(Aamer et al., 2020). These centroids are then used to 
assign new data points to the closest cluster according 
to a predefined similarity metric. Finding the closest 
centroid to new data can provide a quick and effective 
way for pattern prediction based on previously 
observed patterns. This approach can be highly 
beneficial in real-time systems, where rapid 
predictions are crucial. Therefore, the clustering 
technique could improve the utility and 
responsiveness of predictive models in various 
applications. 
Our previous research on integrating our Overall 
Difference with Crossover Penalty (OD with CP) as a 
similarity metric for K-means clustering prediction 
demonstrated that the integrated approach identified 
distinct clusters with the optimal number of clusters 
and established the basis for further data analysis and 
interpretation, allowing for a more extensive 
understanding of air pollution patterns and possible 
causes (Poositaporn et al., 2023, 2024). 

We aim to address this gap by introducing a 
clustering-based pattern prediction framework. Our 
proposed framework combines the strengths of 
K-means clustering and our similarity algorithm to 
accurately predict patterns in any complex data. The 
framework processes an input dataset by 
preprocessing it into a vector format. The data is then 
split into training and testing subsets before being 
passed into the K-means clustering algorithm. Testing 
data points are labeled by assigning each to the most 

similar cluster centroid. The prediction model's 
accuracy is evaluated and trained using these labeled 
data points. This approach allows for the efficient 
prediction of patterns in diverse datasets, making it a 
versatile tool for various domains. In this study, we 
demonstrate the framework on air pollution dataset to 
predict the next day's air pollution pattern to 
determine the optimal combination numbers of 
clusters and predictive models. 

2 CLUSTERING-BASED 
PATTERN PREDICTION 
FRAMEWORK 

Figure 1 shows the process pipeline for our proposed 
framework consisting of five key steps: data 
preparation, K-means clustering, labeling testing 
data, pattern prediction, and evaluation. The 
description of each step is shown below: 
 
1)  Data preparation  
This initial step involves cleaning the raw dataset to 
remove any inconsistencies or irrelevant information. 
The data is then normalized to ensure that it is on a 
consistent scale and transformed into vector format. 
Finally, the data is split into training and testing 
subsets. 
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2)  K-means clustering 
The training data is given to the K-means clustering 
algorithm, which employs our OD with CP similarity 
metric to divide the data into clusters. The elbow 
approach is used to find the ideal number of clusters 
(K). The within-cluster sum of squares (WCSS) is 
plotted against the number of clusters in order to 
determine the point at which the rate of reduction 
rapidly slows down (Marutho et al., 2018). 
Additionally, we use the silhouette score to validate 
the consistency within clusters, with a higher score 
indicating better-defined clusters. 
 
3)  Labeling testing data 
Each data point in the testing set is assigned to the 
cluster with the nearest centroid. This testing data can 
then be used to evaluate the performance of the 
predictive model. 
 
4)  Pattern prediction 
The framework uses the cluster centroids in the 
predefined predictive model to predict future patterns. 
This requires interpreting the characteristics of each 
cluster to forecast the behavior of new data points. 
 
5)  Evaluation 
The final stage involves evaluating the accuracy and 
effectiveness of the pattern predictions. Various 
metrics, including root mean squared error (RMSE), 
mean reciprocal rank (MRR), and other relevant 
evaluation criteria, can be applied to evaluate the 
performance of the predictions. This evaluation helps 
refine the model and improve future predictions, 
ensuring the framework's robustness and reliability in 
different applications. 

3 AIR POLLUTION PATTERN 
PREDICTION 

In this section, we demonstrate the application of our 
framework for predicting air pollution patterns. The 
process flow in Figure 2 details the adapted 
framework for a comparative analysis study on air 
pollution pattern prediction that combines clustering 
and machine learning to predict air pollution for the 
next day. 

We begin by dividing the dataset into training and 
testing subsets. The training set undergoes K-means 
clustering to create three distinct datasets for K = 10, 
20, and 30 clusters. For the testing set, we classify 
each data point into a cluster by identifying the most 
similar centroid and labeling it with the 

corresponding cluster label. We then train five 
different predictive models: Euclidean Distance, 
Markov Chain, XGBoost, Random Forest, and 
LSTM, on each of these clustered datasets. Therefore, 
our experiment will consist of 15 different model-
cluster combinations. Then, we evaluate the models 
using the MRR metric and compare the prediction 
performance of each model. The details of each stage 
are shown in the following: 

3.1 Data Preparation 

The study uses a dataset of Seoul air pollution 
measurements from 25 stations collected between 
2017 and 2021. The data consist of four features: date, 
daily concentrations of six air pollutants (CO, SO2, 
NO2, O3, PM10, and PM2.5), air pollutant information, 
and 44,751 recordings of air quality monitoring 
station information. In this study, we focus on five air 
pollutants: CO, SO2, NO2, O3, PM10, and PM2.5. 

In the first stage, we select six features from the 
dataset (date and five air pollutants). Then, we 
preprocess the data by normalizing the concentration 
measures using Z-score, concatenating all pollutants 
into vector form, and splitting the dataset into 35,865 
records for training and 8,886 records for testing 
datasets.  

3.2 K-means Clustering 

In the clustering stage, we employ the K-means 
algorithm to form three separate clusters: K = 10, 20, 
and 30. Initially, the algorithm generates random 
centroids and categorizes data points according to 
their proximity. The refinement of these groupings 
involves recalculating centroids and reallocating data 
points to the newly established centroids (Marutho et 
al., 2018). This iterative adjustment facilitates the 
formation of clusters that are both homogeneous 
within and clearly separated from each other (Ikotun 
et al., 2023). Our choice of K = 30 is based on our 
prior study in (Poositaporn et al., 2024), which 
showed that 30 is the optimal cluster number. In this 
experiment, we aim to find the optimal number of K 
that encapsulate the characteristics of air pollution 
patterns. Therefore, we introduce K values of 10 and 
20 to test if a smaller number of clusters can still 
accurately predict air pollution patterns. 

Furthermore, we modify the proximity calculation 
by integrating the Overall Difference with Crossover 
Penalty (OD with CP). This method measures the 
slope difference between two patterns and introduces 
a penalty to the similarity score, as shown in the 
following equation: 
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Figure 2: Process pipeline of air pollution pattern prediction. 

𝑂𝐷൫𝐸௣, 𝐸௤൯ = ෍ห൫𝐸௣௜, 𝐸௣௜ିଵ൯ − ൫𝐸௤௜, 𝐸௤௜ିଵ൯ห௡
௜ିଶ  

𝐶𝑃൫𝐸௣, 𝐸௤൯ = ෍ ቐ1, 𝑖𝑓 ൫𝐸௤௜ିଵ > 𝐸௣௜ିଵ൯ 𝑎𝑛𝑑 ൫𝐸௤௜ < 𝐸௣௜൯1, 𝑖𝑓൫𝐸௤௜ିଵ < 𝐸௣௜ିଵ൯ 𝑎𝑛𝑑 ൫𝐸௤௜ > 𝐸௣௜൯0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
௡ିଵ
௜ୀଶ  

𝑂𝐷 𝑤𝑖𝑡ℎ 𝐶𝑃൫𝐸௣, 𝐸௤൯ = 𝑂𝐷൫𝐸௣, 𝐸௤൯ ቆ1 + 𝐶𝑃൫𝐸௣, 𝐸௤൯𝑛 + 1 ቇ (1) 

 
where OD(Ep,Eq) is a slope similarity function 
considering the difference between air pollution 
patterns. Ep,q is an air pollution pattern of n 
dimensions. n is the number of pattern dimensions. 
CP(Ep,Eq) is a similarity penalty function. A lower 
OD with CP value shows greater similarity between 
the two patterns, while zero indicates that the two 
patterns are identical. 

3.3 Labeling Testing Data 

In the next stage, we process the testing dataset by 
comparing each data point to the most similar 
centroids using OD with CP as the similarity metric. 
As a result, we generate three distinct sets of labeled 
testing data corresponding to the three sets of clusters.  

To ensure accurate labeling of the testing data, we 
further validate the accuracy of the assigned labels by 
calculating the max-min normalized root mean square 
error (NRMSE) between the actual air pollution 

patterns and the obtained centroids. The NRMSE is 
computed using the formula: 

 

𝑁𝑅𝑀𝑆𝐸 = ට1𝑑 ෌ (𝑞௜ − 𝑝௜)ଶௗ௜ୀଵ𝑞௠௔௫ − 𝑞௠௜௡ (2) 

 
where d is the number of instances in the dataset. qi 
the real air pollution pattern vector. pi is the 
predicted cluster's centroid vector. qmax/min is the 
maximum and minimum air pollution vector. A 
value close to 0 indicates the minimal error, whereas 
a value close to 1 suggests the maximal error. 

We then use these labeled sets in the evaluation 
stage to compare and analyze the performance of 
each prediction model across different clusters. 

3.4 Air Pollution Prediction 

This stage aims to construct and predict the air 
pollution level for the next day. For instance, if T 
represents today's air pollution pattern, then T+1 
would denote tomorrow's pattern. Similarly, if Ct is 
the cluster linked to T, then Ct+1 would be the 
cluster corresponding to T+1. In practice, the 
predictive models use T to predict the cluster Ct+1 
for T+1. These models are trained on clustered 
training data with the objective of identifying the 
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cluster that best represents the expected future 
pollution pattern. For this purpose, we have 
employed five well-established machine learning 
algorithms: Markov Chain, XGBoost, Random 
Forest, LSTM, and Euclidean Distance, as their 
proven effectiveness in capturing temporal 
dependencies, handling non-linear relationships, 
and identifying patterns within structured pollution 
data. 
 
1)  Euclidean distance 
Euclidean distance is a straightforward and 
interpretable model that calculates the linear distance 
of two points in a multidimensional space (Weller-
Fahy et al., 2015). Our aim in using this method is to 
establish a baseline benchmark for the accuracy and 
performance of the other prediction models. This 
method involves calculating the distance between the 
centroid of each cluster and a target data point. 
 
2)  Markov chain 
This method considers the transitions between 
different air pollution clusters over time. It assumes 
that the future air pollution pattern depends only on 
the current pattern and not on the past patterns. The 
Markov chain model calculates the transition 
probabilities between different clusters based on 
historical data and uses these probabilities to predict 
the centroid of the next day's pollution pattern 
(Besenczi et al., 2021). 

The centroid with the highest probability 
represents the expected pollution pattern, as it 
indicates the highest probability cluster that the target 
data point will belong to in the next time step. 
 
3)  XGBOOST 
One machine learning technique that is particularly 
helpful for regression and classification problems is 
called XGBoost, or eXtreme Gradient Boosting 
(Chen & Guestrin, 2016). XGBoost builds a strong 
predictive model by iteratively combining the outputs 
of multiple weak learners. The algorithm starts with 
an initial simple model and iteratively improves its 
performance by adding new trees that correct the 
errors of the existing ensemble. Each tree tries to 
minimize the residual errors of the combined model 
using a gradient descent optimization technique in 
every iteration. 
 
4)  Random forest 
Random forest is a robust machine learning algorithm 
that performs by developing numbers of decision 
trees at training time and providing the result for the 
classification task or regression task (Biau & Scornet, 

2016). Each tree works on a random subset of data to 
provide diversity among the trees and results in a 
model with high robustness against overfitting. This 
method involves creating trees using different 
portions of the dataset (bootstrapping), encouraging 
the model's generalization. The random selection of 
features for splitting within the trees also ensures that 
the model's bias might partially increase. However, 
this is balanced by a significant drop in variance 
throughout the ensemble of trees. 
 
5)  LONG SHORT-TERM MEMORY (LSTM) 
LSTM networks are a type of recurrent neural 
network developed to address the limitation on 
learning long-term dependencies in sequence data 
(Hochreiter & Schmidhuber, 1997). LSTM uses a 
gating mechanism that includes input, forget, and 
output gates, allowing the network to selectively 
maintain or forget information over time. This 
capability makes LSTM highly effective for 
applications that require a complex understanding of 
temporal sequences, such as time series data in air 
pollution prediction. Additionally, it helps prevent the 
problems of vanishing and exploding gradients, 
which makes it a reliable option for modeling 
complex sequences. 

In this study, we perform a range of 
hyperparameter tuning using grid search to optimize 
the XGBoost, Random Forest, and LSTM models. 
Furthermore, the performance evaluation of each 
model involves using the Mean Reciprocal Rank 
(MRR) to determine the most effective approach for 
air pollution prediction. 

3.5 Models Evaluation and 
Comparison 

The MRR is a matric used to evaluate the 
effectiveness of algorithms that predict rankings or 
sequences (Brama, 2023). It calculates the average 
of the reciprocal ranks of the first correct answer 
across several instances, highlighting the model's 
effectiveness at identifying the top possible 
outcomes. Using MRR as a metric is similar to the 
approach taken to predict weather forecasts, where 
it offers a spectrum of likely conditions (Bi et al., 
2023). The calculation of MRR is shown as follows: 
 𝑀𝑅𝑅 = 1𝑄 ෍ 1𝑟𝑎𝑛𝑘௜

ொ
௜ୀଵ (3) 

 
where Q is the total number of predictions. ranki is 
the position of the first relevant answer within the 
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list of predictions for the i-th predicted pollution 
pattern.  

The final stage involves comparing the MRR 
results of each algorithm for each K value to identify 
the most accurate prediction model. 

4 EXPERIMENTAL RESULTS 
AND DISCUSSION 

This section discusses the experimental results from 
our adapted framework. The experiment initially 
clustered the air pollution data into three groups using 
K-means clustering with K values of 10, 20, and 30. 
After that, we evaluated the effectiveness of these 
clusters through their silhouette scores, which 
measure the cohesion and separation within the 
clusters. 

The results of these clusters allowed us to train 
five predictive models (Euclidean Distance, Markov 
Chain, XGBoost, Random Forest, and LSTM) to 
predict air pollution patterns. Lastly, we evaluate and 
compare each model's performance using the MRR 
metric and compare the results to determine the most 
accurate model. 

4.1 Experimental Results for K-means 

The NRMSE results in Table 1 indicated that the 
assigned labels were highly accurate and showed 
minimal error between the actual and predicted air 
pollution patterns. This validation process ensures 
that the clustering algorithm accurately captures the 
patterns in the data.  

Moreover, we employed the silhouette score 
metric to determine the performance and quality of 
these clusters. Where 1 indicates a perfect fit and -1 
indicates a poor match between the data points and 
their corresponding cluster. For consistency of the 
similarity metric, we used OD with CP for 
calculating the silhouette scores. 

 
Table 1: Evaluation results of K-means of each cluster. 

Matric 
Number of clusters 

10 20 30 
NRMSE 0.0393 0.0297 0.0262 
Silhouette Scores 0.5980 0.6614 0.6871 

 
Therefore, the silhouette score in Table 1 

confirms strong separation and cohesion within the 
clusters. The scores of 0.5980, 0.6614, and 0.6871 
for cluster 10, 20, and 30 indicated that the clusters 

formed by the OD with CP similarity metric were 
sufficiently accurate and reliable for training our 
predictive models. 

4.2 Experimental Results for Predictive 
Models 

This study conducted an experimental analysis of 
five predictive models: Euclidean Distance, Markov 
Chain, XGBoost, Random Forest, and LSTM. These 
models were trained on the clustered air pollution 
data with the objective of predicting future pollution 
patterns. Furthermore, we performed fine-tuning on 
XGBoost, Random Forest, and LSTM to optimize 
their performance across different cluster sizes 
   

Table 2: Tuned hyperparameters of predictive models for 
each cluster. 

Predictive 
Models 

Hyper 
parameters 

Tuned Values 
for K Cluster 

10 20 30 
XGBoost n_estimators 150 100 100 

 colsample_bytree 1 1 1 
 eta 0.1 0.1 0.1 
 max_depth 4 4 4 
 scale_pos_weight 1 1 1 
 subsample 0.5 0.5 0.5 

 
Random 

 
n_estimators 

 
100 

 
150 

 
100 

Forest bootstrap TRUE TRUE TRUE 
 max_depth 4 4 4 
 max_features auto auto auto 
 min_samples_leaf 1 1 4 
 min_samples_split 2 2 2 

 
LSTM 

 
epochs 

 
50 

 
50 

 
50 

 batch_size 32 32 32 
 lstm_units 50 50 50 
 learning_rate 0.005 0.005 0.005 
 early_stopping 5 5 5 

 

 
Figure 3: Average MRR of all predictive models for each 
cluster. 
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(K = 10, 20, and 30). This process involved 
adjusting specific hyperparameters to optimize each 
model effectively according to the characteristics of 
the clustered data. The fine-tuned results are shown 
in Table 2. In the following section, we discuss the 
detailed results of each model for each cluster size 
based on the average MRR score. 

Figure 3 revealed the average MRR scores that 
reflect the effectiveness of all 15 model-cluster 
combinations. For K = 10, the XGBoost and LSTM 
models achieved higher predictive performance with 
average MRRs of 0.5848 and 0.5838. This indicated 
the average prediction results were generally on the 
second rank out of 10 possible options. However, the 
Euclidean Distance model performed poorly with an 
average MRR of 0.1427, indicating that its 
predictions were often lower in the ranking. This 
suggested that Euclidean Distance was not suitable 
for our prediction tasks.  

The average MRR scores across all models were 
noticeably declining when the cluster size increased 
to K = 20 and 30. This phenomenon could be 
attributed to the greater complexity of a larger 
number of clusters. This highlights the importance of 
finding the optimal balance between cluster size and 
predictive performance when utilizing different 
models for prediction tasks. 

This experiment confirms that using our 
clustering-based pattern prediction framework can 
effectively capture the underlying structure of the 
data and make reasonable predictions. Additionally, 
the adapted framework highlights the importance of 
selecting an appropriate cluster size to achieve 
optimal results in pattern prediction tasks. 

5 CONCLUSION 

This study proposed a clustering-based pattern 
prediction framework that integrates our Overall 
Difference with Crossover Penalty (OD with CP) as 
a similarity metric for K-means clustering to 
accurately predict complex data patterns. In the 
experiment, we demonstrated an application of our 
framework by adapting it for a study of comparative 
analysis on air pollution pattern prediction. We 
employed five different predictive models 
(Euclidean Distance, Markov Chain, XGBoost, 
Random Forest, and LSTM) to predict the next day's 
pollution pattern. These models were evaluated 
across three cluster sizes (K = 10, 20, and 30) to 
assess their performance. The aim of the experiment 

was to determine the most effective combination for 
achieving accurate predictions. 

The results showed that K-means clustering with 
10 clusters combined with XGBoost and LSTM 
yielded better performance in achieving the highest 
prediction rankings compared to other models. On 
the other hand, increasing the number of clusters to 
20 and 30 resulted in a noticeable decline in 
performance across all models. This suggested that 
using 10 clusters was sufficient to capture the 
characteristics of the air pollution pattern and 
provided optimal prediction accuracy. 

Therefore, the experiment confirms the 
generalizability and cross-domain applicability of 
our framework. This also demonstrates its 
robustness and adaptability in predicting complex 
data patterns. 

In future work, we aim to use our framework to 
delve into a deeper understanding by using a Large 
Language Model (LLM) combined with Retrieval 
Augmented Generation (RAG) to enhance in-depth 
result interpretation. Furthermore, we intend to 
expand the study to include client engagement 
strategy to further validate the effectiveness of our 
study in real-world applications. 
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