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In the field of data-related analytics, the overwhelming number of available methods presents a challenge:

Which method should actually be chosen for a given problem? In this position paper, we raise awareness of this
issue and propose educational and computational concepts to address related challenges and possibilities. As
a unique contribution, we include the perspectives of scientists from different domains which include biology,
bioinformatics, and psychology on the problem of method selection, aiming to initiate future discussions and

advancement.

1 INTRODUCTION

Teaching data analytics methods is growing in im-
portance. As the field of database and machine
learning research advances, novel methods gradually
come into focus. These new methods can discover
patterns—such as clusters or correlations—that pre-
vious methods failed to detect. However, they may
also lack the ability to detect patterns that could be
discovered by earlier techniques. In short, there is no
‘one-size-fits-all’ solution. Relying on either older or
newer methods as multi-purpose tools can be tempt-
ing, but may lead to a form of ‘blindness’, causing rel-
evant patterns to be missed. In this work we present
four positions deemed relevant for domain and com-
puter science alike, addressing the teaching of meth-
ods and their case-aware application.

Position 1:
Wealth of Methods vs. Lack of Knowledge:
The Method-Application Gap.

Data analytics appears to be omnipresent in many
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different domain sciences such as physics, social sci-
ence, economics, biology etc. This does not come to
our surprise, since data analytics provided means to
boost the scientific advancements. Similarly, in the
field of data analytics and machine learning a wealth
of methods has been developed, each of them address-
ing partially disjunct, partially overlapping challenges
in order to discover patterns within data. As a side-
effect we observe something that we address in this
position paper by the term method-application-gap:
On the one hand we have within the domain sciences
well-established subsets of methods that are ‘common
practice’ for data analytics. This subset of methods is
partially taught in a cookbook style within the educa-
tional processes of the academic landscape, as elab-
orated in Section 3. Each of the methods, however,
excels at their own subset of characteristics (i.e. dis-
covering arbitrary shaped patterns, linear correlations
etc.), which raises the need to utilize other and po-
tentially more recent methods. On the other hand the
sheer amount of methods developed and published in
the field of data analytics and machine learning ren-
ders it impossible to ‘catch up’ for the domain science
knowing (a) that other methods exist and (b) which
one of them to choose (c) for which reasons. This
problem has also been discussed in Data Clustering:
50 Years Beyond K-means (Jain, 2010) where the au-
thors state:

“In spite of thousands of clustering algorithms
that have been published, a user still faces a
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dilemma regarding the choice of algorithm,
distance metric, data normalization, number
of clusters, and validation criteria.”

While it may be argued that the ‘go-to’ methods are
all that domain scientists need, we, an interdisci-
plinary group of scientists, claim that the knowledge
of other methods can enable the discovery of patterns
and hence ultimately novel insights that would else be
inaccessible. As a consequence, an Education Sup-
ported Computing approach that is tailored to teach
‘when to use what, and why’ is of paramount impor-
tance.

Position 2:
Automated Machine Learning Is not All
You Need.

Automated machine learning (ML) pipelines like Au-
toML provide a high comfort and are easy-to-use. At
that point one would be tempted to ask “Why should
we teach students how and when to choose which data
analytics method?’, since an entirely automated ap-
proach would render the need to answer such ques-
tions obsolete. However, AutoML approaches are not
the ‘holy grail’:

In a meta-review, the authors of (Barbudo et al.,
2023) performed a literature search on AutoML based
on a proposed taxonomy that encompasses 447 pri-
mary studies selected from a set of 31,048 papers.
Barbudo et al. (2023) found that the majority (91%)
of tasks addressed by AutoML are from supervised
or regression archetypes. The more challenging un-
supervised tasks like clustering or anomaly detection
are addressed by only 1-2% of the publications.

Even more severe disadvantages of AutoML re-
volve around the fact that AutoML approaches op-
erate as black-box methods [(Barbudo et al., 2023),
(Quaranta et al., 2024)], which implies that users have
to rely on the generated models regardless of the ways
they can be either interpreted or plausibly explained
by humans, hindering the scientists interpretability of
the results. In this respect, explainability is essential
for humans to provide more details in order to ob-
tain more meaningful results [(Barbudo et al., 2023),
(Quaranta et al., 2024)] that ultimately can benefit the
automation process itself. Additionally, Quaranta et
al. (2024) confirm that AutoML’s capabilities are lim-
ited in unsupervised settings, especially when con-
fronted with ‘non-standard’ use cases and domains by
failing to adapt to the complexities of such scenarios.

Overall, the necessity of humans in the loop
remains of paramount importance, as stated by
Xanthopoulos et al. (2020), that among the most
important criteria for users to choose a method
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is the interpretability of the results. The authors
specifically mention that users are rarely satisfied
with only a predictive model, but aim to under-
stand the discovered patterns within the data, or
in the authors’ terms of brevity: “AutoML should
automate, not obfuscate.” (Xanthopoulos et al., 2020).

As a bottom line of this position, it is not advis-
able to entirely rely on automated machine learning
pipelines while at the same time neglecting or dis-
carding any need to teach and learn when to use which
method. This is especially the case when it comes
to discover novel and hence mostly unknown data.
Instead, we deem it as more important to educate
students and scientists alike to learn and understand
when to use which existing method rather than to rely
on automated ML processes.

Position 3:
Learning by Doing: On the Need to Inter-
actively Practice Data Analytics Methods.

So far we have addressed the Education Supported
Computing (ESC) field, meaning that one needs to
learn when to use which of the existing methods.

To achieve this, we now transit to the realm
of Computer Supported Education (CSE), the main
theme of this conference. The third position discusses
the need to incorporate computer science methods to
support the education on when to use which method.

Many of the data analytics modules provide the
means to practice the learned methods in the tutori-
als of their respective courses. This practice is how-
ever mostly tailored at completing an existing code
fragment (e.g. local sequence alignment in bioinfor-
matics) or to apply a tool on a specific dataset. Some
courses even require to perform steps of an algorithm
in ’pen-and-paper’ style. While these approaches in-
deed foster the understanding of how the algorithms
work and how they can be used, they do not explic-
itly focus on the strengths and limitations of meth-
ods. Moreover, they do not actively demand an un-
derstanding of the methods and their case-aware ap-
plication.

In a currently ongoing teaching of bachelor and
master students in unsupervised machine learning
methods on the example of clustering, we provide
datasets and ask them to interactively run different
methods on the datasets and with different parame-
ter settings using ELKI (Schubert and Zimek, 2019).
The students are then instructed to note what they ob-
serve regarding differences in the clustering results.
In case of data streams we use the MOA framework
(Bifet et al., 2011) such that the students can simulate
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and observe different data stream scenarios.

To leverage the experience in learning the
strengths and limitations of methods we provide stu-
dents the task to design their own datasets through a
sample generator!. While this generator is simple and
does not require any installation or complex learning
efforts, it allows students to focus on the provided
task:

Design and modify datasets in such a way
that the results of the clustering improve or
worsen. Characterize the properties of the
dataset that lead to either changes of the per-
formance. Provide possible reasons with re-
spect to the used method that explain the ex-
ceptionally good or poor performance.

With this combination of exploring the performance
of algorithms with different parameter settings be-
tween different methods and the impact of character-
istics of the data on the methods performance, we see
a Computer Supported Education approach that sus-
tainably prepares scientists of computer science and
domain science alike becoming proficient in when to
choose which method.

2 APPROACHING THE
METHOD-APPLICATION GAP

Despite the gained experiences of when to use which
method, the sheer amount of data analytics meth-
ods itself can be prohibitive to explore and use novel
methods that may be more suitable for the respective
problem.

But what can be done to discover more suitable
algorithms with low(er) effort?

Obviously one possible approach to that lies in
computer supported solutions. We ask at this point:
What if we would have a recommendation system? A
recommendation system that can be queried and then
responds with archetype methods (e.g. density-based
clustering, hierarchical clustering) to choose from.
More importantly, a system that provides an explana-
tion for the selection of methods, which enhances un-
derstandability of the underlying selection. The idea
of relying on such a recommender system is neither
new nor far-fetched. Consider for this case movie
streaming platforms that recommend movies or on-
line market platforms that recommend products. The
idea of a recommender system for suggesting algo-
rithms has been approached Collins et al. (2018) and
is actively discussed in the Interdisciplinary Work-

Uhttps://guoguibing.github.io/librec/datagen.html
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shop on Algorithm Selection and Meta-Learning in
Information Retrieval (Beel and Kotthoff, 2019).

However, two aspects remain unclear: Which
questions should be posed to the recommender sys-
tem, and which information (e.g. properties of the
data) should be provided? To approach that prob-
lem, it is of paramount importance to have some kind
of structuring that allows a categorization of differ-
ent data analytics methods for a specific task (in the
scope of this work, we take clustering as an example).
As an open question, we ask for the choice of criteria
in order to structure the algorithms so that researchers
in different fields can use the system to their advan-
tage. In various survey papers [(Sim et al., 2013),
and references within], we see tables that indicate po-
tential structures; these, however, seem to cover cer-
tain aspects, e.g., the way algorithms operate (bottom-
up, top-down, grid-based, etc.) or their parameters—
which might not be relevant for all research questions
in all scientific fields.

To provide a more application-tailored structur-
ing, we deem it necessary to propose a categorization
of algorithms. This idea itself is also not new per se
and can be seen in the different approaches e.g. meta-
data information. It serves the purpose to understand
in which instance which types of algorithms in data
mining and machine learning are a reasonable choice.
It fosters taking aspects/properties like:

1. data set specific properties
2. algorithm specific properties and
3. model specific properties

into account.

Each of the aspects/properties in itself is gov-
erned by certain assumptions that operate on differ-
ent levels. The following list of aspects and assump-
tions is by no means complete. Here we have the chal-
lenge of a delicate balance between coverage of dif-
ferent (use)cases vs. complexity, on which we elabo-
rate more in detail in the following section.

In case of (1) data specific properties we consider:

a. data type and semantic-level assumptions
b. data-origin/generation-level assumptions
c. instance-level assumptions

d. feature-level assumptions

e. pattern-level assumptions

f. outlier/anomaly-level assumptions

In the case of (2) algorithm specific properties we
suggest the following levels with their respectively
underlying assumptions:
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a. objective-level assumptions
b. process-level assumptions
c. parameter-level assumptions

d. output-level assumptions

Lastly, in case of (3) model specific properties we
advise for the following levels including their as-
sumptions:

a. model-level assumptions
b. relationship-level assumptions

c. explainability-level assumptions

A categorization into different properties and as-
sumptions is in its consequence a way of highly struc-
tured prompt engineering. The benefits of structured
prompts in context of learning data analysis have been
demonstrated in context of ChatGPT (Garg and Ra-
jendran, 2024). The novel aspect that we propose here
is a more systematic structuring with respect to data
set, algorithm and model properties with a benefit that
is two-fold: For students it fosters to think in more
structured ways regarding the input, the properties of
methods and the output, while for the recommender
system (e.g. via ChatGPT) it enables the discovery
of more suitable methods and improved explanations,
since it is provided with explicit properties and as-
sumptions to account for.

3 PERSPECTIVES IN
DIFFERENT DOMAINS

Position 4:

Beyond the Ivory Tower: On Different Pre-
conditions and Practices in Domain Sci-
ence.

So far we have mostly taken a look with a computer
scientist’s view in mind. In the following, we include
the vision from the perspective of different domains,
exemplified in this work by our coauthors from biol-
ogy, psychology, and bioinformatics.

3.1 Biology and Psychology Perspective

The understanding of data and how to find suitable
statistical methods varies widely between and within
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biological and psychological sciences, and so does the
type of data. While ecologists may compare occur-
rence of a certain species (frequency, re-catch rates),
they may also model complex inter-species dynam-
ics. While personality psychologists may be partic-
ularly interested in inter-individual differences and
how to measure them, clinical scientists may apply
pre-post-comparisons for clinical trials, and devel-
opmental psychologists may analyze longitudinal or
nested data in path models and multilevel modeling.
There is definitely not ’one size fits all’ in biology and
psychology, so the perspective given here is on a very
narrow field dealing with morphometric, psychomet-
ric, and quantitative parameter data, by no means rep-
resentative and based on subjective experiences. This
perspective also comments on to what extent knowl-
edge on data analysis is (or is not) present among stu-
dents — again, from a very limited, subjective angle.
It seems that biology students are often lacking ba-
sic understanding of how to statistically analyze their
data beyond reporting descriptive statistics. This may
be due to statistics or biostatistics being only a foot-
note (or one class) in the undergraduate curriculum.
Still, students are expected to perform data analysis
at the end of their undergraduate studies, and way too
often basic statistic education starts within the lab in
which they have decided to write their Bachelor the-
sis. Therefore, we may need to start with the basics:
What kind of data do we deal with (continuous, or-
dinal, nominal)? How is the data distributed (nor-
mal versus non-normal)? Is this data dependent or
independent? How is the variance distribution (het-
eroscedasticity) and why does that even matter?
Can I/should I normalize my data, and if I should,
how to do it? How do I find the correct statistical test
for my scientific question? A common workflow for
many types of parametric biological data with little
statistical knowledge may look like this:

- Gather and prepare data

- Test for normality with Shapiro-Wilk test
(Shapiro and Wilk, 1965)

- Transform data if not normally distributed with
simple transformations (log, log10, exponential)

- Univariate methods: t-test for normally dis-
tributed data, Wilcoxon-test (Wilcoxon, 1945) for
non-normally distributed data

- Multivariate methods: ANOVA (Fisher, 1935;
Girden, 1992) for normally distributed data, PCA
for non-normally distributed data (Pearson, 1901)

- Then consider correction for multiple compar-
isons, e.g., (Bonferroni, 1936; Benjamini and
Hochberg, 1995)
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More specifically, let us look at two examples. In
functional morphology, we use Geometric Morpho-
metrics [(Adams et al., 2004), and references within]
to study shape using landmark and semi-landmark co-
ordinates that capture morphological features. The re-
sulting Cartesian coordinate data is treated in the fol-
lowing way:

* Conduct Procrustes Superimposition (Dryden

and Mardia, 1998) (to exclude size as a factor)

e Perform Principal Component Analysis
(PCA) (Pearson, 1901) using landmark coordi-
nates

 Plot PC1 and PC2, use appropriate statistical test
to compare means (e.g. Mann-Whitney U (Mann
and Whitney, 1947), Wilcoxon (Wilcoxon, 1945),
Dunn’s (Dunn, 1964), use correction for multiple
comparisons if applicable)

» Test for covariation between analyzed features
with two-block Partial Least Squares (2-block
PLS)

In a second, completely different study, we may ap-
ply 3D Surface Texture Analysis to obtain character-
istics of biological surfaces (eggshells, bones, teeth,
etc.) [(Attard et al., 2023),(Winkler et al., 2022),
(Martisius et al., 2020)]. The obtained surface data
are expressed as standardized ISO roughness param-
eters that are then treated as follows:

* Test for normality and heteroscedasticity of pa-
rameters

¢ Perform normalization

* Compare means between groups with appro-
priate tests (t-test, Wilcoxon (Wilcoxon, 1945),
Dunn’s (Dunn, 1964))

* Conduct PCA to reduce dimensions, as up to 50
parameters are often obtained

This sequence is not wrong, but it is following a
basic cookbook structure some students may have ac-
quired from their supervisors, but they may lack the
understanding of where to adjust it and have no idea
how to advance. Unfortunately, some steps may even
be skipped or ignored, if researchers are not aware
of their importance; for example, if normality is not
tested, the default analysis when comparing means of
multiple groups may always be ANOVA. If not cor-
rected for multiple comparisons, type I errors may al-
ways be inflated. We are not trying to paint a picture
of incompetent researchers here, but we need to ad-
dress the fact that there is no formalized education in
data analysis for the biological sciences, and we may
have very different competence levels among students
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and researchers as a result. An accessible and hands-
on approach to data analysis using a sample dichoto-
mous decision tree (Breiman et al., 1984) (illustrated
by examples) that can be used by researchers and stu-
dents of different proficiency would be a great tool to
support data analysis on a consistent level. From this
level, it would be possible to advance to modeling and
multivariate methods, which are not as common.

In contrast to biology, research methods and statis-
tics are crucial parts of study programs in psychology,
both in undergraduate and graduate studies. While
undergraduate curricula are commonly focused on de-
scriptive statistics, exploratory data analysis and ba-
sic inferential statistics (e.g., graphical data analysis,
correlational methods, t-tests), graduate curricula are
more focused on advanced inferential statistics (e.g.,
multiple regression, ANOVA, non-parametric tests,
multilevel linear models, structural equation mod-
els) as well as methods exploring clusters and latent
factors (factor analysis, cluster analysis; see (Field,
2024) for a popular book on statistical analyses in
psychology). However, from our perspective, new
algorithms from database machine learning research
rarely enter common statistical analyses in psychol-
ogy, despite the shift from SPSS as the usual statis-
tical software to R, which is more versatile—even
though they might be proven useful, particularly for
complex multi-level and time series data sets.

3.2 Bioinformatics Perspective

The field of bioinformatics presents unique chal-
lenges due to the complexity and diversity of
biological, especially OMICs (Li and Wong, 2008),
data. Researchers often deal with high-dimensional
datasets, noisy measurements, and intricate bio-
logical networks. The choice of computational
methods significantly impacts the ability to uncover
meaningful biological insights. Here, we illustrate
how selecting appropriate algorithms can make a
substantial difference in bioinformatics research
outcomes.

Gene Expression Clustering

* Clustering algorithms are essential for analyzing
gene expression data to identify groups of genes
with similar expression patterns, c.f. (Eisen et al.,
1998).

* Many bioinformaticians default to using k-means
clustering because of its simplicity and ease of
implementation.

* K-means (Jain, 2010) assumes spherical clusters
of equal variance and may not capture the true



Position Paper: Computer Supported Education vs. Education Supported Computing - On the Problem of Informed Decision Making of

structure of gene expression data, which often
contains irregularly shaped clusters and varying
cluster sizes.

» Using density-based clustering algorithms like
DBSCAN (Ester et al., 1996) can better identify
clusters of arbitrary shapes and is robust to noise.
This method can reveal subtle gene expression
patterns associated with specific biological con-
ditions or phenotypes that k-means might miss.

Sequence Alignment and Assembly

* Accurate sequence alignment and genome assem-
bly are critical for understanding genetic informa-
tion.

— Tools like BLAST (Altschul et al., 1990) for
alignment and assemblers based on de Bruijn
graphs (Pevzner et al., 2001) are widely used
due to their speed and familiarity.

— These methods may not handle genomic varia-
tions like large insertions, deletions, or repeti-
tive sequences effectively.

— Employing algorithms such as Smith-
Waterman for local alignment (Smith
and Waterman, 1981) or assemblers like
SPAdes (Bankevich et al.,, 2012) and
Canu (Koren et al., 2017), which are de-
signed to work with long-read sequencing
data, can provide more accurate results. These
methods account for complex genomic rear-
rangements and repetitive regions, leading to
better assembly quality.

Dimensionality Reduction in Single-Cell RNA-Seq
Analysis

Single-cell RNA sequencing (scRNA-seq) (Macosko
et al., 2015) generates high-dimensional data that re-
quire dimensionality reduction for visualization and
interpretation.

* Researchers often use Principal Component
Analysis (PCA) due to its ability to reduce di-
mensionality while preserving variance.

* PCA is a linear method and may not capture the
non-linear relationships inherent in scRNA-seq
data, potentially obscuring meaningful biological
variation.

* Non-linear dimensionality reduction techniques
like t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) (van der Maaten and Hinton,
2008) and Uniform Manifold Approximation
and Projection (UMAP) (Mclnnes et al., 2018)
preserve local and global data structures, respec-
tively. These methods can uncover cell subpop-
ulations and developmental trajectories that PCA
might overlook.

Appropriate Data Analytics Method

Protein Structure Prediction

Predicting protein structures from amino acid se-
quences is fundamental for understanding protein
function.

Traditional methods like homology model-
ing (Schwede et al., 2003) rely on known struc-
tures of similar proteins but may not work well
for proteins without close homologs.

Sole reliance on homology models can lead to in-
accuracies when templates are distant or unavail-
able.

Utilizing advanced algorithms like Al-
phaFold (Jumper et al., 2021), which employs
deep learning techniques, can predict protein
structures with high accuracy even in the absence
of close homologs. Incorporating such methods
can significantly enhance the understanding of
protein functions and interactions.

Phylogenetic Analysis

Constructing phylogenetic trees helps in understand-
ing evolutionary relationships among species or
genes.

Methods like Neighbor-Joining (NJ) (Saitou and
Nei, 1987) are popular for their simplicity and
speed.

NJ may not account for varying rates of evolution
across lineages or the complexities of genomic
data, potentially resulting in incorrect tree topolo-
gies.

Maximum Likelihood (ML) (Felsenstein, 1985)
and Bayesian Inference (Huelsenbeck and Ron-
quist, 2001) methods provide more accurate phy-
logenetic reconstructions by modeling sequence
evolution more comprehensively. Although com-
putationally intensive, these methods can yield in-
sights into evolutionary processes that NJ cannot.

Outlier detection in Genomic Data

Identifying outliers is important for quality con-
trol and detecting rare variants.

Simple statistical thresholds or Z-scores are used
to flag outliers.

These methods may not account for the com-
plex, high- dimensional structure of genomic data,
leading to false positives or negatives.

Robust Mahalanobis Distance (Rousseeuw and
Driessen, 1999) or Isolation Forests (Liu et al.,
2008) can detect multivariate outliers by consider-
ing the covariance structure of the data. Applying
these algorithms improves the accuracy of outlier
detection, ensuring that downstream analyses are
based on high-quality data.
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These examples from bioinformatics demonstrate that
the choice of algorithm profoundly influences re-
search findings. By expanding the repertoire of com-
putational methods and making informed algorithm
selections, bioinformaticians can enhance the qual-
ity and impact of their research. A recommendation
system would serve as a valuable tool, guiding re-
searchers and students toward methods best suited to
their specific data characteristics and research ques-
tions.

Another interesting observation is that while the
different tests are prominent and actively used in the
different domain sciences, we do not observe them
explicitly in the processes of data mining and machine
learning, like in, e.g., the KDD process (Fayyad et al.,
1996). We would like to remind the reader that the
experiences shared and the structures provided are not
intended to be regarded as generally valid or by any
means complete.

4 CONCLUSION

In this paper we elaborate on the challenges that arise
with the richness of different methods for data ana-
lytics and the need to educate on decision making of
when to use which method. We discuss four posi-
tions related to that problem. Those positions encom-
pass (1) there is a rich plethora of methods, which is
a blessing and at the same time, in the light of the
sheer amount, a curse (2) that automated data ana-
Iytics pipelines are not a “holy grail’, meaning that
to learn when to use which method is of paramount
importance (3) computer supported approaches to un-
derstand the strengths and weaknesses of methods are
indispensable and (4) to facilitate informed decision
making across different domains, it is required to first
understand their common practices and education ap-
proaches for data analytics. In conclusion, we hope
that with this position paper we can foster fruitful
discussions toward computer supported education of
data analytics with the goal of education supported
computing across domains.
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