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Abstract: Despite significant advances in educational technology and design methodologies, current educational games
demonstrate a fundamental limitation: educators are unable to modify content after the games are deployed,
limiting curriculum alignment and pedagogical customization. This paper introduces Imikathen-VR, a solution
built upon a text-to-animation system, supporting K-1 and K-2 teachers to create minigames for their students
to practice basic writing skills. Our implementation extends an existing animation pipeline by integrating a
fine-tuned T5 model for sentence simplification, achieving 95% F1 BERT score and 76% ROUGE-L score in
maintaining semantic and lexical fidelity. We improve visual reasoning by transforming the task of identify-
ing missing visual details into a Masked Language Modeling problem. Preliminary results demonstrate the
system’s effectiveness in generating curriculum-aligned VR exercises, though comprehensive classroom test-
ing remains pending. This work advances the integration of customizable VR technology in early education,
providing teachers with enhanced control over educational content.

1 INTRODUCTION

Educational games provide an appealing context for
children to learn. Their success depends however on
how well the educational content is integrated within
the gameplay experience (Fisch, 2005). The promise
of educational games in improving the learning ex-
perience within or outside the classroom for differ-
ent subjects, such as in maths (Devlin, 2011), chem-
istry (Smaldone et al., 2017) or language learning
(Birova, 2013; Derakhshan and khatir, 2015; Mif-
takhova and Yapparova, 2019) has been supported via
various research works. Despite their potential in im-
proving student engagement and achievement in lan-
guage learning for example, the integration of such
educational games within the classroom is still a chal-
lenging area as it is difficult for the teachers to find
relevant games that align with the curriculum (Koh
et al., 2012; Kirriemuir and McFarlane, 2004; Rice,
2007). For a teacher to invest into adapting exist-
ing games to fit the specific needs of their curriculum
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or student population, they may require a lot of time
and effort, or lack the proper training for such a task.
However, despite these challenges, research suggests
that well-designed and well-adapted games can sig-
nificantly enhance language learning.
Approaches such a participatory design and co-design
have been adopted in the educational games field to
improve or ensure, among other things, the alignment
of the games with the curriculum (Walsh, 2012; Is-
mail et al., 2019). The involvement of teachers in
these co-creation activities is however challenged by
problems such as time constraints as the primary mis-
sion of teachers is related to teaching and administra-
tive tasks, and as such, engaging them in the design
process with its various meetings, feedback sessions
and testing can overload them. Issues in teachers in-
volvement extend also to the nature of their expertise
mainly related to educational content and pedagogy,
while they may lack the technical expertise required
for game design. This gap can lead to challenges in
communicating needs and understanding the techni-
cal possibilities and limitations within the design pro-
cess (Munoz et al., 2016; Padilla-Zea et al., 2018).
In the context of this research, we aim to provide K-

446
Bouali, N., Cavalli-Sforza, V. and Tukiainen, M.
Teacher in the Loop: Customizing Educational Games Using Natural Language.
DOI: 10.5220/0013480500003932
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) - Volume 2, pages 446-457
ISBN: 978-989-758-746-7; ISSN: 2184-5026
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



1 and K-2 teachers with a tool that allows them to
customize educational games using natural language,
which not only mitigates time investment by allow-
ing design from their teaching or personal spaces, but
also eliminates the need for extensive knowledge of
game mechanics, enabling teachers to focus solely on
the game’s content.

In this paper, we present Imikathen-VR, an edu-
cational game built on top of Imikathen (Bouali et al.,
2024), a text-to-animation system that converts natu-
ral language stories into animations. Imikathen-VR
was specifically developed to support language learn-
ing for K-1 and K-2 students through in-class writing
activities. However, the system has limitations that
make its direct use challenging, particularly regard-
ing output accuracy. To address these limitations, we
modified the system’s format to give teachers more
control over the educational content. This new ap-
proach allows teachers to first design and verify the
stories and resulting animations, and then create writ-
ing exercises based on the approved content. This en-
sures that outputs align with curriculum requirements
and that students receive accurate material tailored to
practice specific vocabulary and language skills.

Imikathen’s current pipeline, shown in Figure 1,
processes input stories through several key steps.
First, it performs TimeML-based event detection to
identify animatable sentences (Saurı́ et al., 2006), it
then uses imagery scores for nouns and adjectives
to determine renderable content (Coltheart, 1981).
The system then simplifies multi-event sentences us-
ing a rule-based algorithm and processes dialogue
through either direct speech rendering or by leverag-
ing a fine-tuned BART model for indirect-to-direct
speech conversion. Finally, a visual semantic role
labeler extracts roles from the simplified sentences,
creates visual semantic frames for each event, and
converts them into an object-oriented animation lan-
guage. These animations are finally rendered in ei-
ther 3D or VR using a Unity-based graphics engine.
Prior to discussing how we aim to adapt Imikathen
to in-class use, and turn it into a customizable game
that can be tailored to accommodate the different cur-
ricula teachers might be using, we will first invest in
improving some of its subprocesses, namely the sen-
tence simplification and visual reasoning modules.

Figure 1: Pipeline for the NLU of Imikathen (Bouali et al.,
2024).

The rest of this paper is organized as follows: In
Section 2, we review the VR games used in language
learning. Imikathen’s architecture, alongside the im-
provements on sentence simplification and visual rea-
soning are presented in Sections 3, 4 and 5, respec-
tively. Section 6 presents the system prototype, fol-
lowed by a discussion of its potential and limitations
in Section 7. We conclude with future work and clos-
ing remarks in Section 8.

2 RELATED WORK

Virtual reality (VR) language learning games have
been explored for various tasks, languages, and learn-
ing contexts. Cheng et al. adapted the Crystallize
game for Japanese language learning using an Ocu-
lus Rift, showing that VR enhances cultural immer-
sion (Cheng et al., 2017). Khatoony used VR games
to improve vowel pronunciation in low-intermediate
Iranian learners of English through immersive, inter-
active methods (Khatoony, 2019). Amoia et al. intro-
duced I-FLEG, a serious game for learning French,
which leverages AI-driven personalization in a 3D
virtual environment to enhance language acquisition
(Amoia et al., 2012). Tazouti et al. developed
”ImALeG VR,” a multi-platform serious game for
Tamazight vocabulary learning and self-assessment
(Tazouti, 2020). Chen and Hsu studied the impact of
VR-based English learning applications, finding that
interactive game features enhance engagement and
motivation (Chen and Hsu, 2020).

Alfadil examined VR’s role in vocabulary acqui-
sition, concluding that encountering words in context
(e.g., ordering food in a virtual restaurant) improves
retention, though effectiveness depends on content
quality and alignment with learning objectives (Al-
fadil, 2020).

In Imikathen-VR, we extend our text-to-VR sys-
tem to support a language learning game where teach-
ers can align VR content with their course require-
ments.

3 CURRENT ARCHITECTURE
AND ADAPTATION AS A GAME

Imikathen-VR builds upon our existing text-to-VR
system, Imikathen (Bouali et al., 2024). This sec-
tion outlines the current architecture and its adapta-
tion into a VR game, where teachers control content
delivery and timing.
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Figure 2: Imikathen current interface (Bouali et al., 2024).

3.1 Imikathen: Text-to-VR System

According to (Bouali and Cavalli-Sforza, 2023), de-
veloping a text-to-animation system presents 15 dif-
ferent challenges, spanning Natural Language Un-
derstanding (NLU), temporal reasoning, and visual
reasoning. NLU challenges include identifying an-
imatable sentences, handling modal verbs, and vi-
sualizing abstract concepts and underspecified lan-
guage. Temporal reasoning struggles with verb en-
tailment, non-linear narratives, tense interpretation,
and simultaneous actions. Visual reasoning complexi-
ties involve common-sense reasoning, object quantifi-
cation, and animation-specific elements like lighting,
camera work, and character interactions. Overcom-
ing these hurdles requires significant advancements
across NLU, knowledge representation, and anima-
tion techniques. Imikathen attempts to solve these
challenges by employing a modular architecture that
consists of a client-side interface and a server-side
processing pipeline (Bouali et al., 2024). The key
components of this architecture include:

• Client Module
– Accepts natural language input (stories) and

renders the final animation output, providing a
simpler user experience.

• Server Module
– Event Detection: Uses TimeML event classes

and MRC psycholinguistic scores to accurately
detect events and evaluate object animatability,
addressing challenges in natural language un-
derstanding.

– Dialogue Detection: Employs a fine-tuned
BART-based generative model to identify and
process direct and indirect speech, improving
dialogue transformation.

– Sentence Simplification: Applies rule-based
algorithms with dependency parsing to decom-
pose complex sentences, enhancing the sys-
tem’s ability to handle multi-event sentences
and refine the temporal order of events, effec-

tively addressing the challenges associated with
temporal reasoning.

– Semantic Role Labeling: Integrates RoBERTa
with dependency parse trees to improve visual
role tagging, such as identifying actors, actions,
objects and their related modifiers.

– Visual Semantic Frames: Leverages Concept-
Net to enrich scene details and enable visual
reasoning, tackling common-sense reasoning
and object quantification challenges.

– Object-Oriented Animation Language
Generation: Converts semantic frames into
an Object-Oriented Animation Language
(OOAL), facilitating the creation of animation
outputs.

Imikathen demonstrates significant advancements
in NLU, knowledge representation, and animation
techniques. However, despite its capabilities, the sys-
tem is not without limitations. Event detection in-
accuracies, inconsistent dialogue transformation out-
puts, and limited coverage of sentence simplification
rules can impact the quality and reliability of the final
animation output, highlighting areas for further im-
provement and refinement.

We developed OOAL to allow users to manually
adjust animations when the system’s linguistic anal-
ysis produces inaccuracies. However, given its com-
plexity, OOAL proved to be beyond the technical abil-
ities of young children. To explore its educational po-
tential, we previously implemented OOAL in a VR-
based game and evaluated it as a teaching tool for
object-oriented programming concepts at a university
level, where student feedback was positive (Bouali
et al., 2019; Sunday et al., 2023).

When we later consulted K-1 and K-2 educators
about integrating the text-to-animation system into
early education, they raised a key pedagogical con-
cern: animation failures could mislead students about
the correctness of their language usage, potentially
negatively impacting their learning process. This
feedback underscored the need for a more reliable ap-
proach before deploying the system in classroom set-
tings.

3.2 A Teacher-in-the-Loop Approach

To address the limitations above, we enhanced our
system by incorporating teacher involvement in the
content creation process. This allows educators to de-
fine stories that align with their curriculum objectives
throughout the academic year.

We extended the architecture shown in Figure 3 by
adding a teacher interface (highlighted in blue). This
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Figure 3: System architecture.

interface enables teachers to create and validate exer-
cises before assigning them to students. Teachers can
first test their stories using Imikathen to ensure proper
output, then convert these validated stories into exer-
cises.

Students can access these exercises through a VR
game, which they can play using a Google Cardboard
headset with their parents’ smartphones. The game
content is controlled by teachers, who can assign spe-
cific exercises for different sessions or weeks, ensur-
ing alignment with their teaching objectives.

Before detailing the new teacher interface and the
customizable VR game, we focused on enhancing the
animation pipeline, specifically improving sentence
simplification and visual reasoning capabilities (high-
lighted in blue in Figure 3). It’s important to note
that the VR game uses the same animation pipeline
for creating virtual worlds and animations, rather than
implementing a new one.

4 SENTENCE SIMPLIFICATION

As highlighted in the architecture, after the initial
event detection and dialogue identification stages in
our pipeline, non-dialogue sentences require simpli-
fication to facilitate subsequent processing tasks and
enable proper temporal event ordering. This simpli-
fication process is crucial as it transforms complex,
multi-event sentences into manageable units that can
be properly sequenced along a time axis and that are
easier to tag for the semantic role labeler.

To process the complex sentences while main-
taining input fidelity, we implement a two-stage ap-
proach. First, we decompose complex sentences
(those containing multiple events) into simple ones

(each containing exactly one event) using a data-
driven syntactic simplification approach. This pre-
serves the original meaning while avoiding the am-
biguity often introduced by vocabulary-based simpli-
fication methods (Praveen Kumar et al., 2022). Sec-
ond, we employ dependency parsing to analyze and
reorder these simplified sentences according to their
temporal relationships.

This syntactic simplification strategy serves two
crucial purposes: it ensures faithful preservation of
the input text’s meaning, critical for preventing under-
specification in the animation output, and it simplifies
the task of visual semantic parsing.

4.1 A Data-Driven Approach to
Sentence Simplification

Our goal is to decompose complex sentences into
multiple simple ones, each capturing a single event
while preserving all semantic arguments essential for
visual interpretation. We refer to this as a lossless sim-
plification, which, combined with temporal event re-
ordering, ensures no information is lost, a crucial fac-
tor in addressing the underspecification challenge in-
herent in text-to-animation tasks (Bouali and Cavalli-
Sforza, 2023).

We begin by defining a dataset suitable for the
task; That is a dataset that covers the vocabulary ex-
pected from an early-stage language learner. We thus
manually annotate 1800 input sentences, derived from
Children Picture Books of Project Gutenberg 1, de-
scribing complex events linked with a temporal ex-
pression or simply a conjunction, as shown in Table
1.

1https://www.gutenberg.org/ebooks/bookshelf/22
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Table 1: Complex vs. simplified sentences.

Complex Simplified
Once upon a time in the middle of winter, when the
flakes of snow were falling like feathers from the
clouds, a Queen sat at her palace window, which had
an ebony black frame, stitching her husband’s shirts.

It was the middle of winter. The flakes of snow were
falling like feathers from the clouds. A Queen sat at
her palace window. The window had an ebony black
frame. The Queen was stitching her husband’s shirts.

While she was thus engaged and looking out at the
snow she pricked her finger, and three drops of blood
fell upon the snow.

She was thus engaged. She was looking out at the
snow. She pricked her finger. Three drops of blood
fell upon the snow.

Soon afterwards a little daughter came to her, who
was as white as snow, and with cheeks as red as blood,
and with hair as black as ebony, and from this she was
named ”Snow-White.”

A little daughter came to her. The daughter was as
white as snow. The daughter had cheeks as red as
blood. The daughter had hair as black as ebony.

In this work, we address sentence simplification
as a monolingual translation task, following estab-
lished approaches (Wubben et al., 2012; Wang et al.,
2016; Narayan and Gardent, 2014). While tradi-
tional sequence-to-sequence (Seq2Seq) neural net-
works have shown promise for this task, their ef-
fectiveness is heavily dependent on large training
datasets. Our initial experiments using a Long Short-
Term Memory (LSTM) architecture yielded subopti-
mal results, likely due to our limited dataset size. To
overcome this limitation, we explore transfer learn-
ing as an alternative approach, leveraging pre-trained
generative models for sentence simplification.

We investigate three small-sized generative mod-
els: GPT-2 (Radford et al., 2019), T5 (Raffel et al.,
2020), and BART (Lewis, 2019). Our methodol-
ogy involves fine-tuning the smallest versions of these
models on data consisting of complex-simple sen-
tence pairs, enabling them to generate simplified ver-
sions of input text.

We used GPT-2 Small with 124 million parame-
ters, T5 Small with 60 million parameters, and BART
Base with 140 million parameters. The dataset com-
prised 1,888 examples, divided into 65% training
(1,227 examples), 15% validation (283 examples),
and 20% test (378 examples) sets. Training and val-
idation spanned 10 epochs, with per-epoch durations
of 92–101 seconds for T5, 167 seconds for BART, and
161–177 seconds for GPT-2. The models’ varying
sizes and architectures influenced their performance
as we report below.

4.2 Evaluating a Lossless Sentence
Simplification

The sentence simplification approach aims to decom-
pose complex sentences into simpler ones, with each
output sentence describing a single event. This pro-
cess is evaluated using a combination of metrics that
ensure both structural integrity and lexical and seman-

tic fidelity. We created a Structural Score to evaluate
the model’s ability to identify and separate individual
events from a complex sentence. We calculate it as:

Structural Score =
min(n,m)

max(n,m)
(1)

where n is the number of sentences in the ground
truth, and m is the number of sentences in the pre-
diction. A higher score indicates better event identifi-
cation.

Consider the complex input sentence: ”While she
was thus engaged and looking out at the snow she
pricked her finger, and three drops of blood fell upon
the snow.” The ground truth decomposition identifies
four distinct events. If the model outputs only 3 sen-
tences, the Structural Score would be:

Structural Score =
3
4
≈ 0.75 (2)

To evaluate the quality of each predicted simpli-
fication, we need to assess how well it matches its
corresponding ground truth sentence. The first step is
examining the lexical alignment - checking whether
both sentences share the same vocabulary. For this
purpose, we use the ROUGE-L Score, which quanti-
fies the lexical similarity by identifying the Longest
Common Subsequence (LCS) between the predicted
and reference sentences (Lin, 2004).

We configure all three models with temperature
0.0 to enforce deterministic generation. To account
for lexical variations that maintain semantic equiva-
lence, we implement semantic similarity evaluation
using BERT Score (Zhang et al., 2019). This met-
ric relies on contextual embeddings from pre-trained
BERT model to quantify the semantic alignment be-
tween generated outputs and ground truth reference

For this particular task, T5 demonstrated superior
performance on the test set compared to both BART
and GPT-2. While BART showed stronger perfor-
mance in the validation set for ROUGE-L and BERT
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Figure 4: Performance comparison of GPT-2, T5, and BART on the validation set.

scores, as illustrated in Figure 4 , T5 achieved bet-
ter structural scores during validation. GPT-2 no-
tably struggled to effectively learn the simplification
task throughout both validation and testing phases,
which can be attributed to its decoder-only archi-
tecture (Radford et al., 2019). Unlike GPT-2, both
T5 and BART rely on encoder-decoder architectures
that allow for bidirectional understanding of the in-
put text, making them better suited for tasks requir-
ing comprehensive sentence understanding and re-
structuring (Raffel et al., 2020; Lewis, 2019). When
evaluating our model on 20% of the dataset (test
set), we achieved good results across all metrics: a
ROUGE-L score of 0.76, a BERT Score of 0.95, and
a Structural Score of 0.84. These high scores indi-
cate strong event identification and separation capa-
bilities (demonstrated by the high Structural Score of
0.84), reliable lexical fidelity maintenance (shown by
the ROUGE-L score of 0.76), and excellent seman-
tic content preservation (demonstrated by the BERT
Score of 0.95). This comprehensive evaluation frame-
work confirms that our simplification model performs
well in two aspects: accurately breaking down com-
plex sentences and maintaining the original meaning
and content of each event.

4.3 Reordering the Events

To order events in a storyline chronologically, we
develop a rule-based approach based on dependency
parsing. Our method processes both the original com-
plex sentences and their simplified counterparts pro-
duced by the T5-based sentence simplifier.

To identify which primitives to use in the analysis
of the events of a storyline, we look at the sight words
from K-1 and K-2 levels according to Dolch (Dolch,
1936)2. Children in these grades learn essential tem-

2https://sightwords.com/sight-words/dolch/#lists

poral expressions such as first, then, once, when, fi-
nally, before, after, and at. We use these expressions
as indicators for establishing the chronological order
of events.

In dependency parsing, advcl or adverbial clause
modifier is a type of clause that adds more informa-
tion to a verb, adjective, or other predicate in a sen-
tence. However, it does this in a modifying role, not
as a core part of the sentence. Examples of adverbial
clause modifiers include clauses that describe when
something happens (temporal clause), what results
from it (consequence), what conditions are required
for it (conditional clause), or why it happens (pur-
pose clause). To be classified as an adverbial clause
modifier, the clause must be dependent, meaning it
can’t stand alone as a complete sentence. Also, the
main action or state described in the clause (the pred-
icate) is what the adverbial clause modifier is provid-
ing additional information about. If the modifier is
not a clause, it would be classified as an adverbial
modifier (advmod) instead. With this understanding
of how temporal clues are expressed in dependency
structures, we can now turn to applying these insights
to our simplified sentences.

Based on the dependency parse in Figure 5, we
can reorder the events the following way:

1. We identify the main verbs ”shining” and
”started” in the complex sentence, both marked
with VERB.

2. Through the dependency parse, we determine
their relationship, advcl, marked with the red ar-
row.

3. We then identify the link between the modified
event ”started” to the temporal expression that
modifies it (green arrow).

4. We locate the simplified sentences containing
these verbs.
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Figure 5: Parse tree for a sentence with a temporal clause.

5. If needed, we reorder them to match the orig-
inal temporal sequence: ”The sun was shining
brightly. The rain started”.

This approach ensures that the temporal relation-
ships expressed in the original complex sentence are
preserved in the simplified output, even when the T5
model produces sentences in a different order.

5 VISUAL AND COMMON SENSE
REASONING

In the sentence ”The girl painted the wall,” we en-
counter a common linguistic phenomenon where the
text, while syntactically correct, omits crucial visual
details such as what tools the girl used to paint. This is
an example of underspecification, where natural lan-
guage leaves out details that humans can easily infer
through their understanding of the world, but which
are essential for creating an accurate visual represen-
tation.

In the current version of Imikathen, we address
this underspecification using ConceptNet’s seman-
tic network (Speer et al., 2017). When processing
”paint wall,” ConceptNet helps infer related elements
through multiple relationship types: ”HasPrerequi-
site” relationships reveal necessary tools like ”get
a paintbrush and paint,” while ”HasSubevent” rela-
tionships suggest actions like ”use a paintbrush” and
”open the paint can.” However, ConceptNet also sug-
gests many elements that are not relevant to the im-
mediate scene (such as ”run out of red” or ”keep your
sanity” as relationships), making it challenging to au-
tomatically select the proper elements for scene com-
pletion.

To improve our approach, we propose using
Masked Language Models (MLMs), specifically
BERT and RoBERTa (Devlin et al., 2018; Liu et al.,
2019), which offer superior contextual understand-
ing compared to predefined relationships. These
transformer-based models process each word in rela-
tion to all other words in a sentence, making them
particularly effective at predicting missing elements
based on broader context. We prefer BERT and

RoBERTa over GPT-based models because they con-
sider context both before and after the missing word,
with RoBERTa being particularly effective due to its
more extensive training corpus (Liu et al., 2019).
This approach would provide more natural and con-
textually appropriate completions for underspecified
scenes while maintaining flexibility across different
visualization scenarios.

5.1 Masked Language Models for
Underspecification

To leverage RoBERTa for identifying missing vi-
sual elements, we analyze our input sentences using
Imikathen’s seven predefined visual semantic frames.
These frames define different types of events visu-
ally - such as motion, communication, or posture
change - and serve as templates for what visual in-
formation is needed to animate a given event. Our
semantic role labeling module processes each sen-
tence to detect key visual components based on these
frames, which then guide our queries to the knowl-
edge base. For instance, when analyzing a motion
event like ”He ran north towards the forest through
the meadow,” the system identifies the actor (”He”),
the path (”meadow”), the destination (”forest”), and
the default location (where the actor starts, inferred
from context).

MOTION VERBS



Actor : he
Action : ran
Source : de f ault

Destination : f orest
Pace : de f ault

Manner : de f ault
Emotion : de f ault

Path : meadow
Direction : north

Example: He (actor) ran (pace) north (direction) to-
wards the forest (destination) through the meadow
(path).

We associate the default value with the pace element,
meaning that this will use the predefined speed en-
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coded in the running animation file. A verb modifier
(adverb, such as quickly or slowly) would have been
used to modify the pace and the manner otherwise.
The input is not considered as underspecified as the
running motion can be animated properly given the
textual description.

Other cases of underspecification might result in
unnatural animations. In a sentence like ”Bob wrote a
letter to his friend”.

COMMUNICATION


Actor : Bob

Action : wrote
Message : letter

Recipient : f riend
Instrument : NONE

Example: Bob (actor) wrote (action) a letter (mes-
sage) to his friend (recipient)

From the above, a realistic animation cannot be
generated. The extracted visual elements do not
cover the minimum details required for the writing
animation as the instrument (pen, pencil..etc) is miss-
ing. We can now leverage RoBERTa as a Masked
Language Model (MLM), and use the semantic frame
as a template for the input with the masks. We
formulate the query to the model as:

Bob wrote a <mask message> to a
<mask recipient> using <mask instrument>.

Since in our example, the message and the
recipient are explicitly stated, these are part of the
context and the model has only the instrument to
infer. The query is thus formulated as:

Previous sentences. Bob wrote a letter to a friend
using a <mask>. Following sentences ...

The model is able to generate the following distri-
bution for the top 10 probable tokens:

Token −→ Prob
pen −→ 0.3589

pseudonym −→ 0.2809
computer −→ 0.0495
calculator −→ 0.0229

pencil −→ 0.0143
mouse −→ 0.0103
laptop −→ 0.0097

keyboard −→ 0.0071
photograph −→ 0.0059

robot −→ 0.0055

While LLMs, RoBERTa or others, are good in gen-
erating contextually-relevant text, in this case, one
token (word) that should serve as the writing in-
strument, there’s no way to actually force it to
limit the predictions to instruments only, the second
most probable prediction for the masked token was
”pseudonym”, which despite being contextually cor-
rect is not an element we can visualize or that will
help in the naturalness of the visualization. To force
the MLM to focus only on the terms relevant for our
query, we reinclude ConceptNet in our visual reason-
ing process. The approach for fetching only visually-
relevant arguments using ConceptNet involves query-
ing specific relations that ConceptNet defines. For the
action ”write,” the program queries ConceptNet for
relations such as ”UsedFor,” ”CapableOf,” ”UsedBy,”
and ”CreatedBy.” These relations help in identifying
objects and tools commonly associated with the ac-
tion. For example, ”UsedFor” might return ”pen,”
”paper,” and ”book” as objects that writing is used
for, while ”CapableOf” might return tools like ”com-
puter” and ”typewriter”. Initially, RoBERTa predicts
the top candidate tokens for a masked position in the
sentence, providing both the tokens and their prob-
abilities. These predictions are then filtered by using
ConceptNet to verify if each token is a suitable instru-
ment for the specified action, focusing on the ’Used-
For’ relationship. For the example above, when we
check the overlap of ConceptNet’s output for writing
instruments and RoBERTa’s predictions, we can con-
verge towards the following tokens and their associ-
ated normalized probabilities:

Token −→ Prob
pen −→ 0.9439

pencil −→ 0.0376
keyboard −→ 0.0185

The above then indicates that our approach limits the
candidate tokens to those relevant for the visualization
task and our visualization pipeline can proceed with
the generation. It remains, however, hard to test our
approach to verify the degree of its effectiveness.

6 SYSTEM PROTOTYPE

This section details the development of a system de-
signed to enable educators to create exercises that fa-
cilitate students’ practice of vocabulary and grammar
relevant to the weekly classroom lessons. The system
architecture has been modified, as illustrated in Figure
3, to incorporate a layer where educators can specify
the vocabulary to be practiced each week.
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6.1 Designing for Google Cardboard

Our decision to use Google Cardboard was driven by
its cost-effectiveness, which extends the accessibility
of VR technology to children in developing countries.
In a prior project, we developed a cardboard VR pro-
gramming game, Imikode (Bouali et al., 2019), which
was tested in Nigeria and wherein the learners indi-
cated their satisfaction with the learning experience
(Sunday et al., 2023). Despite its affordability, the
interaction capabilities of Cardboard are constrained
to head movements and a single button or gaze-based
controls. Users can navigate by looking in the de-
sired direction and then looking down. Given these
limitations, Cardboard is most suitable for brief VR
experiences due to comfort and hardware constraints.

With these considerations, we designed short
games aimed at helping children practice weekly vo-
cabulary, allowing educators to create new exercises
aligned with their curriculum.

6.2 Setting up the Exercises

The system includes two primary types of exercises.
The first type addresses word reordering, typically
used for grammar exercises. The second type includes
fill-in-the-blank exercises, which are highly adapt-
able. Educators can ask students to use correct punc-
tuation, temporal expressions, adverbs, or verb tenses,
adapting to a diverse range of questions.

6.2.1 Type 1: Word Reordering

As depicted in Figure 6, to set up a word reordering
exercise, educators input a story with multiple sen-
tences into area 1, this is a story that was already
tested in Imikathen. The system then segments the
story into individual sentences, generating exercises
when the user clicks on ”Tokenize”. Each sentence
becomes a candidate question. In area 2, educators
specify the instructions for students. By clicking on
”randomize” (marked with 3), the exercise is created
in the results area (marked with 4).

6.2.2 Type 2: Fill in the Blank

To create a fill-in-the-blank exercise, the steps shown
in Figure 7 are followed. A story is input into area 1,
which the system then tokenizes into sentences, each
becoming an exercise. For example, level 2 keeps the
default instruction ”fill in the blank,” while level 3 is
edited to a conjugation exercise (marked with 3). Ed-
ucators select the word to hide in area 4 and specify
the candidate words in area 5. The exercise is added
to the results section (marked with 6). This process

Figure 6: Setup for reordering exercises.

Figure 7: Setup for fill-in-the-blank exercises.

generates a JSON file with the teacher-defined exer-
cises that the VR game can use in its game levels.

6.3 Imikathen VR

Upon configuring the exercises, the system reads the
JSON file created by the educator through the exercise
creation menu.

The system subsequently loads an empty environ-
ment with a storybook presenting the instructions for
the first question, the candidate words, and an area for
concatenating the selected words.

Using the cardboard headset, the child gazes at a
word for 5 seconds to select it, adding it to the answer
box as shown in Figure 8. Upon selecting the cor-
rect words in the correct order, the child submits their
answer and clicks ”animate.”

The surrounding environment transforms to re-
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Figure 8: Game screenshot – first exercise loaded.

Figure 9: Game screenshot – first exercise executed and sec-
ond exercise loaded.

Figure 10: Game screenshot – third exercise loaded and
game shows no further instructions.

flect the constructed sentence, as illustrated in Figures
9 and 10. The subsequent exercise loads with new
instructions, allowing the child to proceed, continu-
ously modifying the environment around them based
on the educator’s design.

This tool enables educators to update exercises
dynamically to reflect new vocabulary and grammar
skills that students need to practice, releasing the
teachers from the dependency on the rigid predefined
game narratives in typical educational games.

7 DISCUSSION AND SYSTEM
LIMITATIONS

The implementation of Imikathen-VR demonstrates a
promising step towards integrating teacher-centered
customization in educational gaming. By enabling
teachers to design specific vocabulary and grammar
exercises, this system addresses the significant chal-
lenge of aligning educational games with classroom
curriculum, a gap often noted in the literature (Koh
et al., 2012; Kirriemuir and McFarlane, 2004; Rice,
2007). However, several limitations and areas for fur-
ther improvement were identified during the develop-
ment and initial testing phases.

7.1 Game Design Advantages and
Limitations

The primary advantage of Imikathen-VR lies in its
flexibility for teachers. They can tailor content to
meet their specific educational goals, which is a sig-
nificant improvement over static, pre-defined game
content. Despite this flexibility, the current imple-
mentation restricts teachers to two types of exercises:
fill-in-the-blank and word reordering. This limitation
could be expanded by incorporating additional exer-
cise types, such as sentence construction or interactive
storytelling, to offer a more comprehensive learning
experience.

Additionally, while the current setup provides a
basic framework for language practice, incorporating
dynamic feedback mechanisms could significantly
enhance the learning experience. For instance, a vir-
tual assistant could provide hints or corrections, guid-
ing students through their mistakes, thereby fostering
a more interactive and supportive learning environ-
ment.

7.2 Challenges of Google Cardboard

Google Cardboard provides affordable VR access, es-
pecially in developing regions, but has a few limita-
tions affecting user experience:

1. Limited Interaction: Head movement and single-
button control restrict the complexity of the activ-
ities we can design.

2. Poor Comfort: Cardboard is designed for brief use
which causes discomfort in longer sessions, im-
pacting learning.

3. Technical Constraints: Lower resolution and pro-
cessing power reduce immersion and visual qual-
ity.
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7.3 System Usability

Imikathen-VR, though a promising language learning
game, has yet to be tested properly by educators and
children to verify its effectiveness. While the tool was
developed to give the teachers the chance to decide
what their pupils learn, up to now the teacher’s in-
put on the design of the system has been very limited.
We, thus, recognize, that before we start classroom
testing, a validation round and possibly some degree
of redesign might be needed to make the most out of
the system’s potential.

8 CONCLUSION AND FUTURE
WORK

Imikathen-VR advances educational technology by
putting customizable content creation directly in ed-
ucators’ hands, enabling them to align educational
games with their classroom objectives. While this
represents significant progress, several key develop-
ment areas remain. The system needs expanded
exercise variety, including sentence construction,
metaverse-like group activities, and context-based
questions to broaden language practice options. In-
teraction quality could be enhanced through voice
recognition and advanced gesture controls, while AI-
driven feedback systems would enable more person-
alized learning experiences. Additionally, exploring
advanced VR platforms while maintaining Cardboard
compatibility would balance innovation with accessi-
bility.

Our choice of Google Cardboard enables planned
testing with teachers in Morocco and Nigeria, though
we acknowledge the current lack of educator and stu-
dent feedback. Our immediate focus is improving
the graphics library and capabilities before proceed-
ing with classroom testing. Through continued de-
velopment in these areas, Imikathen-VR can evolve
into a more effective educational tool, improving lan-
guage learning outcomes across diverse educational
contexts.
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