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The discovery of COVID-19 has drawn attention to the need for relatively fast and accurate diagnostic so-
lutions for clinical applications. However, the creation of high-quality Al systems is often hampered by the
lack of sufficient amounts of similar reference datasets. Therefore, GANs have emerged as useful tools to
address this challenge through synthetic data. Building on our previous work on conditional tabular GAN's
(CTGAN:S), this study proposes a novel TGAN architecture for augmenting tabular COVID-19 data. To eval-
uate the performance of TGAN-based augmentation, we conduct extensive tests to compare its performance
with CTGAN while using several machine learning classifiers for prediction. The results on evaluation criteria
such as precision, accuracy, recall, F-measure, and ROC AUC show that the proposed TGAN outperforms
CTGAN. It is worth noting that the logistic regression classifier achieves a test accuracy of 0.746, precision of
0.734, and recall of 0.928 when trained on the provided TGAN-augmented dataset, which is higher than those
on the original and CTGAN-augmented datasets. In addition, the augmentation range was optimal at 100% as
we balance performance and the risk of overfitting. The developed TGAN method provides an effective tool
for generating synthetic samples that provide a description of the data distribution and improve COVID-19
diagnostic models. This study demonstrates the feasibility of TGAN-based data augmentation in overcoming
the data shortage issues by creating efficient and reliable Al systems to support clinical decisions regarding

upcoming pandemics.

1 INTRODUCTION

The emergence of the coronavirus disease (COVID-
19) has posed an incomparable test to the global
health care industry. Diagnostics, therefore, has a
key role in preventing the virus spread and ensuring
that the right treatment is given to the affected per-
sons(Dong et al., 2020) . However, the construction of
accurate diagnostic models becomes a challenge be-
cause of the unavailability of adequate training data
to train the models especially in the initial phases of
the pandemic (Wu and McGoogan, 2020) GANs have
emerged as useful solutions to the data scarcity is-
sue through synthetic data augmentation (Goodfellow
et al., 2014). GANs consist of two competing neural
networks: an autoencoder that is able to generate new
realistic data samples and another network called dis-
criminator which tries to correctly classify real and
generated data (Creswell et al., 2018). In this way,
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with adversarial training of the networks GANs can
discern the underlying data distribution and learn to
produce multiple synthetic samples which are similar
to the real data.

Conditional tabular GAN (CTGAN) is a leading
solution for generating realistic patient records. How-
ever, tabular GAN methods have also proven effec-
tive in modeling high-dimensional tabular data, and
sometimes achieve better results by explicitly dealing
with inherent feature variance and correlation struc-
tures. In our previous research, we introduced CT-
GAN (Conditional Tabular GAN) - a GAN architec-
ture targeting COVID-19 tabular data augmentation.
The results showed an improvement in the detection
and prediction accuracy of machine learning classi-
fiers when using real data along with synthetic sam-
ples generated by CTGAN, when compared to the
original data alone (Al-Bwana et al., 2024).
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This study extends our previous work by propos-
ing a customized TGAN architecture designed for
COVID-19 tabular data aggregation and conducting
a comprehensive comparative analysis with CTGAN.
This study will achieve the following objectives. 1.
Design a suitable TGAN architecture for learning the
distribution of COVID-19 tabular datasets and out-
putting realistic synthetic samples. 2. The effect
of TGAN data augmentation on the predictive per-
formance of several machine learning classifiers for
COVID-19 diagnosis. 3. To access the performance
impact of TGAN and CTGAN on the overall diag-
nostic accuracy, recall, and ROC AUC for COVID-
19. 4. Also, at the same time, to confirm the ben-
efit of data augmentation so that the performance is
improved while preventing the chances of overfitting.
This study aims to find an effective way to develop
Al models in the medical field when data is scarce.
Through the comparative analysis of TGAN and CT-
GAN, the most effective and accurate adversarial gen-
erative networks in diagnosing COVID-19 through
data augmentation were identified.

This paper also addresses broader methodological
gaps by describing the interaction between advanced
deep generative frameworks and various machine
learning classifiers, and exploring parameter settings
and validation methods to ensure reproducibility and
reliability. The rest of the paper is organized as fol-
lows: Section 2 reviews relevant GAN-based studies
on data augmentation in the medical domain. Sec-
tion 3 introduces the proposed TGAN architecture,
focusing on improvements over standard methods.
Section 4 describes the experimental setup, including
datasets, preprocessing, and evaluation metrics. Sec-
tion 5 presents comparative results, including ablation
analysis, discussion, and an expanded presentation of
the advantages of TGAN. Section 6 identifies limita-
tions and suggests future work. Section 7 concludes
the paper by summarizing the results and highlighting
the main contributions.

2 RELATED WORKS

Wlavadi-Moghaddam et al. (2023) proposed an
oversampling model called COVIDDCGAN using
DCGAN to balance a COVID-19 chest X-ray
dataset. They used chest X-ray images labeled as
COVID/non-COVID. Their proposed DCGAN over-
sampling model produced a balanced dataset be-
tween the COVID and non-COVID classes, which
improved classification performance compared to
the imbalanced original dataset that led to poorer
performance(Javadi-Moghaddam et al., 2023) Nik et
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al.  (2023) proposed a novel technique for creat-
ing synthetic tabular health care data using Gener-
ative Adversarial Network model but in a way that
the patient’s identity would not be compromised. In
the current study, several configurations of GANs
were used; these are Vanilla GAN, Conditional GAN
cGAN, Wasserstein GAN WGAN, and Wasserstein
GAN with Gradient Penalty WGAN-GP. Of the four,
WGAN-GP was the best by generating synthetic data
sets akin to real data and also having statistical prop-
erties preserved. This approach was superior to the
conventional process of sharing data that can be ham-
pered by some elements of privacy and restricted
accessibility of data for research(Nik et al., 2023).
Mozaffari et al. (2023) played an extensive review
on deep learning architectures for COVID-19 diagno-
sis. This study also discussed a survey that presented
CNNs, RNNs, and a combination of both models in
the diagnosis of COVID-19. The study also pointed
out that models with better performance had im-
proved accuracy levels, with CNN-based models at-
taining up to 98% of accuracy, while, the conventional
methods like SVM and simple Machine learning algo-
rithms were slightly lower at about 85 90% of accu-
racy. (Mozaffari et al., 2023) Rounaq et al. (2023)
built a GAN model for COVID-19 cases detection.
The GAN model featured high accuracy with medi-
cal image data on COVID 19 with the detection accu-
racy reaching 92%. This performance surpassed thor-
oughly the reality observed with other approaches,
the svm and simple ccs with precision degrees be-
tween 85% and 88%. In this analysis, the researchers
demonstrated that GANs can help in increasing the
diagnostic efficiency and possibility of early identifi-
cation of the COVID-19 virus cases (Rounaq et al.,
2023).

3 METHODOLOGYS

Figure 1 illustrates the methodology used in this
study.

3.1 Proposed TGAN Architecture

The proposed TGAN model integrates self-attention
modules within both the generator and discriminator
to better encode feature interdependencies in COVID-
19 tabular data. It also introduces an expanded con-
ditioning strategy to incorporate multiple discrete at-
tributes, which helps to capture co-occurrences be-
tween potentially correlated features (e.g., age group,
coexisting medical conditions).
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Figure 1: Methodology.
3.2 Generator Design

the conceptual framework of the proposed architec-
ture. The generator receives two inputs: random noise
sampled from a Gaussian distribution and a multi-
dimensional conditional vector representing one or
more attributes. A multi-layer perceptron (MLP) pro-
cesses this combined input, interspersed with self-
attention blocks.

3.3 Discriminator Design

The discriminator utilizes a similar MLP structure
interspersed with self-attention blocks. Both real
and synthetic samples are fed into the discrimina-
tor, which learns to classify them as real or fake.
The expanded conditioning is likewise applied in the
discriminator, helping it better differentiate between
plausible and implausible conditional features. Resid-
ual connections and layer normalization also appear
here to maintain stable gradients.

3.4 Training Objective

Following standard GAN training, the generator and
discriminator engage in a minimax game (Goodfel-
low et al., 2014). The generator strives to fool the dis-
criminator, while the discriminator seeks to classify
samples accurately. The objective function includes:

mGin max Ex~pyaa 10g D(X)]+

By pyepellog(1 — D(G(z,0))]

where z is noise, c¢ is the conditional vector, G is the
generator, and D is the discriminator. The training
routine alternates between optimizing D and G with
an adaptive learning rate and a carefully chosen batch
size to prevent mode collapse.

4 EXPERIMENTAL SETUP

4.1 Dataset and Preprocessing

The primary dataset for this study comprises COVID-
19 patient records extracted from the CORD-19
repository (Al-Bwana et al., 2024), supplemented by
additional curated clinical records from partner insti-
tutions. In total, the combined dataset contains around
14,500 patient entries with features that include:

* Demographics: age, sex, geographic region

» Symptoms: fever, cough, dyspnea, fatigue

* Clinical results: white blood cell counts, oxygen
saturation, etc.

» Contact or travel history

* Outcome labels: positive or negative COVID-19
status

Each record contains 21 variables (numeric and cat-
egorical). Prior to model training, we conducted the
following preprocessing:

* Dropping records with excessive missing at-
tributes to preserve data reliability.

* Normalizing or standardizing continuous features.

* One-hot encoding categorical features with a
moderate number of categories.

» Label encoding for binary or ternary features.

We randomly partitioned the dataset into training,
validation, and test splits using a 70%-10%-20% ra-
tio.

4.2 Compared Methods and Baselines

We compared our proposed TGAN with:

* CTGAN (Xu et al.,, 2019): A popular refer-
ence method for tabular data augmentation, incor-
porating mode-specific normalization and single-
column conditioning.

e Vanilla Oversampling. Classic oversampling
techniques such as Synthetic Minority Oversam-
pling Technique (SMOTE) (Chawla et al., 2002)
for generating new minority instances.

* No Augmentation. Baseline using only the orig-
inal training data.

These approaches were integrated into a classifica-
tion pipeline that trained a set of machine learning al-
gorithms: logistic regression, decision trees, random
forests, support vector machines, k-nearest neighbors,
and a shallow feed-forward neural network.
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4.3 Augmentation Ratios

To explore the effect of augmentation scale, we gen-
erated synthetic samples at various percentages of
the original training size (e.g., 50%, 100%, 120%,
200%). While limited prior research suggests di-
minishing returns beyond certain thresholds (Mu-
muni and Mumuni, 2024), we include higher lev-
els to check for potential overfitting or performance
plateaus. Each augmented dataset (original plus syn-
thetic) was subjected to the same machine learning
classification pipeline to ensure consistency.

4.4 Evaluation Metrics and Statistical
Analysis

We employed standard evaluation metrics on the held-
out test set:

* Accuracy. Overall fraction of correct predictions.

* Precision. Fraction of predicted positives that are
truly positive.

* Recall. Fraction of actual positives correctly iden-
tified.

* F-measure. Harmonic mean of precision and re-
call.

* ROC AUC. Area under the receiver operating
characteristic curve.

For statistical validation, we performed repeated
experiments (with different random seeds) and re-
ported mean values. Where appropriate, we applied
paired t-tests to compare the augmented and non-
augmented scenarios.

S RESULTS AND DISCUSSION

5.1 Comparative Performance Analysis

This section presents the main results, focusing on the
impact of TGAN-based augmentation compared to al-
ternative strategies. We first present the augmentation
results on the machine learning classifiers (25%, 50%,
and 100%), then present the results for the logistic re-
gression classifier due to its interpretability, followed
by a brief overview of the other algorithms.

5.1.1 Experimental Results
Experimental analysis revealed that the proposed data

augmentation using TGAN provided better predictive
accuracy for COVID-19 diagnostic models compared
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to training on the dataset without augmentation. Fig-
ures 2 to 5 illustrate the results of data augmentation
and its impact on the performance of machine learn-
ing models.

Dataset pecsion |y LOBSUC T RE | sum
Trees Regression
Original |~ 0653 | 0.653 0.677 0.684 0653 | 0.657
ACC
TGEAN 0670 | 0.668 0.630 0635 | 0.670 | 0672
Original 0512 0.527 0618 0604 0521 0521
Recall
TEAN 0.530 | 0.545 0.635 0.620 @ 0.540 | 0.540
Qriginal |~ 0,812 | 0798 0,771 0724 0804 02811
Precision
TGEAN 0.820 | 0.805 0.780 0.802 0812  0.820
Original = 0628 | 0.635 0.686 0686  0.632 0634
F-measure
TGEAMN 0.640 | 0.648 0.638 0698 0.644 | 0646
Original =~ 0.744 | 0.766 0.731 0.786  0.767 | 0.738
AUC
TGAMN 0755 0.775 0,800 0795 0776 0748

Figure 2: Performance of classifiers with TGAN augmenta-
tion (25% augmentation ratio).

Decision Logistic

Dataset
Trees Regression

Original | 0.653 0.653 0.677 0684 0653 0.657
ACC
TGAN | 0684 0.670 0.709 0661 0632 0.695

Original | 0512 0.527 0618 0604 0521 0521
Recall

TGAN | 0.860 0.856 0.932 0563 0872 0876

Original | 0.812 0.798 0.771 0.794 0304 03811
Precision

TGAN | 0672 0.660 0.675 0.772 0,667  0.678

Original | 0.628 0.635 0.686 0.686 0632 0.634
F-

measure
TGAN | 0.754 0.746 0.783 0634 0.756  0.764

Original | 0.744 0.766 0.791 0.786 0.767 0.738
AUC

TGAN | 0.752 0.766 0.807 0.767  0.779  0.768

Figure 3: Performance of classifiers with TGAN augmenta-
tion (50% augmentation ratio).

5.1.2 Logistic Regression

Table 1 summarizes the performance of logistic re-
gression when trained on datasets augmented by
TGAN, CTGAN, SMOTE, and no augmentation. The
augmentation ratio is 100% (i.e., the synthetic set size
equals the original set size).
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Decisi Logisti
eclsion ANN oglstic

Dataset
Trees Regression

Original 0.633 | 0653 0677 0684 0633 | 0637

ACC
TGAN 0.693 0.687 0.704 0.672 | 0693 | 0.690
Original 0.512  0.527 0.618 0.604 0521 | 0521
Recall
TGAN 0.873 0875 0.827 0.788 03892 | 0.840
Original 0.812 0.798 0.771 0.794 0304 | 0.811
Precision

TGAN 0775 0.772 0.772 0.744 | 0.779 | 0.705

Original 0.628  0.635 0.686 0.686 0632 | 0.634
F-measure
TGAN 0.775  0.772 0.772 0.744 | 0.779 | 0.766

Original  0.744  0.766 0.791 0.786  0.767 | 0.738
AUC

TGAN 0772 0.794 0.804 0.775 | 0.793 | 0.754

Figure 4: Performance of classifiers with TGAN augmenta-
tion (75% augmentation ratio).

Dataset Decision Logistic KNN & RF SVM
Trees Regression
Original ~ 0.653 0.653 0.677 0.684 0.653  0.657
ACC
TGAN 0.716 0.709 0.734 0.680 0.704 | 0.704
Original ~ 0.512 0.527 0.618 0.604 0.521 | 0.521
Recall
TGAN 0.868 0.882 | 0916 0.627 0.891 | 0.899
Original  0.812 0.798 | 0.771 0.794 0.804 | 0.811
Precision
TGAN 0.709 0.708 0.720 0.800 0.700 | 0.698
F Original 0628 0.635 0.686 0686 0.632 0634
measure
TGAN 0.723 0.736 0.806 0.703 0.784 | 0.786
Original ~ 0.744 0.766 0.791 0.786 0.767  0.738
AUC

TGAN 0.737 0.772 0.829 0.750 0.779 | 0.793

Figure 5: Performance of classifiers with TGAN augmenta-
tion (100% augmentation ratio).

Table 1: Logistic Regression Performance under Different
Augmentation Methods (Augmentation Ratio = 100%).

Method Acc. Prec. Recall F1 AUC
No Aug. 0.677 0.771 0.618 0.686 0.791
SMOTE 0.698 0.739 0.702 0.720 0.802
CTGAN 0.732  0.750 0.818 0.782 0.823

Proposed TGAN 0.744 0.767 0.846 0.804 0.835

The proposed TGAN architecture consistently
outperforms all baselines. Notably, TGAN yields im-
provements in recall over CTGAN, underlining its
ability to generate synthetic samples that help identify
COVID-19-positive cases more effectively. The area

under the curve also increases slightly, demonstrating
that TGAN maintains a better trade-off between true
positive rates and false positives.

5.1.3 Other Classifiers

To confirm the general efficacy of TGAN, we repli-
cated these experiments on several other classifiers.
Figure 6 displays the accuracy and AUC for each clas-
sifier with TGAN-based augmentation (100% ratio)
compared to CTGAN on the same ratio.

Accuracy AUC
Classifer
CTGAN | TGAN CTGAN @ TGAN
Decision 0.706 0.716 0.756 0.802
Trees

ANN 0.709 0.719 0.795 0.805

Logistic | 10, 0.744 0.829 0.839
Regression

ENN 0.680 0.710 0.750 0.774
RF 0.704 0.714 0.779 0.816
SVM 0.704 0.714 0.793 0.823

Figure 6: Comparison of TGAN vs. CTGAN on Multiple
Classifiers (Augmentation Ratio = 100%).

While the net improvement margins vary by al-
gorithm, TGAN consistently matches or exceeds CT-
GAN performance levels. The difference is particu-
larly clear for decision trees and support vector ma-
chines, where TGAN shows a roughly 1.1-1.5% im-
provement in accuracy and a 0.7-1.0% improvement
in AUC. For neural networks, TGAN narrowly sur-
passes CTGAN in accuracy, though the AUC values
are similar, suggesting that both TGAN and CTGAN
significantly benefit deep classifiers.

5.2 Impact of Augmentation Ratio and
Overfitting

mpact of Augmentation Ratio and Overfitting To
study the impact of augmentation ratios, we mea-
sured logistic regression accuracy and AUC at 50%,
100%, 120synthetic data generation (Figure 6). While
perfor- mance initially increases, an overshoot phe-
nomenon appears at 120% . The improvement in re-
call is offset by reduced precision, resulting in a lower
F1. This observation highlights that more synthetic
data does not necessarily lead to better outcomes.
Fig. 7: Logistic regression performance under vary-
ing TGAN augmentation ratios. Higher augmentation
initially helps, then degrades beyond 100%.
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Figure 7: Logistic regression performance under varying
TGAN augmentation ratios. Higher augmentation initially
helps, then degrades beyond 100%.

5.3 Impact of Augmentation Ratio

In addition, to consider the effects of augmentation
ratio on prediction accuracy, the TGAN model was
trained with different augmentation ratios of (50%,
100%, and 120%). The accuracy and ROC AUC for
logistic regression classifier at different augmentation
ratio are shown in figure3.

Angmentation
Eatio ACC | ROC | ATIC
50% L0718 | 0942 0 0817
100%% 0744 | 0926 @ 0839
120% 0708 | 0.84% | 0.818

Figure 8: Impact of Augmentation Ratio on Logistic Re-
gression Classifier.

The findings depict that the efficiency of logis-
tic regression classifier Increases with the enhance-
ment of augmentation ratio to 100specifically when
the augmentation ratio was set above 100%, slightly
reduced the accuracy as it might overfit the model.
In the case of TGAN, the best augmentation ratio was
approximately 100% as the contribution increased the
accuracy without noticeably the risk of overfitting.

5.4 Extended Discussion

Overall, TGAN-based augmentation positively influ-
enced classification metrics, particularly recall, which
is critical in early detection of COVID-19. By synthe-
sizing plausible patient profiles that emulate true data
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distributions, TGAN aids classifiers in learning ro-
bust decision boundaries. Moreover, the self-attention
module appears key to capturing subtle correlations
such as the link between specific age brackets and co-
morbidities.

Nonetheless, an important limitation concerns the
potential mismatch of synthetic and real data distri-
butions. While TGAN can improve classifier perfor-
mance, rigorous tests are needed for domain general-
ization. Additionally, extremely large augmentation
ratios can lead to overfitting, where models become
too reliant on synthetic patterns. This phenomenon
underscores the significance of calibration.

6 LIMITATIONS AND FUTURE
WORK

The dataset, though of moderate size, may not fully
represent the full spectrum of clinical profiles. Fu-
ture studies might integrate datasets from multiple re-
gions to improve diversity and apply domain adapta-
tion strategies. Privacy considerations require further
analysis of potential data leakage or re-identification
risks, which remain critical issues for real-world
adoption. Another dimension for future research is in-
terpretability, potentially through methods like atten-
tion visualizations to show how synthetic data influ-
ences the classification model (Gigante et al., 2021).
Additionally, measuring utility vs. privacy trade-
offs through differential privacy or adversarial at-
tacks can confirm whether TGAN safely generates
data suitable for external collaborations (Jordon et al.,
2023). Further ablation experiments on self-attention
hyperparameters (e.g., number of heads, hidden di-
mension) can refine understanding of resource trade-
offs. Finally, beyond COVID-19, TGAN-based aug-
mentation may generalize to rare diseases and other
public health crises with limited data availability.

7 CONCLUSION

This paper demonstrates the effectiveness of an en-
hanced tabular generative adversarial network for
COVID-19 diagnostic classification, addressing per-
sistent data scarcity issues in clinical research. The
self-attention and multi-conditional strategy allowed
the generator and discriminator to capture complex
feature interactions and produce synthetic data that
appreciably boosts multiple classification metrics.
Comparative results indicate that the proposed TGAN
outperforms CTGAN and other common augmen-
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tation methods, especially at an augmentation ratio
of approximately 100%. Ablation studies further
highlight the importance of the architectural modi-
fications, establishing that self-attention and multi-
conditional conditioning both contribute to robust
performance improvements. These findings confirm
that advanced generative techniques can play a vital
role in supporting data-driven medical research and
decision-making, even when available data is limited.
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