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Abstract: The advent of big data and artificial intelligence has led to the elaboration of computational psychiatry. In 
parallel, great progress has been made with extended reality (XR) technologies. In this article, we propose to 
build a forensic cyberphysical system (CPS) that, with a data lake as its computational and data repository 
core, will support clinical and research efforts in forensic psychiatry, this in both intramural and extramural 
settings. The proposed CPS requires offender's data (notably clinical, behavioural and physiological), but also 
emphasises the collection of such data in various XR contexts. The same data would be used to train machine 
and deep learning, artificial intelligence, algorithms. Beyond the direct feedback these algorithms could give 
to forensic specialists, they could help build forensic digital twins. They could also serve in the fine tuning of 
XR usage with offenders. This paper concludes with human-centered cybersecurity concerns and 
opportunities the same CPS would imply. The proximity between a forensic and XR-supported CPS and social 
engineering will be addressed, and special consideration will be given to the opportunity for situational 
awareness training with offenders. We conclude by sketching ethical and implementation challenges that 
would require future inquiring.  

1 INTRODUCTION 

The recent context, the one motivating the present set 
of proposals, is fuelled by four related (or so we 
would contend) states of affair: the call for 
computational psychiatry (CPsy), the era of big data, 
the surge in artificial intelligence (AI) applications, 
and the ease of access to rapidly improving extended 
reality (XR) technology. Following the brief 
introduction of these four developments in the present 
section, the next two sections will delve in the crux of 
our proposals: a cyberphysical interface for clinical 
and research purposes, and its relationship with 
human-centred cybersecurity concerns.  

The last decade has seen burgeoning discussions 
about CPsy. Itself inspired by computational 
neuroscience, it characterizes attempts to model 
mental illness biologically through multiscale levels 
(e.g., genetic, synaptic, neural circuit, social 
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environment), all while assuming neuronal 
computations are at the core of both healthy and 
unhealthy psychology (Huys et al., 2016; Montague 
et al., 2012; Wang & Krystal, 2014). It is assumed that 
CPsy is to play a part in improving aetiological 
understanding and nosology of mental disorders, 
notably by liberating psychiatry from (too) stringent 
diagnoses, favouring instead data-driven approach 
which might help quantify symptoms dimensionally 
(Huys et al., 2016); in turn, improvements in 
therapeutics would be afforded, and to an extent, 
better personalized.  

Directly related to both computational 
neuroscience and CPsy is the exponentially 
accumulating and numerous (big) data. This 
accumulation of data in various fields, notably the 
health industry (Chen et al., 2022a), is seen by many 
as a gold mine, empirical fuel to build better models, 
and in turn theories, about mental disorders and 
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symptomatology. Data mining, the process of 
extracting useful information out of larger data sets, 
can be considered a component of CPsy (Montague et 
al., 2012).  

The surge of big data and data mining in the 
sciences has led to the proposal of a new science that 
transcends standard statistics, “data science” (Dhar, 
2012). The intensive need to process enormous 
amounts of data quickly and efficiently, algorithms 
under the umbrella term of “AI” are now developed 
and deployed to tackle this task. A prime example 
would be that of machine learning (ML) and deep 
learning (DL), and their multiple approaches (see 
Jordan & Mitchell, 2015; Mahesh, 2018; Ray, 2019; 
Shrestha & Mahmood, 2019). A common 
denominator of these approaches is better decision 
making, this, either by a human being, or another 
algorithm down the line. In the burning actuality, the 
public at large but perhaps academia more stingingly 
has been stormed by the release of efficient large 
language models (LLMs; see Naveed et al., 2024, 
notably their figured timeline).  

Concluding the exposed context, the 1990’ and 
early 2000’ was the period where a first surge of 
research involving XR technologies hyped (virtual 
reality, then augmented reality, then mixed reality). 
However, it is only recently that such technologies 
have become, relatively:  cheaper, more logistically 
versatile (e.g., size and weight of equipment, less 
cabling) and more immersive (e.g., better visual 
displays). A branch of cyberpsychology is versed into 
integrating XR technologies into psychotherapeutic 
protocols (e.g., Emmelkamp & Meyerbröker, 2021; 
Park et al., 2019; Wiederhold & Bouchard, 2014). 
Now, what can this broad context hold for forensic 
settings? 

2 A FORENSIC MENTAL 
HEALTH’ CYBERPHYSICAL 
SYSTEM 

Forensics is understood here as any technical 
expertise or approach that relates to describing or 
understanding crime. Conversely, forensic 
psychiatry/psychology (FPsy) pertains to 
psychological factors (perhaps influenced by biology 
or social factors themselves; Barnes et al., 2022) that 
constitute risk factors of (re)offending. It is often 
assumed that crime is somewhat related to mental 
illness and psychopathology (Arboleda-Flórez, 
2006).  

Given the described context, a promising avenue 
for the merger of CPsy and FPsy is through a 
cyberphysical system (CPS), which would also be a 
mental health-oriented, medical, CPS (Chen et al., 
2022a). Cyberphysics involves the merging of 
computational capabilities with physical processes 
(Lee, 2006). Jiang and colleagues (2020) position 
CPS as different from the Internet of Things (Atzori 
et al., 2010), the former having larger computational 
capacity, which in turn gives these computations 
control over the system (see also Chen et al., 2022a). 
As the same authors and others (Alam & El Saddik, 
2017) note, data from physical sensors can be sent to 
a server, be computed upon, and in turn, give 
directives for sensor configurational change, forming 
a feedback loop. Such a loop makes CPS useful for 
human-machine interaction (HMI; Jiang et al., 2020), 
and of special relevance for FPsy, brain-computer 
interaction (BCI). Importantly, XR technologies can 
be implemented with/be part of HMI or BCI, 
implying part of the feedback would include XR 
content. So, what is advocated for, in an acronym-
intensive nutshell: FPsy, following the insights of 
CPsy, should work within the confines of a CPS, as 
the latter leads to a more optimal HMI/BCI. Central 
to this are data storage and computational power, the 
subject of the next subsection. Figure 1 better situates 
the elements to be presented within the forensic-
medical CPS framework proposed here.  

2.1 Data Lake, Its Basic Structure and 
Content 

The presented blueprint of data architecture 
management heavily relies on establishing a data 
lake, a multi-format big data (and any accompanying 
metadata) holder and modifier (Nargesian et al., 
2019). A data lake implies a server with high-capacity 
storage. Costs for such infrastructure would vary 
according to the scope of the implemented CPS. Still, 
it is worth noting that forensic and medical (including 
psychiatric) institutions already have secured servers 
to support day-to-day operations. As such, adding the 
proposed data lake-supported CPS should not imply 
radical novelty to the existing computer 
infrastructure, and punctual adaptation for involved 
information technology services. For FPsy purposes, 
a list of non-exhaustive examples of retained data for 
any given offender would include criminal offense(s), 
psychiatric diagnoses and clinical notes, 
questionnaire and actuarial results, past and present 
physical conditions and diagnoses, medication 
schedule and posology, as well as behavioural and 
physiological indices. Such clinical information is  
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Figure 1: Data flows of the proposed forensic-medical cyberphysical system. 

commonly centralised in medical settings, using 
features like the Open Architecture Clinical 
Information System (OACIS, Telus Health). More 
broadly, detailed considerations for a forensic CPS 
would likely benefit from considering medical CPS 
(see Chen et al., 2022a). Data-collection-wise, worth 
noting are LLM-powered applications that assist 
medical professionals when interviewing patients, for 
instance, by automatically taking notes. As these 
applications already see deployment in the anonymity 
bound healthcare service complex (e.g., CoeurWay), 
there implementing in forensic settings is arguably 
just as realistic.  

Focusing on behavioural and physiological data, 
non-exhaustive examples: speech prosody and 
semantic content, heartrate, electroencephalography 
(EEG), electrodermal activity, eye-tracking, blinking, 
pupil dilation, brain structural scans and 
hemodynamic responses and salivary or blood 
hormonal levels. While some measurements can only 
be punctual snapshots in time (e.g., salivary cortisol) 
or inserted in research protocol efforts or be part of 
routine checkups, others can be continuous, perhaps 
24/7 measurements (e.g., watch-monitored heartrate).  
At first glance, some of these measurements would 
appear to require intensive management efforts, such 
as laboratory analyses, followed by manual indexing 
of results. One should note however the rapid 

advancements in quick, app-monitoring-supported 
testing (e.g., salivary cortisol level; Eli Health). 

To be maximally interpretable or useful, 
continuous physiological measurements likely 
require some data cleaning. A notorious example 
would be EEG, which beyond filtering choices, is 
also blighted by eye and other movement artifacts 
(Urigüen & Garcia-Zapirain, 2015). While there is no 
definitive nor consensual, solution to this challenge, 
automatic artifact removal readily exists (e.g., Goh et 
al., 2017; Pedroni et al., 2019), and their betterment 
is ongoing. The main point here is that for the data 
lake to serve in producing quality data autonomously 
and quickly (especially considering BCI), such 
automatic cleaning is warranted. In any case, the 
multiple types of data, and associated varying format 
and frequency of acquisition, all suggest highly 
individualized pre-processing pipelines and 
algorithms, in accordance with the notion of “data 
ponds”, a subdividing of processing architecture 
differing across data types (Inmon, 2016; Sawadogo 
& Darmont, 2021).  

2.2 Behavioral and Physiological 
Monitoring with XR 

The use of XR technologies within forensic settings 
offers a unique opportunity to probe the offender's 
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psyche and behavioural patterns. We identify and 
focus on two main living settings: institutionalized 
and free-range. In turn, both could serve model 
building at both group (e.g., diagnosis) and individual 
levels. 

2.2.1 Monitoring: Institutionalized or  
Free-Range 

Institutionalization of forensic populations can be 
done in various settings (e.g., prison, secured 
psychiatric institutions, transition housing), all of 
which having in common a relatively high routine 
component (e.g., hours of getting up and curfew, 
eating hours, scheduled free-time and activity 
periods, etc.). In these controlled settings, it is 
relatively easy to integrate physiological 
measurements as those described above, again, them 
being either continuous or scheduled. It is further 
possible, especially in the latter case, to register 
subjective self-reports as well as clinical impressions 
or observations from caregivers and personnel. As for 
the former case, continuous measurements, they can 
be extensively investigated via research protocols 
incorporating XR technologies (Torous et al., 2021), 
said protocols implying stricter experiment control. 

Such protocols would have to be designed and 
implemented with the specific institutionalisation 
settings in mind. The use of XR is already done in 
forensic settings (e.g., Boukhalfi et al., 2015; Renaud 
et al., 2014), but generally within a strict protocol of 
stimulus exposure. Even if more ecologically valid 
then, say, desktop tasks (Loomis et al., 1999), 
especially if LLMs were to be incorporated, one 
caveat of such protocols is that they may nonetheless 
influence or predispose offenders to a specific 
mindset or narrowed response options. In other 
words, offenders are still in a “task” setting, which is 
implicitly cognitively constraining. This further 
emphasises the relevance of spontaneous context 
exposure, as anticipation (conscious or not) on the 
offender's part is either absent or as in everyday 
living. XR-wise, it is tentatively hypothesized that 
AR would perform better than VR here, since the 
former keeps the individual more rooted in the real 
world. In other words, AR is more easily integrated 
as a new way of living then VR, a notion important to 
consider in the context of free-range monitoring. In 
the same vein, prolonged AR, coupled with speech 
recording, affords speech analysis (Corcoran & 
Cecchi, 2020) to be integrated within a CPS. 

Free-range monitoring has the benefits of 
everyday living with little to no alterations. Its use 
with psychiatric populations to gain 

psychopathological insight has been advocated for, 
by using, for instance, social media and smartphone 
data (Gillan & Rutledge, 2021; Torous et al., 2021). 
In the continuous monitoring of offenders, it can be 
of interest to use AR, for three main reasons, its 
relatively: aforementioned less impactful disturbing 
of natural behaviour and inclinations, lesser 
development costs (Baus & Bouchard, 2014), 
lessened computational requirements (next 
subsection), and it favouring adaptational strategies 
(next section). While prone to its own challenges, 
free-range (cf, open world) ML might be a necessity 
for model quality (Zhu et al., 2024), and in turn, for 
any HMI/BCI success. More broadly for ML- and 
DL-based models, testing the predictive efficacy, or 
the lack-thereof (pushing the investigation towards 
the efficacy of each variable or configurations of), of 
institutional-data-built models for free-range 
situations is most relevant.   

2.2.2 Nomothetic and Idiographic Prediction 

A recurrent critique of conventional psychiatry is its 
generalizing tendency of both aetiology and 
treatment, perhaps routed in essentialisation (Brick et 
al., 2021; Hitchcock et al., 2022), at the expense of a 
more accurate and (perhaps necessary) personalized 
approach. Remembering the commitment of CPsy to 
overcome this pending issue, having data from 
monitoring a same individual at varying constraint 
levels (i.e., institutionalized contra free-range) might 
give key insights to co-enhance prediction in all 
settings (Gillan & Rutledge, 2021). More broadly, it 
has been noted that CPsy has had limited success in 
part due to an overcommitment to preexisting 
category fixations (e.g., as opposed to data-driven 
approaches; Rutledge et al., 2019), as well as 
insufficient flexibility in modelling approaches 
(Hitchcock et al., 2022). Central to the latter point 
would be lack of time and contextual consideration, 
or as the merger of the two would suggest, the need 
for a dynamical understanding of psychopathology 
(Hitchcock et al., 2022); the same could be said for 
our understanding of offending and any underlying 
role of psychopathology. The long-term, so 
longitudinal, monitoring advocated for could thus 
play a part in ending the gridlock of CPsy.  

2.3 Towards Adjustment-Free 
HMI/BCI, Digital Twins, and 
Training 

Assuming success of efforts described in the previous 
subsection, the next step in improving both model 
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accuracy (research angle) and therapeutic change 
(clinical angle) would be to incorporate a fully-
fledged HMI/BCI. Specifically, it is as if the model 
would have learned “all there is to know” about the 
individual, and so operate irrespective of continuous 
learning from data input. Assumed here, within the 
context of finite computational power, is a necessary 
trade-off: the more data-intensive (and associated 
processing steps) a HMI/BCI is burdened with as its 
underlying algorithms are learning, the less it can 
adapt quickly the XR content. This is especially true 
for VR (e.g., visual field content generation), and 
even more so if one is to assume a large deployment 
of the proposed platform (i.e., hundreds if not 
thousands of HMI/BCIs requiring not only live-
computations, but also learning-serving 
computations).  

From a pragmatic standpoint, actors should be 
aware of an eventual cut-off point, where each 
individual HMI/BCI parameters would run 
independent, adjustment-free. Importantly though, as 
novel situations can arise (especially in free-range), 
the collecting and use of these data to continue AI 
learning is strongly encouraged. This would likely 
involve implementing a routine for HMI/BCI model 
updating. Computational-economy-wise, an optimal 
moment for model learning and update would be 
when both input data and content generation are 
minimal, that is, sleep time; if generalized across 
offenders to a same (e.g., city) area, that would be 
nighttime.  

In parallel of these concerns, progress in ML and 
DL has further pushed CPsy on the individualized, 
idiographic, approach, namely, precision psychiatry 
(Bzdok & Meyer-Lindenberg, 2017; Chen et al., 
2022b; Williams et al., 2024). While this approach 
has its own merits, given the data to be collected 
under the proposed monitoring opportunities, greater 
attention will be given to the prospect of forensic 
digital twins (FDT). A digital twin is, in principle, an 
exact computational replica, a simulation, of an 
existing physical system (Batty, 2018), with its 
algorithms mimicking said system’s multilevel 
dynamics. The integration of digital twins has already 
been thought about within a CPS framework (Alam 
& El Saddik, 2017) and healthcare (Katsoulakis et al., 
2024), and this exactitude the twin aims for echoes 
the previous “all there is to know” about individual 
offenders. To be clear, a FDT, once made, has no 
bearing on any feedback the CPS might direct 
towards the offender. Rather, as the offenders copy, it 
could be used to modulate a variable, or series of, that 
simulate the offender's environment, generating in 
turn a response from the FDT. Two courses can 

follow: one uses the FDT’s response to predict the 
offender’s response, or one uses the FDT’s “failure” 
in mimicking the offender. The former option can 
inscribe itself in general efforts of causal ML 
(Feuerriegel et al. 2024) and ML/DL approaches to 
predict treatment outcome (Chekroud et al., 2021) or 
reoffending risk. Validation-wise, three angles 
deserve mention (these angles are closely tied to the 
data production contexts found in Figure 1). From a 
research angel, a FDT could be tested in juxtaposition 
of the related offender, directly testing its validity in 
this context. From a psychiatric angle, the FDT’s 
prediction capacity could be contrasted with clinical 
insight (e.g., a specialist’s prognosis). From a 
criminological, recidivism angle, the FDT’s 
prediction capacity can be contrasted with existing 
forensic predictors (e.g., actuarial risk scales). The 
failure-oriented option, which can apply for any of the 
above angles, could benefit from testing various 
iterations of same-offender FDTs, and since these 
would not be fully independent from one another, the 
events or measures in between consecutive FDT 
iterations could themselves be given special ML or 
DL treatment for explaining predictive discrepancies. 
Naturally, an FDT could be itself updated following 
the same scheme as in the previous paragraph, and in 
turn, help to the betterment of the proposed XR-
themed HMI/BCI (Barricelli & Fogli. 2024). 

The same data and models that served in building 
digital twins could help make ecologically valid 
artificial patients for a forensic professional's 
formation; interactive contexts varying in scope and 
ecologically adapting to the offender's behaviours 
(e.g., speech content, prosody, gaze direction). 
Recent initiatives using chatbots with realistic speech 
options and appearance for formation purposes 
already exist (e.g., Raiche et al., 2023; Vaidyam et al., 
2019). What is advocated here it to move beyond the 
fixed and predetermined response options of chatbots, 
towards situationally adapting and personalized 
response options. There is great potential on this front 
with LLMs. In parallel, the scope of varying 
behaviours the artificial agent can modulate would 
also grow. 

3 CYBERSECURITY 

An important underlying assumption of what has 
been presented thus far is the approval given by the 
regulatory bodies and involved detention institutions, 
as well as the obtaining of offenders consent 
whenever applicable. Paramount to these approval 
status’, one must expect strict protocols and an 
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infrastructure that secures data anonymity, access and 
transfer (Anand et al., 2006; Khaitan & McCalley, 
2015; Sarode et al., 2022; Torous et al., 2021). This 
involves “traditional” challenges of cybersecurity, 
which are beyond the scope of the proposed frame. 
The present section will rather focus on the 
vulnerability of the human mind in the context of 
technology usage, with an emphasis on immersive 
(i.e., presence inducing) XR technologies. The 
section will conclude with opportunities the same 
technologies provide in promoting adaptation.  

3.1 From Presence to Social 
Engineering  

The phenomenon of presence is best summarized as 
the feeling and ability to be/do “there”, this in reality 
as well as XR (Riva et al., 2011). Presence is at the 
core of what can make XR technology useful to 
simulate the real world in the first place, guiding the 
immersiveness it strives for (Slater, 2003). It is also a 
versatile concept with various emphases a clinician or 
researcher can inquire upon. For instance, a HMI/BCI 
(forensic) psychiatrist enthusiast could be interested 
in what causes (or actively maintains): a patient’s 
social inaptitude (ties to social presence; Biocca et al., 
2003), paraphilic interests (ties to sexual presence; 
Brideau-Duquette & Renaud, 2023), and so forth. 

However, the relative ease with which presence 
can be induced also makes it a psychological 
vulnerability. Akin is the infamous Turing test, 
which, at its core, implies something successfully 
convincing a human being it has sentience (Saygin et 
al., 2000); from “fake world” to “fake being”. A 
marked example is the large leap in progress LLMs, 
and the often-reported sense that one is interacting 
with a comprehending entity when prompting such 
LLM (e.g., Shanahan, 2024). As hinted above, the 
proposed HMI/BCIs for offenders would capitalize 
on such intuited impressions, as they would serve 
presence, and so define the XR generated content (see 
also Wang et al., 2024a) within the CPS.  

With prevention in mind of reoffending, but also 
first offense, one should consider that we are not 
equal when facing such “in the wild” Turing tests. A 
notable example would be of (pre)psychotic 
individuals, for whom it is arguably expectable that 
LLM-based applications, existing or to be, will 
constitute a risk of psychosis triggering. This would 
be especially so if coupled with easily accessible and 
unsupervised, and presence-inducing, technologies. 
In other words, presence while in XR can 
(potentially) lead to estrangement when in reality (see 
also Aardema et al., 2010). This is arguably a problem 
that extends to any interactive platform, as 

exemplified by problematic social media usage (Sun 
& Zhang, 2021).  

These concerns, generalized beyond psychosis, 
relate to social engineering. The latter is defined by 
Wang and colleagues (2020, 2021) as a cyberattack 
where the perpetrator socially engages in some 
manner to trick someone into behaving in a certain 
way that breaches in place cybersecurity measures. 
Concerns have been raised that affective and 
cognitive traits could be vulnerabilities to such social 
engineering, especially if ML is used to perfect 
cyberattack schemes (Wang et al., 2020). The main 
point here: in a context of personal data markets 
(Spiekermann et al., 2015), and that private interests 
could gain the same types of measurements as those 
mentioned above (akin to, say, lingering time on a 
social media post) with personal XR usage, the same, 
optimal presence indicative data could be used for 
social engineering; in other words, use the same ideas 
elaborated throughout, but for nefarious or unwanted 
(e.g., marketing) purposes. A case and point would be 
the instillation of so-called dark patterns, this, via 
technologies of various immersiveness quality, but 
efficient in said instillation as immersiveness grows 
(Wang et al., 2024b), presumably because of 
presence. 

We would extend the earlier definition of social 
engineering, so it encompasses more of its original, 
top-down normative effort (Duff, 2005). Rather than 
considering political approach and ideology, we 
would define said top-down influence: the controlling 
actor (e.g., hacker, service provider) actively 
modulates the technological medium to 
psychologically (i.e., cognitively, affectively or 
behaviourally) influence an individual without their 
knowledge or consent. In fact, the FPsy approach 
advocated for here largely fits this extended 
definition, with the crucial distinction that offenders 
would be both informed about the general aims of the 
CPS, and provide consent.  

3.2 Adaptation Building, Towards 
Autonomy 

A necessary goal for any psychiatric intervention is to 
promote maximal autonomy of the individual. This is 
also true in forensic-related settings, with the equally 
prominent concern of the offender’s and others 
safety. Merging the two involves making psychiatric 
offenders more autonomous in ensuring the safety of 
themselves and others. The previous subsection 
emphasized the importance of surveilling for negative 
impacts of immersive technologies and social 
engineering, but as the earlier sections would hint, the 

Forensic Psychiatry and Big Data: Towards a Cyberphysical System in Service of Clinic, Research and Cybersecurity

861



poison can be part of the cure: mechanisms that 
facilitate social engineering might also facilitate trait 
resilience building.  

The proposed CPS-XR architecture has much in 
common with biofeedback approaches, as in both 
cases, continuous physiological or behavioural 
measurements take part in influencing some feedback 
to be perceived by the individual. Assuming a 
genuine willingness to change on the offender's part, 
the same data that successfully predicts a near-
imminent issue (e.g., aggressive outburst, 
behavioural disorganisation) could be used to 
promote situation awareness (Alsamhi et al., 2024; 
Endsley, 1995), an important step in de-escalation 
and in some cases, long-term problematic pattern 
discontinuation.  
This assisted situational awareness could serve in 
both institutionalized and free-range monitoring 
conditions. In the former, one could envision its 
common use by the mental health professional and 
the offender in a therapeutic setting, allowing in-the-
moment flexibility, as said professional can adapt the 
sessions therapeutic target. This would be especially 
relevant for mindfulness-based interventions 
(Chandrasiri et al., 2020), and more generally, as a 
solid base for the learning of de-
escalation/reorienting, self-regulation strategies. 
Using XR has the additional value to lessen 
abstraction in forming or applying said strategies. For 
instance, feedforward cues, perceptually salient and 
intuitive instructions about what could be done in the 
XR-related environment (Muresan et al., 2023). In a 
free-range setting, previously learned strategies can 
be put to the test. In collaboration with the offender, 
who can give subjective impressions, as well as with 
objective criteria of de-escalation/reorienting, the 
continued input of behavioural or physiological data 
could serve in further modelling both strategy success 
and failure, and their respective predictors. 

4 CONCLUSION AND FUTURE 
DIRECTIONS 

The advent in recent years of both conceptual 
developments in psychiatry and access to quality XR 
technologies converge to stimulating clinical and 
research possibilities. Presented here was a CPS 
general configuration to better equip FPsy in 
capitalizing on these possibilities, and how doing so 
also relates to human-centered cybersecurity features, 
present and future.  

Still, pending issues little to not addressed here 
require consideration. Ethical concerns relating to 
offenders’ consent, specifically, it being genuine as 
opposed to pressured, should be examined; one 
should note that any research or psychotherapeutic 
intervention within a forensic setting has that exact 
issue, as the offender, facing the judicial system, is 
imposed a lifestyle and routine, in which, here, the 
proposed CPS would happen to inscribe itself in.  

To our knowledge, no implementation akin to 
what has been proposed was ever attempted in 
forensic settings. Perhaps such implementing is not 
realistic in all jurisdictions. Where possible, any such 
attempts at establishing a forensic CPS should self-
monitor its incremental efforts, so as to give insight 
in the challenges ahead. At the crossing of logistical 
and ethical concerns overreach, the proposed CPS 
scheme might be better implemented in successive 
steps. We propose the following such steps as a 
general path to the complete CPS: institutionalized 
clinical settings and research, institutionalized 
offender day-to-day living settings, free-range 
clinical and research appointments, day-to-day living 
settings. In between each of these steps, one would 
consider the same settings with XR integrated to it 
(e.g., institutionalized day-to-day would transition to 
institutionalized day-to-day complemented with XR 
technology).  
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