
MODELING HYBRID MULTIMEDIA N/W-WEB SERVICES
USING RAPIDE ADL

Ahmed Sameh
Department of Computer Engineering, The George Washington University Washington, DC 20052

Keywords: SDP, ADL, Web Services, XML

Abstract: Dynamic delivery of network/web services across platforms/technologies will provide leverage of
existing investment, scalability, and promote interoperability. In this research we envision a
number of hybrid wireless terminal devices/nodes with at least one device/node bridge (called
base station or access point) between the air and a physical wired network hosting a number of
server applications in the form of real-time interactive network-web multimedia services located
on either the wireless devices or on the nodes of the wired network. Each heterogeneous wireless
mobile device/node that inhabit this hybrid platform/technology environment has a specific
discovery protocol (Jini, UPnP), and a set of network-web services implemented in various
languages (VB, VC++, Java) running on various platforms (XML, JSP). We model these
networked enabled devices, applications, and services in Rapide ADL to seek out and find other
complementary networked devices, applications, and services needed to properly complete
specified wireless multimedia tasks. This federation of wired-wireless heterogeneous environment
presents a modern, flexible infrastructure based on wired-wireless technologies and streaming
standards. The federation is open for integration of new-networked Internet services and for
evolving to provide a complete heterogeneous distributed computing environment.

1 INTRODUCTION

The number of network/web services is expected to
increase enormously in the incoming era. Other than
traditional services (e.g. printing, scanning and
faxing), new network/web services for
business/entertainment purposes, such as network
based multimedia streaming systems, multi-players
3D games, interactive entertainment, unified
messaging systems, mobile commerce, besides light
weight services, such as restaurant directories and
translators, are becoming available and highly
important. For an effective use of these services,
users should have means for direct and easy access
to them. Service Discovery Protocols (SDP)
represent a solution for services discovery and
coordination (Richard, 2000) of such interoperating
services in a heterogeneous environment with
traditionally competing technologies.
 The exploding deployment of network enabled
wireless mobile devices, along with the expansion of
networked and web services have created the need
for users to easily manage these devices and services
and also to coordinate with one another. SDP
enables networked devices, applications, and

services to seek out and find other complementary
networked devices, applications, and services
needed to properly complete specified tasks. A
variety of SDPs have been proposed by the market
and academia, including Jini, UPnP, SLP, Salutation
and Bluetooth (Richard, 2000). For these protocols
to co-exist, they should exhibit interoperability
features. A number of bridging techniques have been
proposed and implemented (Guttman, 1999).
Interoperability among distributed object computing
architectures such as .NET and RMI is becoming
more and more inevitable for wireless mobile
devices that speak different languages (WML/Java).
The emergence of WML/Java as flexible and well-
structured transportation models has made an entry
point towards this goal. In a previous work (El-
Ashmawi, 2003), we have utilized the flexibility of
XML and the simplicity of UDP socket
communication to build a generalized model of
communication that supports interoperability among
existing distributed object computing architectures.
The proposed system is composed of a number of
broker components that also act as naming services
and several client/server objects. All components
share the same feature of having built-in support for

79
Sameh A. (2004).
MODELING HYBRID MULTIMEDIA N/W-WEB SERVICES USING RAPIDE ADL.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 79-87
DOI: 10.5220/0001384100790087
Copyright c© SciTePress

XML parsing and socket messaging. The proposed
system is both platform and language independent.
A mix of Visual Basic, Visual C++ and Java
components prototype that demonstrated
interoperability with .NET and RMI was developed
and tested. In this paper, we extend this system to
the wireless domain of multimedia to support a
heterogeneous distributed environment of a number
of wireless mobile devices that implement a mix of
Java/XML network-web services in a wireless
multimedia-networking environment. For the
experimental part of this research, we have chosen
the domain of wireless multimedia networking for
testing our heterogeneous environment. This domain
is rich with many network-web services such as:
video and audio streaming, video conferencing,
multi-players 3d video games, video on demand
downloads, video editing and remote browsing, and
unified messaging service. We envision a number of
heterogeneous wireless mobile devices that inhabit
this platform/technology hybrid environment, each
with a specific discovery protocol (Jini, UPnP), and
a set of certain network-web services implemented
in various languages (VB, VC++, and Java)on
various platforms (XML, JSP). We model these
networked enabled devices, applications, and
services in Rapide ADL to seek out and find other
complementary networked devices, applications, and
services needed to properly complete specified
wireless multimedia tasks. Such wireless digital
multimedia has a number of challenges such as error
resistance, varying transmission speeds, adaptive
decoding for limited power and processing
capabilities in wireless mobile devices. To
experiment with the proposed federation, we model
and simulate the bridging in both service discoveries
and deployments using Rapide ADL simulation and
analysis toolset. We perform a number of simulation
tests and use Rapide Poset viewer to analyze the
simulator’s output Poset tree of events

2 WIRELESS MULTI-MEDIA
NETWORKING

Multimedia over wireless networks and/or the
Internet has a number of obstacles. For example,
with multimedia, and particularly with video, the
amount of data that must be moved across the
network is huge. The wireless network/ Internet is
not always reliable and the bandwidth available for
individual wireless devices is frequently insufficient.
The complexity of network routing, unexpected
bottlenecks, limited devices processing and battery
power can cause that data streams of the digitized
video to be delayed and/or arrive out of sequence.

On the service development side, there are currently
two competing schools that promote two
independent solutions: XML-based solution, and
Java-based solution. We deploy these two solutions
in our experimental heterogeneous environment
(section 5).
 In the XML-based solution (El-Ashmawi, 2003) a
Web service is a form of RPC that uses XML and
HTTP to make functions/services available over the
Internet. They are based on three technologies:
Universal Description, Discovery and Integration
(UDDI), Simple Object Access Protocol (SOAP),
and Web Service Description Language (WSDL).
Their main purpose is to provide loosely coupled,
course-grained interoperation among applications in
a heterogeneous environment. B2B is currently a
popular special case of Web services. It goes
through phases of: service definition,
implementation, testing, discovery, and finally
deployment. UDDI is a directory for storing
information about web services. In it, each web
service interface is described by WSDL. UDDI
communicates via SOAP. SOAP is a communication
protocol via Internet. It is used for communication
between applications, and it is based on XML.
WSDL is used to locate, and describe web services.
It is written in XML.
 In the Java-based solution (El-Ashmawi, 2003) on
the client tier, we either have a thick client- J2ME-
based application using for example Kjava, CLDC,
or MIDP, or a thin client- microbrowser-based:
CHTML/i-Mode. On the web tier (wireless portal
server) JSP, Servlets, JAXP are used. On the middle
Ware Tier: application server, Entity Beans, Session
Beans, Message Beans, RMI, RMI over IIOP, JNDI.
IMAP server, LDAP server are used. On the
backend tier: database, EIS, JDBC, are used.
Wireless Java technologies such as J2me GUI (XML
parser) on client’s handheld devices, JSP/XML
(JAXP) wireless protocol, JSP/WML and
JSP/HTML wireless protocols, EJB for the
application server are used. J2me-enabled handsets
can communicate directly with HTML servers.

3 MODELING HETEROGENEOUS
SERVICE DISCOVERY
PROTOCOLS

SDPs are re-shaping the way software and network
resources are configured, deployed, and advertised,
all in favor of mobile wireless users. They easily
enable wireless users to find and locate needed
services effectively. They also give these users
automatic access to needed devices and services,

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

80

without the need for manual configuration. For
example, a device would transparently connect to
the service address and automatically download
needed drivers. It is of special importance for mobile
devices, since it facilities query and search
mechanisms that allow users to accurately select
specific types of services. A client can choose a
specific service, with specific location and
characteristic, in wireless multimedia for example
device-2-device phone, videoconference, video on
demand, interactive TV, video rental services, video
news distribution, multi-player 3D games,
interactive 3D digital video, unified messaging
system, integration of Web with traditional
broadcast media, access to digital libraries,
electronic guide and navigator, dating services,
promotional services, collaborative work, telemetry
services, Webcams, digital content delivery, and
other innovative video and multimedia applications.
Unlike classical lookup protocols, most SDPs
require no human administration. They are
automatically configured using multicast messages
on known multicast groups or using centralized
databases that are self-configured. This reduces the
hassles of building and maintaining a network since
they cut short most of the configuration efforts.
Among the most prominent SDPs are: Jini
developed by Sun Microsystems, and Microsoft
UpnP (Dabrowski, 2001).
 In a previous work (El-Kharboutly, 2002), we
have built on the idea of a Jini network proxy
described in Jini Device Architecture and based on
the efforts of Eric Guttman in (Guttman, 1999) to
build a Jini-UPnP Bridge that is an entity that
enables services that support UPnP protocol to be
reachable by Jini clients. For Jini clients, Jini-UPnP
is a transparent layer that they are unaware of. The
UPnP services that are advertised via the bridge are
treated as native Jini services. The proposed Jini-
UPnP Bridge has been modeled as a special network
node that can communicate with other network
nodes in both Jini and UPnP protocols. It mainly
acts as a Service User (i.e. Control Point) in UPnP
environment and a Service Manager (Service) in Jini
environment. It waits for announcements made by
UPnP devices and services that are willing to
advertise their presence to the Jini clients and acts as
a representative, almost a mirror for them in the Jini
environment. In this work, we have modified the
work done in (El-Kharboutly, 2002) to allow for a
two-way bridging instead of a one-way bridge.
 The main idea of the modification of the Jini-
UPnP bridge is to prepare an appropriate entry for
UPnP services, in the Jini Lookup Service. This
involves primarily setting the appropriate attributes
required and creating a service object as part of Jini
service’s registration. UPnP services that are willing

to advertise their presence to Jini clients are not
required to have a JVM installed. They are mainly
required to have a Jini driver Factory (Guttman,
1999). A Jini driver factory is a (*.jar) file that bares
a manifest for the advertised service. A Java Archive
File (*.jar) file is used to bundle multiple files into a
single archive file. Typically a JAR file contains the
class files and auxiliary resources associated with
applications. The bridging process is modified
through the following steps: -The Jini-UPnP bridge
searches the UPnP reachable entities to find devices
and services that have Jini driver Factory or waits till
it receives announcements made by Jini driver
Factory services. Once a Jini driver Factory service
is found, the Jini-UPnP bridge obtains a complete
description of the service including attributes, GUI
URL and control URL. -The URL of the Jini driver
factory is composed by extending the control URL
with a unique identifier. The Jini driver factory is
downloaded using GET method over HTTP. -The
Jini-UPnP bridge performs attributes transformation
from UPnP format to Jini format to prepare for
service registration. -Upon successfully translating
the entire service attributes and obtaining the Jini
driver factory, the Jini-UPnP bridge registers the
discovered service with Jini Lookup Service. Using
the Jini driver factory, the bridge creates a service
object that is used for registration. Registration is
done by sending a join request with all necessary
attributes to Jini Lookup Service that adds the new
service to its cache. -Whenever a Jini client needs
our bridging service, it contacts Jini Lookup Service
and downloads the instantiated object that is used to
drive the service. Like any typical Jini service, the
Jini-UPnP bridge should be equipped with JVM to
be able to participate in the Jini SDP.

4 MODELING DEPLOYMENT OF
HYBRID NETWORK-WEB
SERVICES

WML/XML encoding of messages allows for
interoperability and standardization. Each and every
node/device in the heterogeneous environment
should have the ability to use standard socket
communication and parse WML/XML strings. The
preferred method of communication is UDP sockets
for the flexibility and the ability to use message
broadcasting. In addition, UDP sockets would fit
more with the active nature of the wireless
multimedia environment and the need for rapid and
quick switching of sources and targets of
communication. For example a node/device in the
environment may listen for incoming requests from

MODELING HYBRID MULTIMEDIA N/W-WEB SERVICES USING RAPIDE ADL

81

different clients while responding to every client
using the same open socket without opening another
one. Nodes/devices that are Java-based can also use
RMI for intercommunication.
 Server services which are ready to expose their
services are run once with the command line
parameter “/r” to inform the broker residing on the
same node/device of their existence and exposed
interfaces. This is done through sending XML
messages to the broker on the port it is listening to,
or a Java RMI registry. Once the system is up, there
are three possible scenarios that can occur: The first
is called transparent addressing, where server
components register themselves with their local
brokers. When a client component needs to invoke a
method on a previously registered server component
but doesn’t know its location, a remote method
invocation for a GetObject method is sent as a
broadcast XML message containing the server
component name to be instantiated. Each broker
component receives the message and searches its
local registration files for the component name. The
broker which finds the component then starts the
required component as a process; sending it the
address and port of the client in the form
“xxx.xxx.xxx.xxx:xxxx” as a command line
parameter. Then the broker becomes free to handle
more requests. If the client component times out
waiting for a response, the component is considered
not registered. When a server component starts up, it
sends an XML encoded result message to the client
component containing its address and port, which
will be considered the component reference by the
client afterwards. Subsequently the server
component becomes ready to process further
requests. The client component now begins to send
XML-RPCs to the server component and receives
results also as XML encoded result messages. The
client can reuse the instantiated server as many times
as it wants. When the client component does not
need the services of the server anymore, it sends a
shutdown message to the server, which then closes
its port (Figure 1).
 The second is called targeted addressing. Due to
the overhead that broadcasts cause to the networking
resources, Targeted component addressing would
provide a less transparent solution with less
networking overheads. In this scenario, the client
component happens to know the node address where
the server component resides. It sends a direct
message to the broker on the target node requesting
a reference of the server component. This could be
incorporated into the previous scenario by adding a
functionality to the client component to save the
location of the node of a certain server component
into local registration files for future reference. The
broker then performs as before and passes the

address and port of the client as a command line
parameter to the server component as it starts. The
rest of the scenario continues as in Transparent
Addressing (Figure 2).
 The third is called parallel processing. The system
here could be viewed as a message passing protocol
for implementing parallel processing. The scenario
is based on redundant components that have the
same functionality present on different
nodes/devices in the environment and makes use of
the targeted Component addressing method above.A
master component divides the problem into several
smaller tasks (a divide and conquer step). It encodes
the function calls to process these tasks into XML
messages. It then starts sending different brokers the
GetObject method invocation as required and waits
for component references, which it stores, for future
use. Each broker, receiving an invocation from the
master component, will spawn a server process,
passing it the master component address as a
command line parameter. The master component
then starts communicating with the required
identical components sending each its share of the
problem (single program multiple data stream). It
will then start receiving the results from the invoked
components and then reassembles the parts of the
main problem (embarrassingly parallel master-
slaves). Each of the invoked server components will
wait for a SHUTDOWN call and then close its port
(Figure 3). In the experimental part (section 5), a
library called XMLRPCLib.dll is built which
exposes a class called XMLRPC used in formatting
XMLRPC calls and results as mentioned above. This
library is ported to the three languages used for
coding network-Web services: Visual Basic,Visual
C++ and Java. As for Visual Basic, it is built as a
COM library which

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

82

 NODE I

BROKER

NODE III

BROKER

N

O

DE
BR

O

KE

N

O

DE

BR

O

KE COMP
A

B

1 1

1

1

3
NODE I

BROKER

NODE I

BROKER

NODE III

BROKER

NODE III

BROKER

N

O

DE
BR

O

KE

NODE II

BROKER

N

O

DE

BR

O

KE

NODE IV

BROKER

COMP
A

B

1 1

1

1

2

3 4

 NODE I

BROKER

NODE III

BROKER

N

O

DE
BR

O

KE

N

O

DE

BR

O

KE COMP
A

B

1

3

3 4

NODE I

BROKER

NODE I

BROKER

NODE III

BROKER

NODE III

BROKER

N

O

DE
BR

O

KE

NODE II

BROKER

N

O

DE

BR

O

KE

NODE IV

BROKER

COMP
A

B

1

2

Figure 1: 1) Broadcast message from component A, 2)
Broker on node I found required component B and starts
it, 3) Component B sends its address to component A, 4)

Component A sends method invocation message on
component B.

Figure 2: 1) Direct message from component A to Broker,
2) Broker on node I found required component B and

Starts it, 3) Component B sends its address to component
A, 4) Component A sends invocation message to

component B.

COMP
A

NODE I

BROKER
B

1

9

NODE III

BROKER
B

3

15

N

O

DE

BR

O

KE

B

4

12

12

NODE II

BROKER

B

2

10
6

COMP
A

NODE I

BROKER

NODE I

BROKER
B

1

5

NODE III

BROKER

NODE III

BROKER
B

3 11

7

N

O

DE

BR

O

KE

NODE IV

BROKER

B

8

9

13

14

15

16

Figure 3: 1,2,3,4) Component A sent direct message to

broker on nodes I, II, III, IV, 5, 6, 7, 8) Brokers on
appropriate nodes starts component B, 9, 10, 11, 12)

Component B on each node send their addresses to the
master component A, 13,14,15,16) The master component
starts sending each B component its part of the problem to

solve.

demonstrates the interoperability of the proposed
system with COM. For Visual C++, this library is
built as a native C++ class and for Java, it is built in
2 forms; as a native Java class and as an RMI object
to demonstrate interoperability with Java RMI. As
such Java-based services can intercommunicate
using either XML messaging or RMI invocation.
The XMLRPC library is built to expose a set of
utility functions to simplify the process of encoding
and decoding of XML messages, an essential task of
each component in the heterogenous environment.
Each function in the library simplifies the access of
XML Documents and maps system related functions
to XML related tasks. Functions in the library are
described in (El-Ashmawi, 2003). The library is
implemented as a COM dynamic link library in
Visual Basic to demonstrate interoperability of the
proposed system and COM. As mentioned before
the library is also ported to Visual C++ as a native
C++ class and to Java as a native Java class. The
Rapide ADL has a number of preprocessors to
instrument the above service codes written in Java,
VB, and VC++ so that they produce time-stamped
events during their execution in the modeled
environment. The generated events are then
analyzed by the Rapide tool- see section 5.
 As a simple proof of concept; an ADL model for a
video stream broadcasting service is built using the
Rapide ADL. The services development
environment chosen was Microsoft Visual Basic 6.0
IDE using the Microsoft winsock ActiveX control
for socket communications and the Microsoft XML
parser COM library MSXML.DLL for XML parsing
and building. The DOM model for XML parsing
was used rather than the SAX oriented one, which
suits the nature of the proposed environment more.
Microsoft Visual C++ 6.0 was used to build a C++
server service components using the same COM
XML parser library and native MFC Socket classes.
Borland’s JBuilder IDE with JDK 1.3.1 was used to
develop Java client components using the built-in
Datagram Socket class and the freely available
Apache Xerces XML parser library (Grag, 1996).
For the video stream broadcasting service three
components using the above were built: 1. A Broker
component, which listens to port 5000 waiting for
requests using the GETOBJECT method. It then
fetches the path for the executable for this object
from an XML-Formatted file called
components.xml, which resides on the node/device
and contains all the registered components within
this node/device. When it finds the path of the
object, it executes it and passes it the address and
port of the caller process. The Broker component
had to be designed as a multithreaded component,
which queues the incoming requests in a queue of
messages and handles the queue in another thread.

MODELING HYBRID MULTIMEDIA N/W-WEB SERVICES USING RAPIDE ADL

83

This way the time for processing each incoming
message would not affect the response time to
another incoming message, which may be dropped if
intense processing is required. 2. A server
component is a media player that
broadcasts/displays the video stream. The server
component is spawned by the broker and
immediately responds to the caller by sending it its
address and port. It gets the reference for the caller
from the command line parameter set by the broker.
It then gets the actual RPC call with the method
RECEIVE-STREAMS with parameter 1 as the
screen size, and parameter 2 as the name of the
video file. The component initializes its local stream
player and starts to buffer the received video streams
then sends back to the calling process an RPC
Acknowledge message. It then waits until it receives
a SHUTDOWN message from the caller and then
ends execution. In case of failure to communicate,
the component waits for one minute and shuts itself
down if it does not receive any messages during this
time. 3. A master component that contains the
streaming video to be broadcasted gets an array of
the required object references from the broker by
sending it a GETOBJECT method call and then
begins distributing the video stream through its local
media player to the server processes and waits for
them to pass back acknowledgments. Finally, it
sends a shutdown call to all spawned processes
using the array of object references it has. In case of
transparent addressing, it broadcasts the message
call GETOBJECT to all brokers on the network until
it gets all the object references it needs. Afterwards,
unnecessary spawned server processes (running
media players) will die if they don’t receive any
messages within a minute.
 In the model, the Video Stream Broadcasting
service is ADL modeled using 2 different
addressing: -Master and n-node/device components
intercommunicating using direct addressing method.
-Master and n-node/device broadcast components
intercommunicating using transparent addressing
method. Setting up the services was done by running
the broker on each node/device in the environment
and then registering the server component by
running it (media players) with the switch /r. The
master component is then run (media player) from
any node/device, which may or may not have a
running broker. In our case, this node/device had a
running broker. For running the Java RMI services,
the RMI registry was run on the node/device
harboring the XMLRPC class component and the
component was run to register itself with the
registry, ready for use. In the model, the Master is a
wireless access Web node that represent a kind of
Wireless Application Service Provider-video on-
demand broadcasting station. The other 4 devices act

as clients who perform kind of video on demand
from the master node. Clients and servers can
spontaneously and unpredictably join and leave the
environment. The Master services are re-entrant,
that is, multiple instances of the same service might
be running on the same node/device serving multiple
clients. It is capable of preparing contents for
different devices. This is useful in particular with the
video on-demand facility of this video stream
broadcasting service. In this figure we envision four
wireless terminal devices and one master node
bridge (called base station or access point) between
the air and a physical wired network. Then a number
of servers hosting the video broadcasting service
application in the form of network-Web services to
be used by the terminal devices are located on either
the wireless devices themselves or on the nodes of
the wired network as shown.

5 EXPERIMENTAL WORK:
TESTING FUNCTIONALITY,
CONSISTENCY AND
PERFORMANCE MEASURES

After modeling both the discovery and deployment
separately, we brought them together in one large
Rapide model. The Rapide toolset provides a set of
compilation and runtime execution tools whose
output is a simulation of the Rapide architectural
model. The output of the simulation could be
analyzed in various ways, including constraint
checking, analysis for surprises and depiction of
behavior. We chose to analyze the output of our
simulation using the Partial Order Set (Poset)
browser. We have conducted three experiments to
test functionality/consistency and measure the
performance of the proposed hybrid discovery. The
usage of a bridge in a hybrid system implies the
presence of an overhead in time and resources. In
the first performance experiment we are interested in
measuring the overhead of discovering a UPnP
service from a Jini-based device compared to having
that same service as a native Jini service. The
overhead is measured in terms of time and the
number of messages exchange. First, we ran the Jini
Rapide model with a topology of one Jini Service
Cache Manager (SCM), two Jini Service Users (Jini
SUs) and one Jini Service manager (Jini SM), where
one of the Jini SUs requests a service (view a video
stream) of the same type as that offered by the Jini
SM. We measure the time taken and the number of
messages exchanged since the Jini SM starts up and
until the Jini SU receives the service description.
Next, we run our Jini-UPnP Bridged model with a

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

84

topology of one Jini SCM, two Jini SU, one Jini SM,
one Jini-UPnP Bridge, one UPnP SU and two UPnP
SM. The time taken by a Jini SU to discover a
requested UPnP service is measured. This time value
is the sum of the time taken for Jini-UPnP Bridge to
discover the services; the time the bridge registers
this service with the Jini SCM and the time the Jini
SCM forwards the service description to the
interested Jini SU.
 Measurements for Jini are done on two stages;
first we measure the time taken for Jini SM to
register with SCM and the number of messages
needed. We assume that SCM discovery has already
taken place. The time taken for this operation, as
shown in the results is 0.064s , and the number of
messages exchanged is four messages (NUM MSGs
1 :4). The second stage is where the SCM starts
matching the newly added service description to the
available SU requests. Two messages are exchanged
for this operation to complete and the total time
needed is 0.00081s. Thus the total time for the whole
operation starting with SM registration to SU
discovery takes TOTAL TIME = 0.06481s on
average.
 Bridging a UPnP SM service to be reachable for
Jini SUs is done in three stages. First the Service SM
is discovered by the Jini-UPnP bridge, then the
bridge registers the service with Jini SCM. The time
taken for a Jini-UPnP bridge to discovery and obtain
the complete description of Jini Factory service is
1.00132s where five messages are exchanged in this
operation. Secondly, the bridge registers the newly
discovered service with the SCM by exchanging two
messages in .00022. The last stage is where the SCM
matches the added service to the notification for
services that SUs have registered with the SCM
earlier. This operation exhausts about 0.00061s. The
total time consumed in the process of bridging
TOTAL TIME = 1.00215s. Comparing the results
for a native Jini service to that of bridging the
service through Jini-UPnP Bridge, it is clear that the
bridging process has an overhead of about 0.93734s
or a 93.5% overhead.
 Network Bandwidth is a main factor in the
behavior of any distributed system. The performance
of different entities in a SDP is very much affected
by network delays as a main parameter. In our
model for Jini-UpnP-Jini discovery, we simulate
network bandwidth by having network delay as one
of the main Rapide ADL model input parameters.
Parameters are defined for unicast and multicast
delays between any pair of nodes and also for the
network as a whole. The following tests record the
effect of varying network delays on the performance
of UPnP-Jini-UPnP discovery. In the pervious
experiment we were interested in measuring the
overhead of discovering a service in terms of time

and number of messages. We fixed the TCP/IP
network delay to a typical network delay value of
10-100 µs uniform. To measure the performance of
the Jini-UPnP-Jini discovery in a light loaded
network, we repeat the experiment done in the
previous section with the same input parameters, yet
changing the TCP/IP network delay to 10-30 µs
uniform. The results would be compared to those
obtain in the pervious experiment. We repeated the
experiment ten times to compute the average overall
time taken by the bridge. Compared to the results
obtained in the previous experiment, the discovery
performance increases about 0.071 % with a less
loaded network (i.e. higher bandwidth) of 10-30 µs
uniform delay. The results show an improved value
for the time of registration with the bridge from
1.00132 s in normal network to 1.000617 in a less
loaded network. We are more interested in the last
time value (Overall Time) since the time taken to
download the Jini driver factory is a factor of it. The
results are up to our expectations since an overall
improvement in time delay is noticed.
 To measure the performance of Jini-UPnP-Jini
discovery in a congested network, we apply the
same experiment with a higher network load with
the same input parameters, yet changing the TCP/IP
network delay to 80-100 µs uniform. The results
would be compared to those obtain in case of typical
network delays. We repeated the experiment ten
times to compute the average overall time taken by
the bridge. Compared to the results in normal
network condition that are obtained in the previous
experiment, the discovery performance degraded
about 0.034 % with a congested network (i.e. low
bandwidth) of 80-100 µs uniform delay. The result
is as expected since the effect of having a low
bandwidth is of direct effect on the time taken to
transfer messages and to download Jini driver
factory. The overhead in time is more obvious in the
time taken for registration with the bridge, as
downloading the Jini driver factory file is a factor in
it. We conduct a topology of five UPnP SMs to be
bridged, one UPnP Jini Bridge, one UPnP Service
User, one Jini SCM, two Jini SUs and one Jini SM.
We assume the same input delays and parameters
presented above. We record the time taken for a Jini
SU to discover a requested UPnP service. This time
value is the sum of the time taken for Jini UPnP
Bridge to discover the services; the time the bridge
registers this service with Jini SCM and the time the
Jini SCM forwards the service description to the
interested Jini SU.
 Experiments were run with different addressing
techniques for each type of component (VB, VC++
and Java). The parallel video stream broadcasting
was run on 8 to 14 nodes/devices using both the
targeted component addressing and the transparent

MODELING HYBRID MULTIMEDIA N/W-WEB SERVICES USING RAPIDE ADL

85

(Broadcasting) component addressing scenarios.
Also the Java component was tested using both the
native XMLRPC library and the RMI dependent
library. For each run in the experiments the timing in
seconds was recorded and a mean of 10 different
runs was obtained. It is important to note that
Rapide (Lucham, 2003) has a number of
preprocessors to instrument service codes written in
Java, VB, and C++ so that they produce time-
stamped events during the execution of the modeled
environment. The generated events are then
analyzed by Rapide tools. Although Visual Basic
does not support multithreading programmatically,
using the DoEvents statement in the queue-handler
function and the event driven socket implementation
provided a workaround for this. The process of
registering and deregistering a component is merely
adding a <COMPONENT> tag to the
Components.xml file with the appropriate attributes
(NAME and PATH) or updating the attributes for an
already existing component and removing the whole
tag for a component to deregister it as mentioned in
the function implementations in the XML library.
 Surprisingly enough, the indirect (broadcasting)
addressing scheme on n nodes/devices outperformed
the direct targeted addressing method using all types
of components but was more outstanding in the case
of VB components. The broadcast method, although
exerts heavy loads on the network, prefers the most
responding nodes/devices and hence the better
performance. As regards to the VC++ and JAVA
components, the same applies, but due to the
delayed response time, the difference between the
two topologies is masked (Figures 4, 5, 6, 7 and 8)
(El-Ashmawi, 2003). Finally, as for the comparison
made between the Java native components and the
Java RMI components, the RMI components showed
a delay in both addressing used which was more or
less of the same proportion (Figure 9). However, as
can be noticed, as the nodes/devices size gets larger
this delay is masked and the performance gets even
better with the Java RMI components.

6 CONCLUSIONS

The problem we addressed in this research is
enabling thin servers and lightweight devices to
offer their services to hybrid clients through passive
and indirect registration using heretrogenous
discovery/deployment strategies. We used
architectural models of Jini, UPnP, Jini-UPnP
bridge, UPnP-Jini bridge, VB services, VC++
services, and Java services as a basis to create hybrid
discovery/deployment environment. For testing and
simulating the environment, we created a

hypothetical topology of Jini, UPnP clients and VB,
VC++, and Java services. Using Rapide ADL, we
have simulated the topology to verify its correctness
and measure its performance. The proposed
federation confines to Internet standards, maintains
platform and language neutrality, integrates with
current distributed architectures and conforms to
object orientation standards.

0

500

1000

1500

2000

2500

Ti
m

e
(S

ec
s)

one-node 3-node Broadcast

8 9 10 11 12 13 14

0

100

200

300

400

500

600

700

Ti
m

e
(S

ec
s)

one-node 3-node Broadcast

8 9 10 11 12 13 14

Figure 4: Chart showing comparison of the multi-requests
one-node, Targeted n-nodes/devices and n-nodes/devices
Broadcast algorithms with the VB components. Figure 5:

Chart showing comparison of the multi-requests one-node,
Targeted n-nodes/devices and n-nodes/devices Broadcast

algorithms with the VC components

ICETE 2004 - GLOBAL COMMUNICATION INFORMATION SYSTEMS AND SERVICES

86

0

50

100

150

200

250

300

350

400

Ti
m

e
(S

ec
s)

one-node 3-node Broadcast

8 9 10 11 12 13 14

0

100

200

300

400

500

600

700

800

900

Ti
m

e
(S

ec
s)

VB VC JAVA

8 9 10 11 12 13 14

Figure 6: Chart showing comparison of the multi-requests
one-node, Targeted n-nodes/devices and n-nodes/devices
Broadcast algorithms with the JAVA native components

Figure 7: Chart showing times taken for the Targeted n-
nodes/devices algorithm with the VB, VC and JAVA native

components

REFERENCES

Richard, G., 2000. Service Advertisement and Discovery:
Enabling Universal Device Cooperation, IEEE
Internet Computing.

El-Kharboutly, R., 2002. Modeling Jini-UpnP Bridge
Using Rapide ADL, M.Sc. thesis in Computer
Science, The American University in Cairo.

El-Ashmawi, H., 2003. A New Message-Based Protocol
for Building a Platform and Language Independent
Distributed Object Model, M.Sc. Thesis in Computer
Science, The American University in Cairo.

Guttman, E. and Kempf, J., 1999. Automatic Discovery
of Thin Servers: SLP, Jini and the SLP-Jini Bridge,
Proc. 25th Ann. Conf. IEEE Industrial Electronics
Soc. (IECON 99), IEEE, Press, Piscataway, N.J.

Luckham, D.: Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Ordering
of Events, http://anna.stanford.edu/rapide

Garg, V., and Wilkes, J., 1996. Wireless and Personal
Communications Systems, Prentice Hall Wireless.

0

50

100

150

200

250

300

Ti
m

e
(S

ec
s)

VB VC JAVA

8 9 10 11 12 13 14

0

50

100

150

200

250

300

350

Ti
m

e
(S

ec
s)

Native RMI

8 9 10 11 12 13 14

Figure 8: Chart showing times taken for the n-

nodes/devices broadcast algorithm with the VB, VC and
JAVA native components.

Figure 9: Chart showing times taken for the multi-requests
one-node algorithm with the JAVA native components

and Java RMI Components

Dabrowski, C. and Mills, K., 2001. Analyzing Properties

and Behavior of Service Discovery Protocols using
an Architecture-based Approach, Proceedings of
Working Conference on Complex and Dynamic
Systems Architecture.

MODELING HYBRID MULTIMEDIA N/W-WEB SERVICES USING RAPIDE ADL

87

