
A RECONFIGURATION ALGORITHM FOR DISTRIBUTED
COMPUTER NETWORKS

Chanan Glezer
Department of Information Systems Engineering, Ben Gurion University, Beer Sheva, Israel 84105

Moshe Zviran
Chair, Management of Technology and Information Systems Department

The Leon Recanati School of Business Administration,Tel Aviv University, Tel Aviv, Israel 69978

Keywords: computer networks, dependability, fault tolerance, load balancing

Abstract: This article presents an algorithmic reconfiguration model, combining mechanisms of load balancing and
fault tolerance in order to increase utilization of computer resources in a distributed multi-server, multi-
tasking environment. The model has been empirically tested in a network of computers controlling
telecommunication hubs and is compared to previous efforts to address this challenge.

1 INTRODUCTION

Telecommunication systems as well as other
mission-critical systems such as utility, banking,
medical, military and transportation networks rely
heavily on state-of-the–art computing and
telecommunication technologies.
Fault tolerance in distributed computer networks
refers in most cases to a hot-standby approach
(Anderson and Lee, 1981), which is based on
duplication of computer resources using check-
pointing and message-logging techniques (Folliot
and Sens, 1994). Nevertheless, during periods of
normal operation the duplicated computer
resources are underutilized.
Load Balancing in a Distributed Computing
System (DCS) (Tiemeyer and Wong, 1988) refers
to dynamically allocating and independently
performing computation tasks across a
heterogeneous network of processors.
Several experiences have been reported on
combining load-balancing and fault-tolerance
mechanisms, (e.g., Remote Execution Manager
(Shoja et al., 1987), Paralex (Babaoglu et al.,
1992), Condor (Litzkow et al., 1988), and DAWGS
(Clark and McMillin, 1992), Coterie (Tiemeyer and
Wong, 1988)). Nevertheless, these systems exhibit
only limited fault tolerance capabilities. The most

comprehensive attempt to constructs a
reconfigurable, fault tolerant system was made in
GATOSTAR (Folliot and Sens, 1994).
The goal of this article is to develop, illustrate and
practically evaluate an algorithmic model that
combines load sharing and fault tolerance using the
prominent Hamilton method (Ibarkai and Katoh,
1988).

2 THE RECONFIGURATION
MODEL

The proposed model is based on combining the
mechanisms for fault tolerance and load balancing
in a multi-server and multi-tasking computer
network. Following are the assumptions underlying
the model:
1. Each computer connected to the network can
process several types of tasks concurrently based
on the unique requirements of each task.
2. The tasks are processed from queues by (expert)
servers operating under the computers connected to
the network.
3. In case one of the servers becomes inoperative,
the tasks in its incoming queue are routed to similar
servers running concurrently on different
computers.

491
Glezer C. and Zviran M. (2004).
A RECONFIGURATION ALGORITHM FOR DISTRIBUTED COMPUTER NETWORKS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 491-494
DOI: 10.5220/0002592704910494
Copyright c© SciTePress

4. Servers of a given type on different computers
may have a different processing capacity.
5. The prototype derived from the conceptual
model should accommodate safety mechanisms
that will enable it to handle both crash-type and
arbitrary (Byzantine) failures, resulting in a higher
failure mode coverage (Laprie, 1995)

The challenge in providing fault tolerance in the
scenario described above stems from the dynamic
and uncertain nature of the network. As a case in
point, computers can be installed or removed in
real time, unexpected software/hardware crashes
may occur. It is the need to provide end-users with
quality service at a minimum level of response time
that prompts the seeking and evaluation of
mechanisms that will detect faults as well as
rapidly adjust the performance of the network so
that the desired quality standards are maintained.
Effective synchronization and communication
protocols are a critical asset for the success of such
a system.
The proposed reconfiguration model is algorithmic
and comprises the following elements:

Network Status: A set of vectors and matrices that
capture the actual state of the network at any given
point in time (termed logical configuration). These
elements describe which servers and computers are
active and which tasks are processed on each server
at any point in time. It also includes operational
instructions on what to do with the tasks running on
a server in case the host computer becomes
inoperative.
Task-Reconfiguration Algorithm: An algorithmic
set of procedures that transform the network status
elements so that they capture and react to changes
in the state of the network (termed events) with
minimal delay.

Note that contrary to the logical configuration, the
physical configuration of the network refers to the
hardware profile (e.g., ratio of memory/CPU
power, number of I/O devices etc.). Changes in the
physical configuration are therefore less frequent
than changes in the logical configuration. The
former fall outside the focus of the model because
they cannot affect the behavior of the model unless
they are first reflected in the logical configuration
(e.g., register a newly acquired computer in an
appropriate status matrix).
The basic principle of the model is to dynamically
redistribute tasks between servers available on the
network in response to threatening events. When
such an event occurs in the network (e.g., a
computer crashes, or an arbitrary failure occurs),
the model reallocates active tasks on running the

stalled computer to other available computers
according to a proportional ratio determined by the
relative importance of the servers. The importance
(vote) of a server is based on the system manager's
perception of the relative processing capacity of all
servers of a given type (running on different
computers). In case there is a leftover task as a
result of the above event, then this task is allocated
to the computer that has the highest remainder,
using the Hamilton method (Ibarkai and Katoh,
1988). This approach can be applied to the event
of system initialization as well.

3 EVALUATION OF THE
MODEL

The proposed reconfiguration model was evaluated
on a large national digital telecommunications
network comprising approximately 200 hubs of the
following types: TX-1, TMX-10, and TMX-100
(manufactured by Northern Telecom) and System-
12 (manufactured by Alcatel). The above hubs
serve in the range of 1000 to 20,000 customers
each. As an example, the System-12 hub is a
complex hardware and software device running
several tens of modules concurrently. The modules
are responsible for various tasks (e.g., central
control, connection with customers, message
routing, connection bus with other hubs,
distribution control and more). The System-12 hub
uses approximately 100 types of status messages in
order to monitor and coordinate the operation of
the hub (e.g., detecting and handling malfunctions).
The model for controlling the network was
implemented using the C programming language.
The system operates over the VAX/OpenVMS
operating system running on two VAX 4000-5000
computers and using the Digital RMS software for
file management. The computers are connected in a
cluster using the Digital Small Systems
Interconnect (DSSI), which enables sharing of
disks among computers, synchronization of events
and transmission of data. Connection between the
servers on the computers and the hubs they are
serving is implemented using a X.25 packet
switching network. This network transmits
instructions from the servers to the hubs and events
from the hubs to the servers. The performance of
the network was measured and recorded using
Digital's Monitor software package over a period of
one month. Several measurements were performed
during the day and an arithmetic average was used
to summarize the results. The effect of the
workload created by MONITOR on the results is

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

492

negligible compared to the other tasks running on
the computers, and can therefore be ignored.

Table 1: Comparison of Cost/Utilization and Balance
Factors

The benefit from using the proposed model was
evaluated the theory of constraints (TOC), with or
without a manufacturing focus, and on the
cost/utilization model (Borovits and Ein-Dor,
1977) The idea underlying the method is to
generalize the application of TOC combined with
cost/utilization for performance analysis of a single
processor, into a scenario of a distributed network
composed of several processors. The method
exploits a simple graphic display of the processing
element (PE) components (e.g., CPU, Input/Output,
Memory, Communication links) in order to
pinpoint improper imbalances, fluctuations and
bottlenecks. The model uses the following two
main indicators for evaluating performance of a
distributed system. The values of F (cost utilization
factor) and B (balance) are between 0 and 1.

F= ∑Pi * Ui (i=1….I)

B= Balance Factor = 2*√ ∑[(F-Ui)**2 *Pi]

Where I = Number of processing elements on a
single processor
Pi= Relative cost of PE i
Ui= Utilization percentage level of PE i
The closer F gets to 1 the better the utilization of
the network is in terms of the cost of its elements.
The closer B gets to the less balanced the network
becomes resulting in bigger variance in the
utilization of its elements. Since the percentage of
resource utilization in the original cost utilization
model is replaced by the maximal resource
utilization in the PE, it is better to have a system
that is balanced (a smaller B is better). If there is a
resource that is highly utilized in one of the PEs
compared to the other resources in that PE, a
moderate increase in the workload might cause a
crash or bottleneck in that PE. This could affect the
viability of the whole system.
The evaluation of the reconfiguration model was
performed by comparing the B and F measures in
two scenarios: hot standby, where a computer is
used as a mirror backup (without routinely sharing
the workload of the other computers); and a
scenario, where the backup computer processes

tasks and the load is balanced among all computers
linked to the network (reconfiguration).
Table 1 depicts the values calculated for B and F in
the two scenarios. In both cases the utilization of
the two computers is not good. The cost of
purchasing the backup computer is an imposed
operational constraint, and therefore there is no
option to alter the cost of the combined system.
The reconfiguration model seems to be the
preferred option because the system is more
balanced (0.433<0.653) and can therefore handle
peak processing volume with a better quality of
service. In other words, the model enables avoiding
bottlenecks which cause down time and impair
service to end-users. In the hot standby option, the
risk of a total malfunction, however, is higher
because the operations relies only on a single
computer which is more prone to crash.

 Hot Standby Reconfiguration
Model

F 0.365 0.21
B 0.653 0.433

Table 2 contrasts the proposed model with the
GATOSTAR system (Folliot and Sens, 1994). The
main theme of the reconfiguration model presented
in this article is the application of the Hamilton
method (Ibarkai and Katoh, 1988) to the task
redistribution process. This article also analyses the
effectiveness of the proposed method in a very
large-scale industrial setting. A combination of the
two approaches is recommended for covering all
aspects of the dependability challenge

4 DISCUSSION

This study proposed and evaluated an algorithmic
model for combining hot standby and load
balancing in a network of computers where tasks
are processed concurrently and re-allocated by
servers running concurrently on different
computers.
The research found support for the claim that a
combination of fault tolerance and load balancing
mechanisms is more effective than software-based
fault tolerance alone. The combined approach is
also better than implementing a purely hardware-
based fault tolerant system, which is a much more
expensive solution because it requires the purchase
of specialized, synchronized, fault-tolerant
computers.

A RECONFIGURATION ALGORITHM FOR DISTRIBUTED COMPUTER NETWORKS

493

Table 2: Comparing the HS/LB model with the
GATOSTAR system

Criterion/
System

HS/LB
Reconfiguration
(Model and
Prototype)

GATO-STAR

Locus of
model

Specification of a
redistribution
mechanism to
increase utilization

Seamless
unification of
GATOS and
STAR

Impleme-
ntation
constructs

Network of
computers, each
with servers that
handle processes

Ring of hosts
composed
daemons
(LSM, FTM,
RM)

Algorithm Hamilton method
(Ibarkai and Katoh,
1988)

Overload,
migration,
reception
thresholds

Network
status
information

Matrices and
vectors

Local shared
memory

Prototype Hubs serving a
national
telecommunica-
tion network

Workstatio-ns
in a LAN of a
university

Evaluation
criteria

Balance (B) and
Utilization (U)
factors

Overhead of
process
allocation,
logging.

Conclusions Combining load
balancing with
fault tolerance
recommended for
increasing potential
of dependable
computer networks

Useful for
increasing
dependa-bility
of LANs).
Need to reduce
overhead

A major advantage of the model is its flexibility
and scalability. The model can operate on various
hardware platforms and has a great effect on both
real-time and Electronic Data Processing (EDP)
applications.
The model can be expanded in the future to include
an internal feedback system that changes the vote
(relative importance) of different servers
automatically to achieve an optimal balance in the
network. Such a system will invoke a quantitative
model, suggest a modification to the human
administrator, and enable “what-if” analysis
regarding the effects caused by various changes in
the logical configuration of the network.

REFERENCES

Anderson, T., and Lee, P.A., 1981. Fault Tolerance:
Principles and Practice, Prentice Hall International,
Englewood Cliffs, N.J.

Babaoglu, O., Alvisi, L., Amoroso, A., and Davoli, R.,
1992. Paralex: An environment for parallel
programming in distributed systems, Proc. of
International Conference on Supercomputing,
Washington D.C.

Borovits, I., and Ein-Dor, P., 1977. Cost/utilization: A
measure of system performance, Communications of
the ACM, 20 (3), pp. 185-191.

Clark, H., and McMillin, V., 1992. DAWGS – A
distributed computer server utilizing idle
workstations, Journal of Parallel Distributed
Computing, 14, pp. 175-186.

Folliot, B., and Sens, P., 1994. GATOSTAR: A fault
tolerant load sharing facility for parallel applications,
Proc. of the first European dependable computing
conference, Berlin.

Ibarkai, T. and Katoh, N., 1988. Resource Allocation
Problems: Algorithmic Approaches, MIT Press,
Foundations of Computer Series, Cambridge, MA,
(Chap. 6: The apportionment problem: the Hamilton
Method, pp. 106-126)

Laprie, J.C., 1995. Dependable computing: Concepts,
limits, challenges, invited paper FTCS-25, pp. 42-54.

Litzkow, M.J., Livny, M., and Mutka, M.W., 1988.
Condor - A hunter of idle workstations, Proc. of the
8th International Conference on Distributed
Computing Systems, San Jose, CA.

Shoja, C.G., Clarke, G., and Taylor, T., 1987. REM: A
distributed facility for utilizing idle processing power
of workstations, Proc. of the IFIP Conference on
Distributed Processing, Amsterdam.

Tiemeyer, M.P., Wong, J.S.K, 1998. A task migration
algorithm for heterogeneous distributed computing
systems, Journal of Systems and Software, 41 (3), pp.
175 – 188.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

494

