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Abstract: Limited number of input buttons on a mobile device, such as mobile phones and PDAs, restricts people’s 
access to digital broadcast services. In this paper, we present a reinforcement learning approach to 
automatically navigating among services in mobile digital television systems. Our approach uses standard 
Q-learning algorithm as a theory basis to predict next button for the user by learning usage patterns from 
interaction experiences. We did the experiment using a modified algorithm in test system. The experimental 
results demonstrate that the performance is good and the method is feasible and appropriate in practice.

 

1 INTRODUCTION 

Reception of TV programs in moving vehicles, such 
as in buses, trains or cars, is only practicable with 
digital television, not with the present analogue TV 
system. Digital television provides far more robust 
TV signals that are far less susceptible to 
interference than analogue TV, especially on the 
move.  

Mobile reception, which is one of the advantages 
of the DVB-T (Digital Video Broadcasting-
Terrestrial) broadcasting solution, is defined in DVB 
as being the reception of a DVB-T signal while in 
motion, using an omni directional antenna situated at 
no less than 1.5 meters above the ground level 
[Motivate, 2000] [EN 300 744, 2001]. Figure 1 
shows one example, which is drawn from EyeTV 
[EyeTV 400, 2003]. 

Among all the parameters which characterize the 
service delivered to mobile receivers, the speed of 
the mobile, corresponding to a given Doppler 
frequency value, is considered as the main variable 
[Motivate, 2000]. 

For example, some measurements have 
confirmed that 8K mobile DVB-T reception of the 
15 Mbit/s mode {8K, 16-QAM (quadrature 
amplitude modulation), code rate=1/2, Tg=224 ms (a 
guard interval of duration)} is possible in the entire 

UHF band with speeds in the range 130-235 km/h 
and a carrier-to-noise (C/N) ratio requirement of less 
than 18 dB [Pogrzeba, 1999] [Reimers, 1998]. Data 
rate for DVB-MHP (DVB-Multimedia Home 
Platform) applications provided by DVB-T is 
capable of 256 kbps [EN 300 744, 2001]. Therefore, 
there is a realistic possibility for high-speed mobile 
reception of both television and data services in cars, 
buses, trains, etc.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1:  Mobile reception of DTV. 
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Digital television will offer a large amount of 
digital broadcast data services as well as TV 
channels, such as Electronic Program Guide (EPG) 
and digital Teletext. People can access digital 
television services on the move using their mobile 
devices, such as mobile phones and PDAs.  

Users are often frustrated in their efforts to 
access these services with limited number of input 
buttons on their mobile devices. Also some mobile 
devices, such as mobile digital television set in a car, 
demand less user input. Thus, designing a user 
interface with minimum or without user’s 
interference is an advantage. It could save user time, 
efforts, and frustration. 

Our goal is to find an intelligent solution to 
create “zero-input” for browsing services. In further 
detail, whenever a user switches his or her mobile 
digital television sets or is at any state of a TV 
service, the system would be able to recommend 
next button to be pressed and execute the function 
represented by this button automatically for the user 
instead of manual browsing if the user does not want 
to give his or her own input. And therefore, the 
number of buttons pressed in this way can be 
significantly reduced.  

Here we clear some confusion: the paper is not 
the issue of helping novice users or compensating 
the original poor user interface, but of resolving the 
design by novel learning algorithm. We also argue 
that multiple users may not access the same device 
to interrupt the agent. 

It is very difficult to predict real intentions of a 
user because there are no examples to guide agent’s 
learning, and also most of the times the interactions 
made are stochastic. Interactions are dynamic and 
parallel with learning, and demand real-time 
reaction. Unexpected button-press recommendation 
is unacceptable.  

The agent’s learning in this problem heavily 
depends on user’s interactions or experiences with 
the environment and the changes of the broadcast 
environment itself as well. Consequently, we use 
experience-based and reinforcement learning 
techniques (especially the standard Q-learning 
algorithm) in machine learning. In section 3, we will 
describe reinforcement learning technique used in 
this paper and our approaches. 

2 DESIGN OF LEARNING AGENT 

The mobile digital television will consist of 
estimated tens of TV channels and 800 digital 
Teletext pages [Peng, 2002]. Navigation agent in a 
mobile device is more personalized toward 
individual users’ interests and dynamic user 

behavior [Lieberman, 2001]. Every time user presses 
a button on a mobile device, that’s an expression of 
interest in the subject of the services.  

The design goal of learning agent in this paper 
was to be able to learn and infer user’s intensions 
and interests by tracking interactions (i.e., history 
information of user’s behavior) between the user and 
the device over the long term and provide 
continuous, real-time display of recommendations 
for the user. Agent keeps any significant histories of 
interaction. Browsing history, after all, is a rich 
source of input about the user’s interests 
[Lieberman, 2001].  

Further goal on the learning agent is concerned 
with tracking and understanding users’ patterns of 
services browsing. In this paper, a reward function 
in Q-learning algorithm is used to match the 
behavior of the user in current situation with the past 
behaviors whose browsing pattern fits most closely, 
and return its predictions.   

The agent performs reconnaissance in tracking 
user-browsing history to recommend new actions.  
This concept is not new in user interface design 
[Lieberman, 2001]. Given enough time, the agent 
becomes pretty good at predicting which button the 
user would be likely to choose next.  

This paper presents another concept: What if 
there is no or few history information or services are 
changing? How the agent deals with this kind of 
situation? How to deal with the recommendations 
that user might not be interested in? Users might 
have many interests and changes over time. Also, 
users have a rich browsing history over potentially 
many months that can be exploited to better 
understand their true interests. Agent finds functions 
on a service of interest that the user might overlook 
because of the complexity of the service. 

The agent designed runs simultaneously with 
mobile digital television services. The agent 
automates interactions between user and mobile 
device. Over time, it learns a pattern of the user’s 
interests by recording and analyzing the user’s 
browsing activity in real time, and provides a 
continuous stream of recommendations.  

When the user is actively browsing and attention 
is focused on the current service or function, the user 
need not to pay any attention to the agent. However, 
if the user is unsure where to go next, or dissatisfied 
with the current offerings, he or she can glance over 
to the recommendation window to look at agent’s 
suggestions.  
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3 REINFORCEMENT LEARNING 

In this section, we will give a short description of 
reinforcement learning, which is adopted in this 
paper. Reinforcement learning serves as a 
computational approach to automating goal-directed 
learning and decision-making for an agent [Sutton, 
1998]. Its distinguished feature from other 
approaches is learning from direct interaction with 
the environment. It has been used by a number of 
researchers as a practical computational tool for 
constructing autonomous systems that improve 
themselves with experiences [Papudesi, 2003].  

Reinforcement learning is a kind of unsupervised 
learning. Reinforcement learning, especially Q-
learning agent is learning to act, i.e., learning how to 
map agent’s states to its actions in order to maximize 
a numerical reward signal rather than giving training 
information in the form of instructions like in 
supervised learning [Sutton, 1998]. A reward 
indicates the instinct of an agent and it is usually 
programmed by a designer in advance. An agent 
learns to associate a value (i.e. value function) with 
the execution of actions in different states. A value 
function specifies what is good in the long run (i.e. 
total expected reward).  

Reinforcement learning is also a kind of trial-
and-error learning, in which the central problem is 
balancing exploration and exploitation [Dearden, 
1998]. That is, in order to obtain a lot of reward, an 
agent has to exploit what it already knows in order 
to obtain reward, but it has also to explore in order 
to make better action selections in the future [Sutton, 
1998]. Both model-based and model-free methods 
for balancing exploration and exploitation have been 
introduced in [Dearden, 1998] [Wiering, 1998].  

Our focus in this paper is however not on the 
trade-off between exploration and exploitation, but 
on exploration, in which we show how the system 
recommends actions and how unexpected actions (or 
errors) can be reduced by an efficient action 
selection strategy. By reasonable exploration, we 
can shorten agent’s learning time and solve the 
problems in the concept mentioned in section 2. 

We also study the problems of collecting useful 
experiences and environment changes via 
exploration in stochastic environment using reward 
functions in Q-learning algorithm. 

4 EXPLORATION VIA Q-
LEARNING ALGORITHM 

This section gives a short introduction to Q-learning 
algorithm and presents our approach based on 

model-free method. Model-Free approaches only 
require sufficient exploration of the environment to 
solve the problem. This is very useful when the 
number of states is very large. An outline of Q-
learning algorithm using ε-greedy action selection 
method follows [Sutton, 1998]: 

 
(1) Initialize value function   

 a)Q(s, ; 
(2) Choose an action a from the  

 state s using a policy derived  
 from Q using ε-greedy method; 

(3) Take the action a, observe reward  
    R and next state s’; 
(4) Calculate value function Q by   

 equation:  
 

a)}Q(s,        

)a',Q(s'γmaxα{Ra)Q(s,a)Q(s, a'

−
++=

 
 
(5) s = s’; 
(6) Go to step (2); 

 
where  

Q  : a table of Q-values  
a  : previous action  
s  : previous state  
s´ : new state that resulted from  
     the previous action  
a´ : action that will produce the  
     maximum Q value  
α  : learning rate (0 < α ≤1)  
R  : reward 
γ  : discount rate ( 0≤ γ ≤1) 

 
The ε-greedy action selection rule in above 

algorithm uses a small probability ε to select an 
action with the highest Q value, and to select a 
random action otherwise [Wiering, 1998]. In order 
for an agent to select an action, it needs to explore it. 
Random actions are necessary for exploration; 
however, actions selected by random process are 
sometimes unexpected in practical system where the 
problems are. We change ε-greedy rule at step (2) in 
above Q-learning algorithm as follows: 
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given a random number rand in each 
loop in above algorithm, action a is 
selected as following: 
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where,  
   at indicates experienced action  

as indicates random action 
 
In order to decide action am, we select an action 

with maximum Q-value in the Q-table; in case of no 
action with maximum Q-value in the Q-table, we 
choose an randomly selected action ar, otherwise.  

Action ap is chosen from one of the followings: 
user controlled action au; reactive controlled action 
at which is used as learning intentions-usage 
patterns; or approaching the unknown action in as. St 
indicates the current state and the set of (s, a) pairs 
mean the experienced states and actions, i.e., the set: 

 
{ (s0, a0), (s1, t1), … ,  
  (st-2, at-2), (st-1, at-1) }   (1) 

 
The exploration strategy in this way would lead 

to free button predictions. Through the exploration, 
the system is going towards predicted states and 
actions. 

There is still a question of whether or not this 
approach would scale. For example, user wishes to 
deviate or start operating with new behaviors. This 
situation can be handled well if we use multi-sensed 
description of the agent’s world state and avoid very 
impoverished state. 

5 EXPERIMENTS 

We assume that Markov property does hold in this 
problem. Markov property means that transition 
probability only depends on the last state and action, 
not on the whole history of states and actions 
[Sutton, 1998].  

The overall learning procedure is that every time 
the agent is in a state, it then tries out an action using 

the action selection algorithm designed in last 
section; after the action is performed, the system 
evaluates how successful it was by using a reward 
function defined in formula (2).  

We also need to define a set of states and actions 
together with the reward function and other 
parameters, which are key elements of reinforcement 
learning, as in the rest of following paragraphs in 
this section: 

We simplify functions represented by a series of 
buttons on a remote control in a mobile device as 
individual letters, which are shown in Table 1. 

A state is a current summary of what can be 
sensed by the agent from the environment. In this 
experiment, we represent a state as two parts (there 
should have more bits in real system): one as current 
TV channel number and another as last action taken. 
For example, state 6 N indicates the current state of 
the environment is in channel 6 and within EPG 
service. Also the actions of the agent taken 
determine the next state. 

 
Table 1. A simplified representation of a remote 

control buttons. 
Code Function Code Function 
0-9 Channels Z Red button 
T Teletext X Green button 
N Navigator/ 

EPG 
C Yellow 

button 
I Interactive 

program 
V Blue button 

U Up arrow B Back/Exit 
button 

D Down arrow Q Enter button 
L Left arrow R Right arrow 

 
 
Navigation in this problem means taking actions. 

We differentiate between interference actions (user 
pressed) and automatically learned actions. Actions 
are presented as buttons, which include both channel 
keys (0-9) and non-channel keys (the rest of keys in 
Table 1).  

Q-Learning values are built on a reward scheme. 
We need to design a reward algorithm that will 
motivate the agent to perform a goal-oriented 
behavior. A reward function is quite related to 
usability heuristics in this problem. For each action, 
a reward is determined according to the current 
situation and action taken. For example, it receives a 
reward of maximum value if the action is the some, 
which the user pressed.  

Reward function depends on the tasks. In this 
paper, we give the reward function as follows: 
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Where N indicates the number of tried (state, 

action) pairs (i.e. set (1)), ωk is a constant and 
depends on action (e.g., user controlled action au has 
the biggest reward 0.8, random action as has a 
reward 0.6, random action ap has a reward 0.3, etc.), 
and φk(s, a) is either 1 or 0 and it depends on the 
state and action. 

The system also keeps a so called “footage” of 
interactions (i.e., the history of interaction) that user 
ever made (cf. Table 2 and Table 3). These 
experiences are used for giving reward evaluation 
and more importantly, they are used for learning 
usage patterns of the user. During interaction, the 
system needs to update history file (cf. Table 2) 
online. For example, if there is no channel button in 
the history file then the system chooses random 
action and the reward would be 0.1.  

In order to learn which actions are useful, the 
actual Q-values should be calculated and the entire 
Q-value table will be saved and used later on. 
Basically, we just need to calculate the equation and 
give the parameters values used in this experiment, 
i.e., explore-rate ε (0.1), discount-rate γ (0.65), and 
learning-rate α (0.3). 

6 RESULTS 

The system keeps a history file of state-action pairs 
interacted in the past. Table 2 and Table 3 list a part 
of interaction history, which includes both user 
pressed and agent learned actions using the 
exploration algorithm designed in this paper.  

 
Table 2: A sample of the history of interaction. 

9 
1 
2 
3 
4 
5 
6 
9 nqddddddbdqdddddb 
1 tddddduuuuqd 
2 
3 
4 
5 
6 
7 
8 

9 ndqzdqzddqxqxdqxddqb 
9 idrqbbdddqdbb 
9 tdddduuuuqqrrrrrlllldddd 
9 tqddddddrddddrdddrddddddrdddddxdqqq 
 ddddrdd 

 
 
Table 2 lists some of past interactions. For 

example, text stream 1tddddduuuuqd at the ninth 
line of Table 2 means that TV channel 1 and its 
digital Teletext service were once selected, then five 
down and four up buttons were pressed, finally one 
enter and up buttons were pressed. 

Table 3 lists some actions learned by the agent 
from the exploration algorithm using past actions. 
For example, text stream 1nddddddddz at the fifth 
line of Table 3 means that TV channel one was 
selected and agent recommended buttons are 
choosing Navigator service, then selecting eight 
down buttons, finally selecting red color button on a 
remote control. 

The results of this evaluation were given by 
averaging of ten test runs. The error action rate is 
3%, which is less than the expected error rate 5%. 
The results were based on the real services used in 
our previous experiments [Peng, 2002] in which we 
used twelve TV channels and three services, i.e. 
digital Teletext, Navigator or EPG, and interactive 
services.  

 
Table 3: A sample of interactions and learned actions. 

9 ndqzdqzdqzdqzdqzdqzdqzdqz 
2 
1 tdddddd 
8 
1 nddddddddz 
9 tqzdqz 
9 tqzdqzdrbqzdqzdqzd 
6 x 
7 ubz 
2 
4 
9 tqzdqzdqzdqzdqzdqztqzdqzdqzdqz 
1 tddddddddddddqu 
5 
2 
3 nr 
1 tdddddddl 
1 tddddddddqudddddddddd 
9 idq 

 
 

The two averaged exploration rate curves are 
shown in Figure 2 in which the horizontal axis 
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shows the steps of test running and the vertical one 
shows the average reward. 

The ε-greedy exploration rate curve in Figure 2 
used the standard Q-learning algorithm, while 
experiment exploration rate curve in Figure 2 used 
the algorithm proposed in this paper. The curves 
show that the learning rate of proposed exploration 
algorithm converges faster than ε-greedy algorithm 
in this action selection problem. That is the 
experiment algorithm can provide meaningful and 
correct actions earlier than the standard ε-greedy 
algorithm. 

 

 

 

 

 
 

Figure 2: Exploration rate curves. 

7 CONCLUSIONS 

Through this paper, we highlighted an exploration 
algorithm used for automatic button selections in a 
mobile digital television system. The results have 
shown that this algorithm is feasible and could be a 
promising solution to this problem. It can be of 
practical values in such a system because the speed 
needed to process is in real-time and very little 
programming is required.  

Also, if the environment changes, e.g. remote 
control manufacturer changes, it doesn't need to be 
reprogrammed as mentioned earlier. Even if the 
services are altered, it does not need to redesign the 
learning algorithm. If the learning algorithm is 
properly designed, the agent is guaranteed to be able 
to find the most efficient policy. These points have 
advantages over supervised learning approaches. 

The reward function is very important, however 
choosing the reward function is hard and may not be 
obvious for any given task. Defining a reward 
depends on the task and prior knowledge built in the 
system.  

The learning rate constant α in the Q-learning 
equation determines the rate of convergence on the 
optimal algorithm. It's important to strike the right 
balance between speedy learning and giving the Q-
value history more weight.  

Finally, Q-Learning algorithm would really 
perform best if the agent could keep track of more 
bits in a state. However, this would increase the 
number of states that the Q-table would need to keep 
track of. This will demand more system memory, 
and the memory available in a mobile device is an 
important constraint of mobile systems. Another 
problem in the algorithm is how to handle errors 
when the recommended action is not the expected 
one.   
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