
DESIGN AND REPRESENTATION OF THE TIME DIMENSION
IN ENTERPRISE DATA WAREHOUSES

A Business Related Practical Approach

Ahmed Hezzah, A Min Tjoa
Institute of Software Technology, Vienna University of Technology, Favoritenstr. 9-11/188, 1040 Vienna, Austria

Keywords: Data Warehouse, Time Dimension, Temporal Databases

Abstract: A data warehouse provides a consistent view of business data over time. In order to do that data is
represented in logical dimensions, with time being one of the most important dimensions. Representing
time, however, is not always straightforward due to the complex nature of time issues and the strong
dependence of the time dimension on the type of business. This paper addresses the specific issues
encountered during the design of the time dimension for multidimensional data warehouses. It introduces
design and modeling techniques for representing time in the data warehouse by the use of one or multiple
time dimensions or database timestamps. It also discusses generic problems linked to the design and
implementation of the time dimension which have to be considered for (global) business processes, such as
representing holidays and fiscal periods, increasing the granularity of business facts, considering the
observation of daylight saving time and handling different time zones. These problems seem to have wide
application, and yet, more in-depth investigations need to be conducted in this field for real-world time-
based analysis in enterprise-wide data warehouses.

1 INTRODUCTION

As business activities tend to change over time, the
business data must be able to represent that change
(Devlin, 1997). Therefore, data modeling and
application design approaches have not to focus only
on a static view of the section of the real world to be
modeled.

This might be adequate in operational
applications, which manage only real-time data and
take a view mainly of the current state of the
business. A data warehouse, however, must
explicitly consider the temporal aspects of the data it
contains, because it must, by definition, provide a
historical view of the business.

But the majority of today’s modeling tools and
databases still focus on the representations of
“snapshots” of the current business information. One
of the first approaches which incorporates the notion
of time for modeling enterprise data is described in
(Eder, 1987), where timestamps and states of entities
and relationships are introduced. This approach
leads to the specification of business rules with
situation/activation diagrams as described in (Lang,
1997). A detailed description of most current

research performed for this purpose can be found in
(Wijsen, 1999) and (Wijsen, 2003). This paper will
focus on some practical aspects of this research.

While operational systems are among other
things designed to meet well-specified (short)
response time requirements, the focus of data
warehouses is the strategic analysis of data
integrated from heterogeneous systems (Inmon,
1996). This business requirement has consequences
for the data model design and for the architecture of
the data warehouse. The absence of support for this
temporal issue led data warehouse designers to take
several approaches to reflect history in the database
design (Snodgrass, 2000).

One important approach that is widely used is
adding timestamps to the data. A timestamp is a
specially defined field, in date-and-time format that
tracks when a data record has been created, deleted,
or changed in any way. Changes can be tracked on
field-, record/row, or file/table level, depending on
the required level of detail and the available storage.
However, in this paper we focus on tracking changes
on record/row level since this is the more common
approach in the data warehouse.

But as we move toward the multidimensional
approach data is represented in logical dimensions in

416
Hezzah A. and Min Tjoa A. (2004).
DESIGN AND REPRESENTATION OF THE TIME DIMENSION IN ENTERPRISE DATA WAREHOUSES - A Business Related Practical Approach.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 416-424
DOI: 10.5220/0002642604160424
Copyright c© SciTePress

order to provide a consistent view of the data over
time, a view that can be used by decision support
systems. One of the major dimensions in every
multidimensional data warehouse is the time
dimension. The time dimension contains descriptive
temporal information, and its attributes are used as
the source of most of the temporal constraints in data
warehouse queries (Kimball, 1996). However, the
design of the time dimension is not always
straightforward as it strongly depends on the type of
business and the requirements of the enterprise.

The aim of this paper is to introduce a
specification of the time dimension in enterprise data
warehouse systems, which is consistently applicable
for handling the analysis of global enterprise data.
The problems arising in multinational corporate
groups when combining data with a temporal
dimension are enormously cost-intensive. Even the
minor problem of DST for one of the world-wide
leading energy companies could cause data
warehouse costs of millions of dollars, as it has been
investigated by one of the authors.

 This paper deals with the subject matter related
to representing time in the data warehouse. It
discusses the design of the time dimension and
introduces design techniques for its implementation.
It presents a practical approach, which also models
relevant real world business issues such as holidays,
seasons, daylight saving time and fiscal periods by
extending the time dimension with new attributes
and flags. It uses the time dimension together with
timestamps to resolve major granularity issues.
Finally, it addresses issues related to having
different time zones and demonstrates how the use
of local and universal time can resolve these issues.

2 RELATED WORKS

The functions needed to implement a data
warehouse architecture including different types of
data are described in (Devlin, 1997) and (Inmon,
1996). It addresses the use of timestamps to store
periodic and historical business data, but doesn’t
consider the multidimensional approach widely used
today. This is more discussed in (Kimball, 1996)
with case studies of data warehouses for different
types of businesses, almost all using a daily-based
time dimension, unfortunately with no focus on the
issues related to its implementation.

Adding history to the temporal database
application is investigated in (Snodgrass, 2000) with
focus on issues related to valid and transaction time,
intervals and periods and state tables for valid and
transaction time. It also presents some
implementation considerations for the temporal

database logical and physical design and
demonstrates application development issues using
SQL.

A conceptual multidimensional data model,
which facilitates even sophisticated constructs based
on multidimensional data units or dimension
members, is introduced in (Nguyen, 2000). This
model is able to represent and capture natural
hierarchical relationships among dimension
members within a dimension as well as the
relationships between dimension members and
measure values and is modeled using UML.
Dimension updates are formally discussed in
(Vaisman, 2001).

(Bruckner, 2001) presents an approach for
modeling conceptual time consistency problems and
introduces a model that deals with timely delays.
However, this model doesn’t address issues related
to the time dimension as much as data consistency
and updating issues. Changes of dimension data are
discussed in (Eder, 2002), which presents an
approach to represent temporal behavior of master
data within existing, non-temporal data warehouses.

In (Ravat, 2000) a data warehouse class concept
is introduced, which is based on the concepts of
temporal filter and archive filter. It defines mapping
functions to specify derived, calculated, and specific
properties, and organize the inheritance hierarchy of
the warehouse classes, allowing extracting only
relevant data. In (Yang, 2000) Yang and Widom
study incremental maintenance of temporal views
using a temporal query language equivalent to
TSQL2. Although (Ravat, 2000) does not organize
data multidimensionally, it provides a more flexible
temporal model than (Yang, 2000) because the
purging values are not deleted, but they are archived.

The use of multiple time dimensions is
mentioned in (Kimball, 1999), which introduces the
concept of a data webhouse. It uses a clickstream
data mart to store all web activities for later analysis
of user behavior. This is also discussed briefly in
(Pedersen, 2001) with focus on the influence of the
web on data warehousing, but also the design of
clickstream fact tables and dimension tables.

Other temporal issues like fiscal periods and
granularity are briefly discussed in (Kimball, 2002)
and (Kimball, 1997) with more focus on using the
time dimension to resolve this issues, but design
issues are not investigated in detail.

The aim of this paper is to give a framework for
modeling the time dimension in data warehouses for
enterprise wide (global) information systems with
focus on its applicability for practical issues, such as
daylight saving time (DST) or problems related to
time zones, holidays, and fiscal periods. This paper

DESIGN AND REPRESENTATION OF THE TIME DIMENSION IN ENTERPRISE DATA WAREHOUSES - A
BUSINESS RELATED PRACTICAL APPROACH

417

presents design techniques for representing time in
multidimensional data warehouses and temporal
databases. It provides an approach to model practical
problems of different time representations, which
will be demonstrated considering relevant real-world
examples, such as the DST-problem, the modeling
of holidays, fiscal periods, etc., by using one or
multiple time dimensions and timestamps.

3 TEMPORAL ISSUES

3.1 The Time Dimension

The TIMESTAMP type available in SQL provides a
representation of time in a very fine precision. It
stores the year, month, day, together with the hour,
minute, second, and a number of fractional digits of
the second. It can be used in a database table to
record the occurrence of certain events (e.g. deposit
to and withdrawal from a bank account), as well as
the start and end of a certain state (e.g. a certain
employee belongs to a certain department).

As we move toward a multidimensional
approach the simple timestamp is replaced with a
time dimension. The time dimension is then filled
with a lot of helpful calendar attributes and is
connected to the fact table by a foreign key (Figure
1). But do we really need a dimension for time?
Wouldn’t it be better to use an SQL timestamp in the
fact table instead of the foreign key and avoid this
expensive join? To answer this question let’s take a
look at these simple queries:

• Show all the transactions that occurred
within a given period of time.

• Determine whether a certain transaction
occurred within a given period of time.

• Show transactions using complex calendar
navigation capabilities including seasons,
fiscal periods, day numbers, week numbers,
weekdays and holidays.

While the first two queries are pretty simple to
define using a single timestamp that stores the
occurrence time of each transaction, this is not the
case for the third query. Since SQL timestamp know
nothing about an organization’s calendar, fiscal
periods or holidays, these attributes are modeled
using a time dimension (Figure 2). This way the
application designer doesn’t have to embed these
calendar constrains in the application design, which
would require a set of complex queries to determine
these attributes. Besides that this would be very
slow, the end-user application can’t easily produce
the needed SQL.
A time dimension can easily be built using a simple
spreadsheet. A 20-year time dimension on daily
basis contains about 7300 rows, which is not much.
It can also be filled with a single SQL INSERT
statement, as we will see later. However, problems
will start to arise when the fact table requires
granularity smaller than a day, let it be an hour, a
minute, or a second. It’s not possible to create a
single time dimension with all the minutes or
seconds over a long period of time. There are more
than 500,000 minutes and 31 million seconds in a
year. So, for these cases the only way seems to be to
use SQL timestamps despite the limitations we
mentioned and to give up the ability to navigate
through seasons and fiscal periods to the nearest
second. We will come to this later when we talk
about granularity to see how to overcome this issue.

Time Dimension

time_key
.........

Fact Table

time_key
product_key

customer_key
geography_key

........

Product Dimension

Customer Dimension

Geography Dimension

Figure 1: A multidimensional model

Time Dimension

time_key
sql_date

day_of_week
day_number_in_month

day_number_overall
week_number_in_year
week_number_overall

month
month_number_overall

quarter
year

fiscal_period
holiday_flag

weekday_flag

Figure 2: The time dimension

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

418

3.2 Holidays, Seasons and Fiscal
Periods

The time dimension as defined above gives us the
ability to track business facts very well on a daily
basis. But as the business requirements become
more complex the time dimension must be extended
by new attributes to meet those requirements. For
example, the business might require looking at sales
on holidays versus non-holidays. With an OLTP
model holidays are usually stored in an own table,
which is filled with all the holidays and can be
joined with the sales table by date key. Thus a query
is then used to join this table with the sales table:

select sum(sales.quantity_sold)
from sales, holidays
where trunc(sales.date_time_of_sale) =
 trunc(holidays.holiday_date);

As this looks pretty simple, since the holidays

table eliminates sales on days that are not holidays,
the case looks slightly different when we want to
eliminate sales on days that are holidays. The query
will look like that:

select sum(sales.quantity_sold)
from sales
where trunc(sales.date_time_of_sale)
 not in (select holiday_date from
 holidays);

Of course this query will take longer time to
execute. The sales table may contain millions of
rows, and the holidays table will contain about 50 to
100 rows. Here, the sub-query will be performed for
each row examined by the main query. So the time
to execute this query might be much longer than the
holidays query. Besides, it will become more
complex when we want to look at sales, not just on
holidays, but also on different seasons, fiscal periods
or weekdays. For each of these attributes a separate
table is necessary, which then must be joined with
the sales table.

Here comes the big advantage of the time
dimension. All these attributes can be integrated into
the time dimension in a way that effectively reduces
query execution time and provides more
functionality than using conventional RDBMS
tables. The tables for holidays, seasons, fiscal
periods and weekdays are replaced with attributes
and flags in the time dimension, which will look like
this:

create table time_dimension (

 time_key integer primary key,
 -- this is midnight (TRUNC) of the
 -- date in question
 sql_date date not null,
 day_of_week varchar(9) not null,
 -- 'Sunday', 'Monday'...
 day_number_in_month integer not null,
 -- 1 to 31
 day_number_overall integer not null,
 -- first day is 1
 week_number_in_year integer not null,
 -- 1 to 52
 week_number_overall integer not null,
 -- weeks start on Sunday
 month integer not null, -- 1 to 12
 month_number_overall integer not
 null, -- first month is 1
 quarter integer not null, -- 1 to 4
 year integer not null,
 fiscal_period varchar(10),
 holiday_flag char(1) default 'f'
 check (holiday_flag in ('t', 'f')),
 weekday_flag char(1) default 'f'
 check (weekday_flag in ('t', 'f')),
 season varchar(50),
);

Of course these attributes must be defined and
filled according to the organization’s fiscal calendar.
Now if we want to report sales by season, the query
will be straightforward:

select td.season, sum(f.dollar_sales)
from sales_fact f, time_dimension td
where f.time_key = td.time_key
group by td.season;

Using the group by command we can report by
other attributes like holidays and fiscal periods in an
identical way, which makes the queries much faster
than using separate tables. Using other dimensions
like products, customers, manufacturers, etc. makes
us able to report by different criteria.

As mentioned above, the time dimension can be
populated using a spreadsheet or even easier with a
simple SQL INSERT statement. This is done using
SQL date formatting functions and a help table
integers, which supplies a series of numbers to be
added to a selected starting date. For this example let
January 1st 1998 be the first date:

-- Uses the integers table to drive the
-- insertion, which just contains
-- a set of integers, from 0 to n.

DESIGN AND REPRESENTATION OF THE TIME DIMENSION IN ENTERPRISE DATA WAREHOUSES - A
BUSINESS RELATED PRACTICAL APPROACH

419

-- d below is the SQL date of the day -
-- we're inserting.

insert into time_dimension
 (time_key, sql_date, day_of_week,
 day_number_in_month,
 day_number_overall,
 week_number_in_year,
 week_number_overall,
 month, month_number_overall, quarter,
 year, weekday_flag)
select n, d, rtrim(to_char(d, 'Day')),
to_char(d, 'DD'), n +
1,to_char(d,'WW'),trunc((n + 4) / 7),
-- Jan 1, 1998 was a Thursday, so +4 to
-- get the week numbers to line up with
-- the week
to_char(d, 'MM'),trunc(months_between
(d, '1998-01-01') + 1),to_char(d, 'Q'),
to_char(d, 'YYYY'),
decode(to_char(d,'D'), '1', 'f', '7',
'f', 't')
from (select n, to_date('1998-01- 01',
'YYYY-MM-DD') + n as d
from integers);

The remaining fields (season, fiscal_period,
holiday_flag) cannot be filled using SQL date
functions and have to be populated afterwards.
Fiscal period and season depend on the
organization’s choice of fiscal year. To update the
holiday_flag field, which is ‘f’ by default, we need
two help tables: one for the fixed holidays and one
for the floating holidays.

create table fixed_holidays (
 month integer not null
 check (month >= 1 and month <= 12),
 day integer not null
 check (day >= 1 and day <= 31),
 name varchar(100) not null,
 primary key (month, day)
);

-- Specifies holidays that fall on the
-- n-th DAY_OF_WEEK in MONTH.
-- Negative means count backwards from
-- the end.

create table floating_holidays (
 month integer not null
 check (month >= 1 and month <= 12),
 day_of_week varchar(9) not null,

 nth integer not null,
 name varchar(100) not null,
 primary key (month, day_of_week, nth)
);

Some example holidays:

insert into fixed_holidays (name,
month, day)
 values ('New Year''s Day', 1, 1);

insert into floating_holidays (month,
day_of_week, nth, name)
 values (11, 'Thursday', 4,
 'Thanksgiving');

After that, it is easy to update the holiday_flag
in the time dimension using these two help tables
and any procedural language like PL/SQL to set the
holiday_flag to ‘t’ for the days just inserted into
the two tables.

In order to consider holidays in different
countries or in different time zones we could use
multiple holiday flags (holiday_flag_1…
holiday_flag_n), one for each country we need to
consider. For instance, October 3rd is a national
holiday in Germany, so we set the holiday_flag for
Germany to ‘t’, while for all other countries we
leave it ‘f’. This way, we can run queries like “how
did this German holiday affect sales in neighboring
countries like Austria and Switzerland?”.

3.3 Granularity

Granularity is the level of detail of the facts stored in
a data warehouse. As mentioned above, if we are
only modeling calendar days the time dimension
provides a very good approach to track business on a
daily basis. But what if we need to add some more
precision to the fact table in order to store more
temporal details? Can we just increase the
granularity of the time dimension to the nearest
hour, minute or even second or do we have to give
up the ability to navigate by time and to specify
seasons, fiscal periods and holidays?
To answer this question let’s first take a look at a
time dimension that stores all the days in a defined
period of time. This dimension will contain a row
for each day, which means that a 10-year dimension
will contain 3650 rows. Now if we want to track
changes to the nearest hour, minute, or second, this
could be done in one of the following ways:

Increase the granularity of the time dimension

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

420

Time Dimension

time_key
sql_timestamp

hour_number_in_day
hour_number_overall

day_of_week
day_number_in_month

day_number_overall
week_number_in_year
week_number_overall

month
month_number_overall

quarter
year

fiscal_period
holiday_flag

weekday_flag
season

Figure 3: A time dimension on hourly basis
With this approach the time dimension is

changed to store all the hours, minutes, or seconds of
the specified time period. For a 10-year time
dimension this will mean that it will contain approx.
87600 rows (3650 x 24) to store each hour, 500,000
rows for each minute, and over 31 million rows for
each second.

While this might be an acceptable size for storing
hours this is definitely not the case for minutes and
seconds. Moreover, in order to keep the size of the
time dimension small and predictable, the duration
must be kept constant by deleting old entries when
new ones are inserted. This makes the business data
stored only semi-periodic.

This approach is useful if the granularity is
limited to the nearest hour for a not too long period
of time (Figure 3), which also makes it possible to
navigate by hour, for e.g. to see what day times were
the best for sales. However, if we need to store the
time to the nearest minute or second, we prefer using
one of both other approaches.

Add timestamps to the fact table

Adding SQL TIMESTAMPS directly to the fact

table provides a very high precision as the
granularity of these timestamps can go up to some
fractions of the second. Occurring events can thus be
captured on the second of occurrence, and the start
and end of a status are also stored second exact.

This is good if a very high precision is needed
over the navigation features of the multidimensional
model. If we choose this approach we have to live

with the limitations of SQL TIMESTAMPS and give
up the ability to specify seasons, holidays, or fiscal
periods to the nearest second.

Use twin timestamps

This approach combines the advantages of both

previous approaches by using two timestamps on
each transaction record in the fact table. The first
would be an SQL TIMESTAMP as described in the
previous paragraph, and the second would be a day
id, a foreign key connecting to a calendar day
dimension (Figure 4).

The time of day could also be stored in a separate
numeric field instead of using a timestamp, or even a
separate dimension can be used for the time of day,
as we will see when we talk about time zones. But
anyway it should not be combined into one key with
the calendar day as this would make the time
dimension simply too large.

This way we can search for very precise time
periods, but also navigate to see all transactions that
occurred on a holiday.

3.4 Daylight Saving Time

Daylight Saving Time (DST) is the practice of
turning the clock ahead as warmer weather
approaches and back as it becomes colder again.
DST varies from country to country.

Here we are more concerned about the
representation of time on those days when the time

DESIGN AND REPRESENTATION OF THE TIME DIMENSION IN ENTERPRISE DATA WAREHOUSES - A
BUSINESS RELATED PRACTICAL APPROACH

421

time day_key product_key customer_key quantity price

25-MAR-2003 15:37:13
25-MAR-2003 16:15:45
03-APR-2003 11:47:02

1910
1910
1919

12265
34324
25254

7657654
2423555
3545466

5
8
3

200
240
150

 Figure 4: A fact table using twin timestamps

is shifted. This happens on two days every year. In
the European Union, DST starts the last Sunday in
March at 1 am UTC and ends the last Sunday in
October at the same time.

These two days must be treated differently in the
time dimension because they are different than other
days. While all other days of the year have 24 hours
and can thus be modeled as shown above the day
when the time is set to DST has only 23 hours since
the time is set from 0 am directly to 2 am UTC. On
the other hand, the day when the time is set back has
25 hours because the hour from 1 am to 2 am is
repeated twice.

Let’s take as an example March 30th 2003 and
October 26th 2003. On March 30th there is actually
no point in time when it is 1 am. The clock jumps
from 00:59:59 directly to 02:00:00. Therefore there
is no need to include the 1 am hour in an hourly-
based time dimension.

On October 26th, however, there are two points in
time when it is 1 am. The clock goes from 01:59:59
back to 01:00:00 again instead of 02:00:00. After
another hour the time is actually 02:00:00.

For our time dimension shown in Figure 3 this
means that on all last Sundays in March we only
need to insert 23 hours by leaving the 1 am hour, as
it does not really exist. The hour_number_in_day
thus goes from 1 to 23. And on all last Sundays in
October we insert 25 hours by repeating the 1 am
hour. The hour_number_in_day thus goes from 1 to
25 (Figure 5). Of course the DST days have to be
determined in advance before the time dimension is
filled with values.

The optional attribute second_in_day can be
useful for the application to correctly determine the
timestamp and other time periods on those two
special days and it must be interpreted differently on
those two days than on normal days. Depending on
the application and the needed queries this attribute
can be used or not.

Finally, to make it easier for SQL to determine
the days when time is set to DST and back we use
another flag DST_flag which is zero on normal days,
-1 on all last Sundays in March, and +1 on all last
Sundays in October.

Please note that the described model is using
UTC. If you design your time dimension for another
time zone, you have to consider the days and times
when the time is switched to DST and back.

3.5 Time Zones

Different time zones not only mean having different
times, but also DST is observed differently in
different regions, which makes the design of the
time dimension even more complicated.

As we mentioned at the end of the previous
section, the days and times when time is set to DST
must be considered in the design of the time
dimension. However, business data are not always
entered within the same time zone. This is one of the
reasons for using a Geography dimension. In a Sales
data warehouse this would help to store where a
product was sold. But which time should be used:
local or universal time?

Now that the web has become an extremely
important source of data warehouse data, a source
that produces data with the speed of a click, it brings
up several issues that are not yet resolved. Data
enters the warehouse from thousands of users in
different time zones, but must all be stored into the
same database.

Generally, it’s easier to store the local time than
to compute it based on time zones, which is very
useful for queries such as “at what time of day were
the most orders placed”. But as this can be done in
any time zone, and as online stores begin to be a
very important point of sale the use of universal time
might make more sense to compare order times
worldwide.

Therefore it is better to store both: local time and
universal time. This can be done by adding another
copy of the time dimension for universal time. And
as mentioned previously, to add more flexibility and
granularity the time-of-day can be separated from
the day by using two dimensions: a date dimension
and a time-of-day dimension for both local and
universal time (Figure 6). This gives us altogether
four dimensions for representing time. We split the
date from the time-of-day because these two
components of time have different descriptors. Date
relates to calendar and weekdays and seasons, and
time-of-day relates to the specific spot we are in
within a day.

The time-of-date dimension might also be used if
we have some specific intervals during the day that
we want to assign names to, afternoon, evening, etc.

This way we can navigate through sales facts by

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

422

time_key sql_timestamp seconds_in_day hour_no_in_day hour_no_overall

50975
50976
50976
50975

.

.
50999

26-OCT-2003 00:00:00
26-OCT-2003 01:00:00
26-OCT-2003 01:00:00
26-OCT-2003 02:00:00

.

.
26-OCT-2003 23:00:00

0
3600
7200
10800

.

.
90000

1
2
3
4
.
.

25

50975
50976
50976
50975

.

.
50999

absolute time as well as rela
time. Having separate dime
universal time we don’t need
calculation based on time zon
logic. This makes our queries

4 CONCLUSIONS

This paper addressed the
related to representing time in
data warehouse. It introduc
using one or multiple time
stamps. The representation of
fiscal periods has been demo
the time dimension with new
Different approaches have
increase the granularity of b
nearest second by using a co
dimension and timestamps. Th
the issue of observing dayligh
how it affects the design of th
provided an approach to
introducing 23-hour and
approach has been then modi
time zones by using multiple
storing the universal time in

Local Date Dimen

local_date_key
sql_date

day_of_week
month
year

Local Time Dimen

local_time_key
sql_time

hour_of_day
time_segment_nam

Figure 6: Spl

DESIGN AND REPRESENTATION OF THE TIME DIMENSION IN ENTERPRISE DATA WAREHOUSES - A
BUSINESS RELATED PRACTICAL APPROACH
Figure 5: October, 26th 2003 modeled in the time dimension

tive to the customer’s
nsions for local and

 to implement the time
es into the application
more efficient as well.

most common issues
 the multidimensional
ed design techniques
 dimensions or time-
 holidays, seasons and
nstrated by extending
 attributes and flags.
been introduced to

usiness facts up to the
mbination of the time
e paper also addressed
t saving time DST and
e time dimension, and

handle this issue by
25-hour days. This

fied to handle different
 time dimensions and
addition to the user or

customer’s local time and separating the time-of-day
in another dimension.

REFERENCES

Bruckner, R., Tjoa A.M., 2001. Managing Time
Consistency for Active Data Warehouse
Environments, In Proc. of the Third International Conf
on Data Warehousing and Knowledge Discovery
(DaWaK 2001)

Devlin, B., 1997. The Data Warehouse, from Architecture
to Implementation, Addison Wesley Longman, Inc.

Eder, J., Kappel, G., Tjoa, A.M., Wagner, R., 1987, BIER
- The Behavior Integrated Entity Relationship

Approach, in: S. Spaccapietra (ed.), Proceedings of the 5th
Intenational Conference on Entity-Relationship
Approach, North-Holland, Amsterdam

Eder, J., Koncilia, C., 2002. Representing Temporal Data
in Non-Temporal OLAP Systems, University of
Klagenfurt

Inmon, W., 1996. Building The Data Warehouse, John
Wiley & Sons, Inc.

Kimball, R., 1996. The Data Warehouse Toolkit, John
Wiley & Sons, Inc.

Kimball, R., 1997. It’s Time for Time, DBMS Online
Kimball, R., 1999. The Clickstream Data Mart in the Data

Webhouse, Intelligent Enterprise

sion

Fact Table

local_date_key
local_time_key

universal_date_key
universal_time_key

product_key
customer_key

geography_key

sion

e

itting the time dimension into a date dimension and a time-of-day dimension

Univ. Time Dimension

universal_time_key
sql_time

hour_of_day
time_segment_name

Univ. Date Dimension

universal_date_key
sql_date

day_of_week
month
year

423

Kimball, R., 2002. Tricky Time Spans, Intelligent
Enterprise

Lang, P., Obermair, W., Schrefl, M., 1997, Modeling
Business Rules with Situation/Activation Diagrams,
In: A. Gray, P. Larson (eds.): Proceedings of 13th
International Conference on Data Engineering (ICDE
'97), Birmingham, U.K., IEEE Computer Society Press

Nguyen, T., Tjoa, A.M., Wagner, R., 2000. An Object
Oriented Multidimensional Data Model for OLAP, In
Proc. of 1st Int. Conf. on Web-Age Information
Management (WAIM 2000)

Pedersen, P., 2001. e-Decisions Transcript, Norwegian
School of Economics and Business Administration

Ravat, F., Teste, O., 2000. A Temporal Object-Oriented
Data Warehouse Model, DEXA'00

Snodgrass, R., 2000. Developing Time-Oriented Database
Applications in SQL, Morgan Kaufmann Publishers

Vaisman, A., Mendelzon, A., Ruaro, W., Cymerman, S.,
2002. Supporting Dimension Updates in an OLAP
Server, CAiSE'02

Wijsen, J., Ng, R.T., 1999 Temporal Dependencies
Generalized for Spatial and Other Dimensions, Proc.
Spatio-Temporal Database Management

Wijsen, J., Bès A., 2003, On query optimization in a
temporal SPC algebra, Data & Knowledge
Engineering, Volume 44

Yang, J., Widom, J., 2000. Temporal View Self-
Maintenance in a Warehousing Environment,
EDBT’00

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

424

