
CONTEXTS FOR ORGANIZATIONAL INFORMATION SYSTEM
DESIGN AND IMPLEMENTATION

Salvador Abreu
Universidade de Évora and CENTRIA

Portugal

Daniel Diaz
Université de Paris I and INRIA

France

Keywords: Information Systems Applications, Modules, Object-oriented Programming, Contextual Logic Programming.

Abstract: In this article we sustain that Contextual Constraint Logic Programming (CxCLP for short) is a useful
paradigm in which to specify and implement Organizational Information Systems, particularly when inte-
grated with the ISCO mediator framework. We briefly introduce the language and its underlying paradigm,
appraising it from the angle of both of its ancestries: Logic and Object-Oriented Programming. An initial
implementation has been developed and is being actively used in a real-world setting – Universidade de vora’s
Academic Information System. We briefly describe both the prototype implementation and its first large-scale
application. We conclude that the risk taken in adopting a developing technology such as the one presented
herein for a mission-critical system has paid off, in terms of both development ease and flexibility as well as
in maintenance requirements.

1 INTRODUCTION

In the process of devising a strategy for the grad-
ual design and deployment of SIIUE, an organiza-
tional information system for Universidade de vora,
we were faced with hard choices: as there are really
no available ready-to-use solutions, some measure of
in-house development was inevitable: Academic or-
ganizations have several specificities which are not
well catered for by existing ERP products. The adop-
tion of an existing methodology based on existing
(commercial) tools was considered, but deemed to be
rather inflexible and ultimately expensive in the long
run, moreover, it would hardly build on the known-
how acquired through the developments which had
been locally initiated over the preceding years.

Our explicitly assumed option was to rely on open-
source software as much as possible, in order to avoid
vendor lock-in and to ensure that future developments
could always be effected using in-house competence.
In doing so, we had to be very careful in order to pick
the most appropriate tool for each particular aspect
of the project, always making sure that everything
should fit harmoniously.

The overall coordination of the various software
components of such a mixed system was critical to the
success of the project: this is where Logic Program-

ming appears to be a very interesting and promis-
ing choice. Early work on the design and develop-
ment of SIIUE already indicated that it would ben-
efit from Logic Programming tools playing an in-
creasingly central part in the system. This observa-
tion, later confirmed by further developments (Abreu,
2001), led to incrementing the investment in the tech-
nology which was at the base of the entire project:
Prolog as the foundation of an Organizational Infor-
mation System specification and implementation lan-
guage.

The benefits of Logic Programming are well
known: the rapid prototyping ability and the relative
simplicity of program development and maintenance,
the declarative reading which facilitates both devel-
opment and the understanding of existing code, the
built-in solution-space search mechanism, the close
semantic link with relational databases, just to name
a few. The realization that Logic Programming is
a promising tool with which to address this type of
problem is not exclusive to Universidade de vora’s
project.

Our choice of GNU Prolog as the basic tool with
which to develop our system was due to several fac-
tors, not the least of which is its inclusion of a comple-
mentary problem-solving paradigm: constraint pro-
gramming. Constraints strengthen the declarative

227
Abreu S. and Diaz D. (2004).
CONTEXTS FOR ORGANIZATIONAL INFORMATION SYSTEM DESIGN AND IMPLEMENTATION.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 227-232
DOI: 10.5220/0002649202270232
Copyright c© SciTePress



programming facet of Prolog, providing an a-priori
search-space pruning model which complements the
depth-first backtracking of classical Logic Program-
ming.

Nevertheless, the Prolog language suffers from a
serious scalability issue when addressing actual ap-
plications. There have been several efforts over the
years to overcome this limitation: one which took
many years to shape is the ISO standard formula-
tion of modules for Prolog. This standard can hardly
be considered satisfactory, being heavily influenced
by previously existing and conflicting implementa-
tions: it can be argued that it essentially introduces
the concept of “separate predicate spaces,” which are
reminiscent of ADA modules. Moreover, the stan-
dard is syntactically very verbose, which in itself is
a very questionable departure from what we perceive
to be one of Prolog’s strengths: its syntactic simplic-
ity. Moreover, it is our opinion that the standard com-
pletely misses the oportunity it had of assimilating
closely related yet well established and vastly more
powerful concepts, such as the notions of Object and
Inheritance.

An interesting alternative solution to the same
problem is that of Contextual Logic Programming
(CxLP), a model introduced in the late 1980’s. In-
formally, the main point of CxLP is that programs are
structured as sets of predicates (units) which can be
dynamically combined in an execution attribute called
a context. Goals are seen just as in regular Prolog, ex-
cept for the fact that the matching predicates are to
be located in all the units which make up the current
context.

We extended CxLP to attach arguments to units:
these serve the dual purpose of acting as “unit-global”
variables and as state placeholders in actual contexts.

CxLP clearly carries a higher overhead than reg-
ular Prolog, as the context must be searched at run-
time for the unit that defines a goal’s predicate, a pro-
cess which requires at least one extra indirection com-
pared to straight Prolog; this kind of situation has be-
come more usual and less of a performance issue in
recent systems, in Object-Oriented and even in pro-
cedural languages, for instance as a result of using
dynamically-loaded shared libraries. We have built
a prototype implementation of a Contextual Logic
Programming language, GNU Prolog/CX, which has
surprisingly good performance, considering we aren’t
performing any optimization.

Finally, we used GNU Prolog/CX to implement
the newer components of SIIUE: the Academic Ser-
vices subsystem. This article reports on the outcome
of this initiative.

The rest of this paper is organized as follows: In
section 2 we briefly present Universidade de vora’s
Academic Information System (SIIUE.sac) and how
it benefits from GNU Prolog/CX. Section 3 explores

the link between contexts and Object-Oriented Pro-
gramming. Section 4 briefly describes our implemen-
tation on top of GNU Prolog. A short conclusion
ends the paper.

2 UNIVERSIDADE DE ÉVORA’S
ACADEMIC INFORMATION
SYSTEM

GNU Prolog/CX has already seen actual use in a
real-world application: Universidade de vora’s sec-
ond generation Academic Information System, which
is a project that got under way in March 2003 and, at
the time of this writing (October 2003), is already in
production. This initiative was spurred by the Univer-
sity’s decision to simultaneously reorganize all of its
undergraduate offerings, to comply with the “Bologna
principles,” a goal which could not be met by the ex-
isting system without very significant and resource-
consuming overhauls.

The Academic Information System (SIIUE.sac) is
part of Universidade de vora’s Integrated Information
System (SIIUE), being its latest component and a use-
ful and diverse testbed for the ISCO language.

2.1 ISTO: Evolving the ISCO
Programming Language

ISCO (Abreu, 2001) is a Logic Programming lan-
guage geared towards the development and mainte-
nance of organizational information systems. ISCO
is an evolution of the previous language DL and is
based on a Constraint Logic Programming framework
to define the schema, represent data, access hetero-
geneous data sources and perform arbitrary computa-
tions. In ISCO, processes and data are structured as
classes which are represented as typed1 Prolog pred-
icates. An ISCO class may map to an external data
source or sink, such as a table or view in a relational
database, or be entirely implemented as a regular Pro-
log predicate. Operations pertaining to ISCO classes
include a query which is similar to a Prolog call as
well as three forms of update.

We are presently evolving ISCO to endow it with
an expressive means of representing and implicitly us-
ing temporal information (Nogueira et al., 2003), the
resulting language is called ISTO. In the course of de-
signing ISTO, it was our goal to make further use of
contexts, as an implementation became available.

1The type system applies to class members, which are
viewed as Prolog predicate arguments.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

228



2.2 The Academic Information
System; SIIUE.sac

The ISCO architecture for the Academic Information
System can be summarized as follows: three different
layers correspond to actual physically different net-
works, interfacing each pair of layers which have con-
tact. The physical separation is provided to ensure
that access to higher-numbered layers is exclusively
performed by hosts on the layer immediately below.

There is the requirement that, since all validation
and authorization is performed by the ISCO layer,
the layers above only access any application data via
ISCO, hence the application must have three lay-
ers (web interface, ISCO and DBMS). The ISCO
(GNU Prolog/CX executable) processes come from
a pool where they perform initialization tasks before
becoming available as query processors, thereby by-
passing the overhead of some initialization chores,
such as connecting to database servers. It should be
noted here that GNU Prolog’s architecture is very
favourable to its usage as a Prolog implementation
for this type of usage, because even complex pro-
grams2 load very fast, as they’re mostly native exe-
cutable code by virtue of the compilation approach,
therefore shared by all instances of the program.

ISCO programs may access relational data
through ODBC using a GNU Prolog interface with
unixODBC, which has been developed within the
SIIUE project: this allows for accessing legacy data
transparently. The executables are used from within
PHP wrapper scripts in web-based interfaces: the
PHP extensions have also been developed specifically
for use with ISCO.

Although most of the relational databases used are
built in PostgreSQL, other relational database engines
where considered. This requires ISCO to be indepen-
dent from the specific RDBMS engine being used.
The ISCO compiler is aware of the differences be-
tween relational database engines, and generates SQL
code appropriate to the specific back-end being used,
through the use of different units for each known
database back-end, building on similarities between
some to exploit multi-level specialization schemes
provided by Contextual Logic Programming, as for
example in dealing with different versions of the sama
RDBMS engine.

We fully integrated ISCO with the PiL-
LoW (Cabeza and Hermenegildo, 2001) library,
a Prolog library for HTML/XML/SGML output
and form handling, which is used for web-based
development. PiLLoW has been ported to GNU
Prolog.

2In this case, a typical SIIUE.sac user interface program
has around a hunded thousand lines of code.

2.3 SIIUE.sac from a Software
Engineering Perspective

Universidade de vora’s commitment to develop the
SIIUE.sac project was ascertained in early 2003 and
the project itself got under way in March 2003 with a
team of three experienced programmers. At that time,
a complete rewrite of the ISCO tools and GNU Pro-
log/CX had just recently been rendered operational
and the development team had no experience with ei-
ther Contextual or Constraint Logic Programming, al-
though they had done a few toy projects with Prolog.
The project was then scheduled with quarterly mile-
stones which targeted roughly:

1. The academic services internal use (e.g. graduation
plans),

2. The student’s use (e.g. course registrations) and
3. The faculty members’ use (e.g. grading)
It was important that the schedule be met because this
endeavour was considered mission-critical, as it in-
volved unknowns at various levels: the technology
and tools were very new and the development team
was not familiar with the approach.

At the time of this writing, the first two phases had
completed successfully and were in production, hav-
ing been stress-tested with both the introduction of
around 40 different graduation plans ranging from Vi-
sual Arts to Veterinary Medicine, some with very in-
tricate structures, and the registration for individual
courses by approximately 6000 students, averaging
10 courses per student. We only had very minor prob-
lems in the first day of the registration period, due to
the load peak and which were resolved in under one
hour. The third phase was progressing according to
plan.

The experience we drew from the deployment of
this first application can be summed up in a few
points:
• The re-use, whenever appropriate, of existing well-

established software components such as Apache,
PHP, PiLLoW and LATEX was essential as it saved
us a lot of specification and implementation effort.

• Contextual Logic Programming played a key role
in the overall incremental design and implementa-
tion process; a few aspects deserve explicit men-
tion:
– The representation of user sessions as contexts

was a significant success, as the concept of ses-
sion can very naturally be expressed as a context.

– Role-based authorization and interface genera-
tion gained plenty of flexibility and reliability
from the systematic use of contexts.

– Coding the “business logic” as units that respond
to standardized messages (e.g. the item/1

CONTEXTS FOR ORGANIZATIONAL INFORMATION SYSTEM DESIGN AND IMPLEMENTATION

229



predicate) enabled us to design compositionally
and made it relatively easy to rework implemen-
tations and restructure processes while preserv-
ing an unchanging interface.

• The choice of relegating the relational database to
the role of persistency provider for ISCO seems to
have been the correct one. This became particularly
obvious at one stage, where an “SQL-like” design
(structures represented as a collection of tuples or
facts) was replaced with a more “Prolog-like” one
(structures represented as a single large term): per-
formance on a particular benchmark went up by a
factor of 10 to 100 with that single change, mostly
attributable to reduced database traffic.

• The relative ease with which programmers used
to procedural languages and SQL adopted a little-
documented paradigm and still very experimental
development tools was surprising, as they became
productive early in the development cycle.

3 CONTEXTS AS OBJECTS WITH
STATE

The integration of the Object-Oriented and Logic Pro-
gramming paradigms has long been an active research
area since the late 1980’s; take for example Mc-
Cabe’s work (McCabe, 1992). The similarities be-
tween Contextual Logic Programming and Object-
Oriented Programming have been focused several
times in the literature; see for instance the work by
Monteiro and Porto (Monteiro and Porto, 1993) or
Bugliesi (Bugliesi, 1992).

Other than the implementation-centered reports,
previous work on Contextual Logic Programming fo-
cuses largely on issues such as the policy for context
traversal, what the context becomes once a unit satis-
fying the calling goal is found, what to do when multi-
ple units provide clauses for the same predicate, how
to automatically tie several units together or how to
provide encapsulation and concealment mechanisms.

To the best of our knowledge, no published work
earlier than (Abreu and Diaz, 2003) builds on the no-
tion of context arguments and their widespread use,
even though Miller’s initial work (Miller, 1989) al-
ready mentions the possibility of using module vari-
ables. This feature was present as a “hack” in the first
C-Prolog based implementation of Contextual Logic
Programming but was a little let down, possibly for
lack of an adequate formalization and the nonexis-
tence of convincing examples.

Instead of viewing a context as an opaque execution
attribute, as happens in CSM (Natali and Omicini,
1993) for instance, we choose to regard it as a first-
class entity, i.e. as a Prolog term. Not only is the con-

text accessible from the program, but it is intended
that it be explicitly manipulated in the course of a pro-
gram’s regular computation. The performance impact
of this option will be succinctly analyzed in section 4:
at this point we shall concentrate on the possibilities
it allows from an expressiveness point of view, relat-
ing Contextual Logic Programming examples to other
paradigms whenever appropriate.

3.1 Contexts and Object-Oriented
Languages

The following table establishes some parallels be-
tween Contextual Logic Programming (CxLP) and
Object-Oriented Programming (OOP) terminology,
pointing out how units, contexts and context argu-
ments can relate to OOP concepts. The most notable

OOP (Class) OOP (Object) CxLP
Object Object Context
Message Message Goal
Instance variable Named slot Unit argument
Method Method Predicate

difference between the CxLP and the OOP paradigms
has to do with the concept of inheritance: instead of
being statically defined as in the Class-based Object-
Oriented languages, it is completely dynamic for each
context (i.e. “object”), as it defines its own structure
and, implicitly, its behaviour wrt. messages.

CxLP enables design approaches stemming from
both class-based and prototype-based languages (an
early example of which is Self (Ungar and Smith,
1987)) in that a unit can be seen as akin to a class
as it defines partial state and behaviour and a context,
as a self-sufficient object can serve as the basis for the
creation of further contexts, either via the extension
mechanism or by explicit manipulation of the context
term (e.g. a copy).

3.2 Encapsulation and Concealment

These issues are central in Object-Oriented Program-
ming and critical from the Software Engineering point
of view. Earlier approaches in Contextual Logic Pro-
gramming languages proposed several distinct mech-
anisms, along the lines of having an annotation of
some sort to indicate that a given predicate was to be
considered “visible” or “hidden”, in the sense that a
context traversal would see it or not.

Our approach of relying on deep contexts and unit
arguments, made possible by the relative efficiency of
the prototype implementation, as described in (Abreu
and Diaz, 2003), allows us to shun the introduction of
yet another set of predicate annotations, because sim-
pler constructions are effectively available, through

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

230



the use of unit arguments and the context switch op-
eration: all that is necessary is that the context argu-
ments supply sufficient information for a new con-
text to be built, in order to implement the requested
method without disclosing the details to the invoking
context.

Another situation is where we wish to implement a
unit with a particular interface, similar to that of an-
other unit but with some predicates omitted. This can
be achieved via a definition for context/1 as pre-
viously suggested, to ensure that the remaining goals
will execute in a controlled context.

3.3 Contexts as Implicit
Computations

ISTO is a development of ISCO (Abreu, 2001), a
Prolog-based mediator language which can transpar-
ently access several kinds of information sources,
namely relational databases. ISTO relies on GNU
Prolog/CX as its compiler’s target language and is
further described by means of an application in sec-
tion 2.

Consider a unit person(ID, NAME,
BIRTH DATE) which defines the following predi-
cates:
• item/0 which returns, through backtracking, all

instances of the person/3 database relation by
instantiating unit arguments,

• delete/0 which nondeterministically removes
instances of the person/3 database relation, as
restricted by the unit arguments,

• insert/0 which inserts new instances into the
person/3 database relation, taking the values
from the unit argument.

Accessing an “object” specified by a context is always
done via one of these predicates, which are to be eval-
uated in a context which specifies the relation (in this
case person/3). Assume that there are also predi-
cates with the same name and one argument, which
represents the relevant unit with bound arguments,
i.e. item/1, delete/1 and insert/1. An actual
implementation of these predicates could rely on the
standard Prolog built-ins clause/1, retract/1
and assertz/1 or access an external database, as is
done in the ISCO compiler (Abreu, 2001).

4 OVERVIEW OF THE
PROTOTYPE
IMPLEMENTATION

In order to experiment programming with contexts
we have developed a first prototype inside GNU Pro-

log (Diaz and Codognet, 2001). Our main goal was
to have a light implementation modifying the current
system as little as possible. Due to space restrictions
we only give here an overview, the interested reader
can consult (Abreu and Diaz, 2003) for more details.

The main change concerns a call to a given pred-
icate P/N. If there is no definition for P/N in the
global predicate table (containing all built-in predi-
cates and predicates not defined inside a unit) then the
context must be scanned until a definition is found.

To evaluate the context implementation, we fol-
lowed a methodology similar to that of Denti et
al. (Denti et al., 1993): a goal is evaluated in a context
which is made up of a unit which implements the goal
predicate, below a variable number of “dummy” units
which serve to test the overhead introduced by the
context search. We used the exact same methodology
as in (Denti et al., 1993). The observed relative per-
formance is much better in GNU Prolog/CX: even in
CSM’s most favorable situation (the modified WAM),
there is a 50% performance hit as soon as there are 5
“dummy” units in the context. Finally note that the
“50% performance degradation” threshold is reached
when the context comprises about 40 dummy units.
This demonstrates the effective ability to extensively
use deep contexts in actual applications, and is a sine
qua non requirement for the practical use of such a
language feature.

5 CONCLUSIONS AND FUTURE
DEVELOPMENTS

The conclusions we can draw from the experience
we’ve had so far include:

• A large application such as SIIUE.sac can bring out
fragilities in the implementation of the tools it uses:
such was the case, for instance, with GNU Pro-
log/CX in which a few hitherto unnoticeable bugs
became manifest (and were fixed.)

• The in-development status of some of the tools,
most notably GNU Prolog/CX, turned out not to
be a very serious hindrance, as the design discipline
made up for the lack of features such as an effective
debugger.

• GNU Prolog/CX is well suited to o incremental
OO design, as a system can become operational
even while still incomplete and underspecified.

• Optimal complex SQL code generation is not as
important a goal as we thought it would as it can
largely be compensated by the judicious use of the
result of simple queries.

• The gradual adoption of Contextual Logic Pro-
gramming as a design and programming paradigm

CONTEXTS FOR ORGANIZATIONAL INFORMATION SYSTEM DESIGN AND IMPLEMENTATION

231



has exhibited not too steep a learning curve and is
allowing us to further our sensitivity to its differ-
ent applicability situations and program patterns.
Some of these reflect back onto the language itself.

• The developers did have to rid themselves from
SQL and procedural language habits, namely in
what concerns the manipulation of more complex
data structures, in order to extract acceptable per-
formance from the system.

Some directions for future work:
• The removal of some implementation-specific lim-

its (e.g. area sizes).
• The dynamic loading of compiled Prolog code,

which will allow for on-the-fly extension of com-
piled applications.

• Multi-thread execution.
• The development of a Graphical interface (Gnome-

Prolog).
• The generic web-based relation browser, as this

will greatly decrease interface development time.
• Automatic caching of external database relations,

and
• A more extensive performance analysis and tuning

under load.

ACKNOWLEDGEMENTS

The work described herein was partly made possible
by the bilateral INRIA/GRICES project “Extensions
au Logiciel Libre GNU Prolog.” Universidade de
vora is acknowledged for supporting and funding the
SIIUE.sac project.

REFERENCES

Abreu, S. (2001). Isco: A practical language for heteroge-
neous information system construction. In Proceed-
ings of INAP’01, Tokyo, Japan. INAP.

Abreu, S. and Diaz, D. (2003). Objective: in Minimum
Context. In Palamidessi, C., editor, Proceedings of the
Eighteenth International Conference on Logic Pro-
gramming, volume 2916 of LNCS, Mumbai, India.
Springer-Verlag. (forthcoming).

Bugliesi, M. (1992). A declarative view of inheritance in
logic programming. In Apt, K., editor, Proceedings
of the Joint International Conference and Symposium
on Logic Programming, pages 113–127, Washington,
USA. The MIT Press.

Cabeza, D. and Hermenegildo, M. (2001). Distributed
WWW programming using (Ciao-)Prolog and the
PiLLoW library. Theory and Practice of Logic Pro-
gramming, 1(3):251–282.

Denti, E., Lamma, E., Mello, P., Natali, A., and Omicini,
A. (1993). Techniques for implementing contexts in
Logic Programming. In Lamma, E. and Mello, P., ed-
itors, Extensions of Logic Programming, volume 660
of LNAI, pages 339–358. Springer-Verlag. 3rd Inter-
national Workshop (ELP’92), 26–28 February 1992,
Bologna, Italy, Proceedings.

Diaz, D. and Codognet, P. (2001). Design and implementa-
tion of the gnu prolog system. Journal of Functional
and Logic Programming, 2001(6).

McCabe, F. G. (1992). Logic and Objects. Prentice Hall.

Miller, D. (1989). A logical analysis of modules in logic
programming. The Journal of Logic Programming,
6(1 and 2):79–108.

Monteiro, L. and Porto, A. (1993). A Language for Con-
textual Logic Programming. In Apt, K., de Bakker,
J., and Rutten, J., editors, Logic Programming Lan-
guages: Constraints, Functions and Objects, pages
115–147. MIT Press.

Natali, A. and Omicini, A. (1993). Objects with State in
Contextual Logic Programming. In Bruynooghe, M.
and Penjam, J., editors, Programming Language Im-
plementation and Logic Programming, volume 714 of
LNCS, pages 220–234. Springer-Verlag. 5th Interna-
tional Symposium (PLILP’93), 25–27 August 1993,
Tallinn, Estonia, Proceedings.

Nogueira, V. B., Abreu, S., and David, G. (2003). Using
Contextual Logic Programming for Temporal Reason-
ing. In Pimentel, E. and Brisaboa, N. R., editors, VIII
Conference on Software Engineering and Databases
(JISBD 2003), Alicante, Spain.

Ungar, D. and Smith, R. B. (1987). Self: The Power of Sim-
plicity. In Meyrowitz, N. K., editor, Conference on
Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’87), October 4-8, 1987,
Orlando, Florida, Proceedings, volume 22 of SIG-
PLAN Notices, pages 227–242.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

232


