
A comparison of UML and OWL in the travel domain

Jennifer Sampson

Department of Computer and Information Science,
Norwegian University of Science and Technology,

Trondheim, Norway

Abstract. Recent research has focused towards determining the efficacy of
using UML as an ontology modelling language [6, 7, 8, 12]. In this paper we
compare the use of UML with the Web Ontology Language – OWL for
modelling the travel domain. One conclusion resulting from this study is that
OWL and UML were devised with different motivations, and for supporting
different types of application domains. Owl benefits from a solid theoretical
basis in description logic, which means it has a well defined semantics, formal
properties are well understood, and there are known reasoning algorithms and
implementations of the language. In addition to the model comparison we
propose an ontology quality framework. The quality framework is one step
towards defining quality measures for ontology modelling.

1 Introduction

Ontology can be described as ‘what there is’, and relies on the use of specific terms to
construct a description of reality. In the context of the Semantic Web we think about
ontology as referring to the consensual and formal description of shared concepts in a
domain. Ontologies are said to be a way to aid communication between humans and
machines and also between machines for agent communication. A number of
recommendations have been proposed for languages that support the creation of
ontologies for such communication and understanding, however, now the research
question is to determine whether people and organizations will actually use these
languages to help achieve the ‘Semantic Web’ vision. In addition, the problem is not
so much associated with creating ontologies but with providing support for reasoning
and mapping between ontologies. The challenge is to create a language which is
formal enough to support machine to machine processing and also one which is
simple to use and understand.

2 UML

The Unified Modelling Language (UML) is a standard language for writing software
blueprints [5] whose constructs originate from object oriented programming. The
OMG [15] state that UML is a language for documenting: software systems,
modelling business systems and other non-software systems. The language is for

Sampson J. (2004).
A comparison of UML and OWL in the travel domain.
In Proceedings of the 2nd International Workshop on Web Services: Modeling, Architecture and Infrastructure, pages 36-48
DOI: 10.5220/0002678300360048
Copyright c© SciTePress

specifying and constructing object-oriented systems, and also for visualising and
documenting such systems. The three building blocks of the language are: things,
relationships and diagrams. Booch, Rumbaugh and Jacobson [5] describe the three
building blocks, firstly, ‘things’ are the abstractions that are first-class citizens in a
model; relationships link the ‘things’ together and the diagrams group ‘interesting’
collections of things. In UML ‘things’ may be either: structural, behavioural,
grouping or annotational. The UML defines several graphical diagrams such as: the
use case diagram, the class diagram, behaviour diagrams and implementation
diagrams. However, in this particular exercise we are mainly concerned with the use
of the UML class diagram for modelling a travel agency domain.

Baclawski, et al. [3] have undertaken research to use UML class diagrams to
develop and display complex DAML+OIL ontologies. They also researched the
differences between UML and DAML+OIL and provide initial suggestions on how to
overcome the differences. While there are similarities between UML and knowledge
representation languages, the fundamental problem with extending UML for ontology
development, is due to the important distinction between knowledge representation
approaches and object-oriented approaches: that of monotocity [3]. They comment,
“Both RDF and DAML+OIL are monotonic: asserting a new fact can never cause a
previously known fact to become false. By contrast, UML and other OO systems are
typically not monotonic. There are many forms of nonmonotonic logic, but the one
that is closest to UML and OO systems is a logic that assumes a closed world” [3].
While Baclawski, et al. [3] attempted to provide rules for translating UML concepts to
DAML+OIL concepts they came to the conclusion that some of the concepts are
significantly incompatible. For example, the ‘property’ concept of DAML+OIL
although similar to the UML ‘association’ concept, they claim it cannot be mapped
easily. Indeed, they suggest, “this is the main obstacle to using UML (and UML
tools) for DAML-based ontology development” [3]. However they do propose
extensions to the UML metamodel, with the motivation of making UML more
acceptable to the knowledge representation community as the “preferred graphical
notation for KR languages” [3].

3 What is OWL?

Owl is one such Web ontology language developed by the Web-Ontology Working
Group whose main goal was to provide a semantic markup language for
disseminating and sharing ontologies on the World Wide Web. There are a wide
variety of languages for explicit specification, Owl is a description logic based
ontology language. The Web Ontology Group [20] explicitly say that OWL “is
designed for use by applications that need to process the content of information
instead of just presenting information to humans”. They go further and claim that
“OWL facilitates greater machine interpretability of Web content than that supported
by XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along
with a formal semantics” [20].
OWL comes in three different versions to allow for the different communities of
implementers and users. In effect, this means the Web Ontology group have provided
three increasingly expressive sublanguages; OWL Lite, OWL DL and OWL Full. As

37

the name implies, OWL Lite, is a ‘trimmed’ down version of OWL DL and OWL
Full, mostly to support those users who require a language to construct classification
hierarchies and to define simple constraints. Whereas OWL DL (where DL stands for
Description Logic) is to support users who “want the maximum expressiveness while
retaining computational completeness (all conclusions are guaranteed to be computed)
and decidability (all computations will finish in finite time)” [20]. OWL DL is a
‘fuller style’ of using OWL as it contains all OWL language constructs, but the use of
these constructs is restricted through Descriptive Logic. The WebOnto group
designed OWL DL to “support the existing Description Logic business segment and
to provide a language subset that has desirable computational properties for reasoning
systems” [23].

When the limitation of the language constructs is relaxed a full version of the
language – OWL Full is presented. According to the Web Ontology group OWL Full
is to make available features which may be of use to many database and knowledge
representation systems, but which violate the constraints of Description Logic
reasoners. In the description of OWL the working group have described a high-level,
abstract syntax for both OWL Lite and OWL DL. In addition they use two formal
semantics for OWL. First a model-theoretic semantics to provide formal ‘meaning’
for OWL ontologies. Model theoretic semantics is to define the semantics of the
concepts in terms of a set theoretic interpretation of the concepts in logic. Second they
extend RDF semantics to provide formal semantics for OWL ontologies depicted as
RDF graphs (this is for OWL Full).

3.1 Historical background - RDF and DAML+OIL

OWL is one of the recommendations from the W3C towards making the notion of the
‘Semantic Web’ feasible. OWL builds on earlier languages for enabling the Semantic
Web, the progression went from XML, XML Schema, RDF, RDF Schema to OWL.
The Web Ontology Working Group [20] comment that,

“The first level above RDF required for the Semantic Web is an ontology language
what can formally describe the meaning of terminology used in Web documents. If
machines are expected to perform useful reasoning tasks on these documents, the
language must go beyond the basic semantics of RDF Schema”.

OWL has been developed as a vocabulary extension of RDF (the Resource
Description Framework). The purpose of RDF is to produce a language for the
exchange of machine-understandable information using the Web [21]. RDF is mostly
for capturing metadata about Web resources. RDF is a graphical formalism using
XML syntax and semantics, for representing metadata and describing the semantics of
information in a machine-processable way. RDFS was proposed to extend RDF with
schema vocabulary (e.g. class, property, type, subclassOf etc) to add meaning to the
modelling primitives. However, one problem with RDFS is that it lacks a clear,
formal semantics. In addition it relies on DAML+OIL to ‘give’ it the semantics,
which makes RDFS not such a satisfactory schema layer Semantic Web language
[16]. Moreover, the progression from RDF to Owl came by the way of two other
languages, OIL and DAML. DAML and OIL were merged to extend the description
logic subset of RDF. The W3C Web Ontology Working Group have developed OWL
as a revision of the DAML+OIL web ontology language. They claim that OWL is

38

essentially stable as a web ontology language. Nonetheless they recognize that the
modelling primitives of OWL are still informally stated.

4 Travel domain description

The domain we have modelled is for supporting and providing information for
customers regarding travel and accommodation options between cities [1]. This
domain was chosen for pedagogical reasons, in future research we will be comparing
different ontology languages in the medical domain. At this stage of the research the
purpose was to establish a method for comparing ontology languages.

The following sentences were derived from the natural language description of the
scenario.

A Client may request many Travel Itineraries. An
Itinerary is for one Client.

An Itinerary comprises one or more Travel Legs. One
Travel Leg is for one client Itinerary.

An Itinerary may comprise Accommodation Detail. One
Accommodation Detail is for one client Itinerary.

A Travel Leg uses one Transport Means. One Transport
Means is required for many Travel Legs.

A Travel Leg follows one Travel Route. One Travel Route
is required for a Travel Leg.

Underground (Bus, Aircraft, Vehicle, Train, Ferry,
Ship) is a Transport Means.

A City may have many Tourist Attractions. A Tourist
Attraction is located in one City.

A City may have many Airports. An Airport is located in
one City.

A City is located in one Country. A Country has many
Cities.

A Country is located in one Continent. A Continent
contains many Countries.

A Travel Route involves one arrival City. An arrival
City is part of many Travel Routes.

A Travel Route involves one departure City. A departure
City is part of many Travel Routes.

39

A Travel Route is provided through a Transport Company
Schedule. A Transport Company Schedule provides many
Travel Routes.

A Transport Company supplies one or more Transport
Company Schedules. A Transport Company Schedule is
provided by one Transport Company.

A City provides many Accommodation types. An
Accommodation type is located in many cities.

A B&B is a type of Accommodation

A Hotel is a type of Accommodation

A Hotel is either a Chain or Privately Owned

A Hotel has many rooms (at least one). A room belongs
to one Hotel.

A Room is classified as having one facility type group.
A Facility Type is provided by many Rooms.

4.1 UML model in the travel domain

The UML class diagram for the scenario travel domain is shown in Figure 1. We
recognise the model represents our interpretation of the scenario and is not necessarily
the only correct representation of the travel domain. In addition the model has been
constructed using the natural language description of [1] for pedagogical purposes.
The domain serves as a basis for comparing two languages for ontology modelling,
one using UML and the second using OWL. Due to the size and complexity of the
travel domain, property details for some classes are not illustrated at Figure 1. We
made several assumptions when completing the modelling task. First, a travel leg
involves only one type of transport, for example a plane, train or car. Second, a travel
leg is one ‘leg’ of an entire journey. Third an itinerary is made up of at least one travel
leg. The travel domain was created using a UML class diagram to describe five
clusters of information within the domain. These are: information about the client and
the travel plans for that client, modes of transportation, travel schedules and travel
routes, cities and attractions, and accommodation options.

40

Fig. 1. One portion of the UML Class diagram

4.2 OWL Model

We used the Protégé OWL plugin [18] as a tool for developing the OWL travel
model. Protégé is an integrated software tool used to develop knowledge based
systems.

Example Object property and Inverse properties in OWL/RDF source code
 <owl:ObjectProperty rdf:ID="has_Itinerary">
 <rdfs:range rdf:resource="file:/C:/ Protege_2.0_beta /Owltravel.owl#Itinerary"/>
 <owl:inverseOf>
 <owl:ObjectProperty

rdf:about="file:/C:/ Protege_2.0_beta Owltravel.owl#has_client"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="file:/C:/Protege_2.0_beta /Owltravel.owl#Client"/>
 </owl:ObjectProperty>
The class taxonomy is shown at Figure 2.

41

Fig. 2. OWL taxonomy in Protégé

5 Model comparison

This section describes the quantitative analysis which was performed when
comparing the OWL and UML models. The quantitative analysis is not an exhaustive
measure of the difference between UML and OWL concepts, instead the metrics
provide a simple comparison between model elements in the generated UML and
OWL models. Nonetheless we believe the quantitative method used may be a useful
pedagogical tool for model comparison.

5.1 Concepts occurring in both models.
There are sixteen classes Client, Itinerary, Travel_Leg, Accomodation_Detail, City,
Country, Continent, Airport, Travel_Route, Transport_Company_Schedule,
Transport_Company, Transport_Means, Accommodation, Room, Room_Facility,
Tourist_Attraction in the UML and OWL models. There are fifteen subclasses:
Underground, Bus, Train, Vehicle, Airplane, Ferry, Ship, Taxi, Rental_Car, Car,
Hotel_Chain, Hotel, Privately_Owned, B&B in both models. In addition, a total of
eighty-eight basic properties exist within these classes. There are fifteen
generalisations in the UML model and fifteen subclasses in the OWL model.

42

5.2 Concepts occurring in the control model not specified in the observed model.
The UML class model is obviously different from a pragmatic perspective as it is
graphical representation of the natural language description, whereas the OWL model
as presented in Protégé uses a tree structure. The OWL/RDF source code can also be
generated within the Protégé environment. The constructs observed in the UML
model which do not appear in the same form in the OWL model are the relationships
(associations) between classes. The domain, range and cardinality are declared using
the Association construct in UML. In addition we have added three constraints using
OCL and pseudocode to the Class definitions in the UML model.

5.3 Concepts occurring in the observed model not specified in the control model.
The OWL ontology model contains slots (properties) within each class which
represent the relationships between classes, for example: has_city_of_destination and
has_city of arrival in the Travel_Route Class. There are twenty-six properties of this
type in the OWL model, eight of these object properties are inverse properties. The
domain, range and cardinality are declared using object properties in OWL. In
addition, instances have been added to the OWL ontology model (Twenty-seven
instances). This is not to say that the UML language does not support instances, but it
is not appropriate to show instances of a travel execution in a class diagram.

5.4 Observation Instrument: Model Element Comparison
We created four initially 0-valued matrices, where observation and control model
elements formed the rows and columns. The first matrix specifies all model elements
in the UML model. The second matrix specifies all model elements in the OWL
model. The third matrix was to measure the correctly represented observed data. To
do this we calculated where for each element in the UML model there was a
corresponding element in the OWL model, where the element in OWL model
described the same referent (phenomena), that is, denoted with same domain term
(symbol). In other words, we checked the occurrences of the UML model terms that
are used in the OWL model to denote referents (“things/phenomena”) as considered
relevant to the domain, regardless of any language symbols that are used to specify it.
This matrix concerns the correspondence between the elements both in the control
and in the observed model. The results of the analysis are presented at Table 1.

Table 1. Precision, Recall and Fallacy Measures for Correctly Represented Model Elements

PrecisionRep = Correctly Represented / Represented 1
RecallRep = Correctly Represented / Existing Correct 0.919355
FallacyRep=(Represented-Correctly Represented)/Existing Correct 0

The intuition is that precisionRep measures the correctness of representation for

the OWL language model (1), recallRep measures the OWL language model’s
capability to represent (0.92), and fallacyRep measures the failure of the OWL
language model representation in the context of the travel domain description (0).
These results are as we expected because the same classes and properties are defined
in both models. However, these results do not show whether the model elements are
specified in the same way in each model. A fourth matrix was created to measure

43

correctly specified observed data. We calculated where for each element in the OWL
model there was a corresponding element in UML where the element in UML and the
OWL model describe the same referent (phenomena), and in the same way, that is,
uses equal language constructs. In other words, we checked the occurrences of the
OWL model terms that are used in the UML model to denote referents
(“things/phenomena”) as considered relevant to the domain, when expressed by same
or synonymous language symbols in the UML language. Likewise, this matrix is non-
trivial, since it concerns the correspondence between the elements both in the control
and in the observed model. The results of the analysis are presented at Table 2.

Table 2. Precision, Recall and Fallacy for Correctly Specified Model Elements

PrecisionRep = Correctly Specified / Represented 0.608187
RecallRep = Correctly Specified / Existing Correct 0.55914
FallacyRep = (Represented - Correctly Specified) / Existing Correct 0.360215

Using the measures for correctly specified observed data, we have measured the

stricter, yet also more realistic metrics for the OWL language model, such as
correctness of specification (0.6), capability to specify (0.56), and failure to specify
(0.36) in the context of the travel domain. These results reflect the difference in how
relationships (incl. domain, range and cardinality) are established in OWL compared
to UML. UML associations allow the specification of business rules between
Classes, for example: A City may have many Tourist Attractions. A Tourist
Attraction is located in one City. In OWL, to model a similar notion, we use
properties (usually prefixed with has_) for example has_location and
has_tourist_attraction. This is an example of where we are modelling the same
referent using different language constructs. Only where we set-up inverse
relationships in OWL are we modelling the similar two-way business rules
(associations) in UML. In the UML class diagram we use Associations between
classes to model relationships whereas in OWL we use functional properties, object
properties and inverseOf constructs. Associations in UML also provide the domain
and range for associations between objects. In OWL we use rdfs:domain and
rdfs:range to specify the domain and range of owl:ObjectProperty. We use
owl:DatatypeProperty for defining properties of owl:class.
The matrix results only provide a simple comparison between model elements in
UML and OWL, which were useful as a pedagogical aid. The next section describes
a more general framework for evaluating ontology models.

6 Quality Evaluation

Despite the considerable level of interest in the creation and use of ontologies, there
have been few attempts to define a systematic framework within which their quality
can be evaluated. Research has been undertaken to establish frameworks for
conceptual modelling [10,11,17] because conceptual modelling is similar to ontology
modelling we can extend these frameworks to be useful for determining ontology
model quality. Atkins [2] addressed the need for quality in the context of conceptual

44

data modelling. She developed a framework based on the work of [10,13]. The
framework was used in her research for assessing the final products of the INTECoM
development [2]. Her adapted quality framework is shown at Figure 3. The
INTECoM framework is useful for assessing the quality of ontology models because
it introduces the importance of measuring the procedural quality of the model as well
as the quality of the language used. Introducing procedural quality is also one step
towards defining rigor in ontology construction. As yet there are no formal steps for
creating ontology models. However there are several guidelines which are commonly
cited as a basis for ontology development [9, 14]. In the paper ‘Ontology 101’, Noy
and McGuinness provide a useful knowledge engineering methodology to ontology
construction which consists of the following steps: defining the classes, arranging the
classes in a taxonomic hierarchy, defining slots and allowed values, and filling in the
values for slots for instances. The first step towards measuring procedural quality
would be (at a minimum) ensuring the steps and guidelines of [14] are followed.

As [10] suggests, a model is a representation of statements taken from a domain
and expressed using some form of formal grammar or language. However, their
framework only illustrates a static position and does not recognise the dynamics of
model construction. Thus Atkins [2] includes a new concept of process. This reflects
that not only are the constructs of a language used to represent the information within
a domain but that some form of process (or method) is also required to build any
particular ontology model. While Lindland et al [11] define the links of semantics,
relating the model to the domain, and syntax, relating the model to the modelling
language, the new link of procedure relates the model to the process by which it is
constructed [2]. This gives rise to the procedural quality shown on the diagram at
Figure 2. The overall goal of procedural quality is that the process by which model
construction had occurred is explicit and has been followed appropriately.

Fig. 3. Quality framework for ontology modelling (adapted from [2])

quality

Ontology

Domain

Participant
Knowledge

Language

Audience
Interpretation

semantic
quality

syntactic

pragmatic
quality

perceived
semantic
quality social

quality

Process
procedural

quality

structural
quality

45

The above quality framework is useful because it not only addresses the model quality
in terms of syntactic, semantic and pragmatic quality but also emphasises the need for
procedural quality. Procedural correctness requires that the process by which the
model is constructed is explicitly laid down and that the relevant activities have been
completed satisfactorily [2]. Figure 3 presents a quality framework adapted from [2]
for use in determining ontology model quality.

“Perceived Semantic Quality” can be measured through checking semantic
completeness and semantic correctness. The means to achieve semantic completeness
involves a subjective user confirmation that their view is complete. For example when
using Owl all business rules should be represented using properties and inverse
relations. In a subjective manner we can say that the OWL model is complete
according to the natural language description provided. However, we have not
captured all properties that would appear in the subclasses for transport means and
accommodation. The means to achieve semantic correctness requires that each class
has a complete set of correct and relevant examples. Each instance created in OWL
should be verified by subject matter experts. Perceived semantic correctness can not
be measured formally. However, we can create instances using Protégé which could
then be verified by a domain expert.

Pragmatic quality can be measured through the subjective measure of pragmatic
correctness, that is the model is a) understandable and b) understood. We suggest the
use RML (Referent Modelling Language) developed by [19] to provide a graphical
notation for OWL. The tree structure in OWL is understandable, however the RDF
source code as generated by Protégé is not so clear. There is a potential for the use of
RML to provide a graphical representation of the OWL ontology, because we can
convert an RML model into Description Logics with respect to OWL semantics and
syntax. We could then convert the description logic into statements which could be
verified by domain experts.

Procedural quality is measured through procedural correctness. Procedural
correctness can be facilitated through the research of [14] on ontology construction.
The primary steps are: class definition, formation of the taxonomic hierarchy, slot
definition and allowed values, and instance creation.

Syntactic correctness requires a syntactic check of all model constructs. OWL
follows an abstract syntax for OWL Lite and OWL DL [22] and exchange syntax for
transformation to RDF graphs. The Protégé ontology editor tool enforces the abstract
syntax of OWL Full. In our case the travel ontology has the classification of OWL
Full through the OWL syntax checker.

Semantic correctness may be achieved through consistency checking which
requires the language to be a formal logical language. OWL uses model-theoretic
semantics for OWL ontologies written in the abstract syntax. A model-theoretic
semantics in the form of an extension to the RDF semantics provides a formal
meaning for OWL ontologies as RDF graphs (OWL Full). However, because OWL is
based on RDF Schema, which is not a satisfactory schema-layer-Semantic Web
language [16], OWL must provide the semantics for RDFS. This is a problem
according to [16] because RDFS does not distinguish the modelling information in the
ontology level with that in the language.

Social Agreement may be facilitated through a subjective rating by the designer
that any conflict between users of the model is based in their individual perception of
the model rather than in its structure.

46

Structural quality goals - simplicity and flexibility are to establish that the ontology
model contains the minimum number of classes and properties necessary to represent
the required statements. Whether to model a specific distinction (such as train, bus, or
airplane transport) as a property value or as a set of classes depends on the scope of
the domain. “Subclasses of a class usually (1) have additional properties that the
superclass does not have, or (2) restrictions different from those of the superclass, or
(3) participate in different relationships than the superclasses” [14]. With respect to
the natural language description provided the OWL travel ontology model contains
the minimum number of classes and properties necessary to represent the required
statements, however the ‘real’ complexity of such a domain is not captured in the
model.

7 Conclusion

The OWL model was developed subsequent to the UML model; we need to consider
the possibility of different results if the OWL model had been developed first. The
way the analysis was performed also presumes there is only one ‘correct’ way to
represent the Travel Domain. There are many implications resulting from this
assumption, first just because the observed model uses different model elements to
represent the same referent does not mean that one language is more ‘correct’ than the
other. In this case the most meaningful measure for comparison is a syntactic one,
because it describes only missing or different constructs of the language and not
differences in meaning. However, like [16] we believe that OWL and UML have
different motivations and application domains. In a sense this means we are
comparing “apples with oranges”. The strength of OWL is that it has a strong
foundation in description logic, this means that the modelling primitives in OWL can
be mapped onto description logics and hence support the provision of reasoning.
Whereas, in UML, reasoning over the object constraint language (OCL) is still under
research. The results from the matrices did not include the ability (or not) to add
instances. Indeed, in this respect the comparison would be meaningless because UML
class diagrams are not typically for representing instances.

The quality framework presented in this paper, represents a starting point for
establishing measures for achieving quality in ontology modelling. Future research
may involve the comparison of more than one semantic-web enabling language for
modelling such a domain. In addition it would be useful to compare the results found
in this study with others using different domains.

Acknowledgements

This work is partially supported by the Norwegian Research Foundation in the
framework of Information and Communication Technology (IKT-2010) program –
the ADIS project.

47

References
1. AIFB Case.: NL description of the traveling domain at URL: http://km.aifb.uni-

karlsruhe.de/eon2002 (2002)
2. Atkins, C.: INTECoM: An integrated conceptual data modelling framework, Unpublished

Thesis, Department of Information Systems, Massey University, New Zealand (2000)
3. Baclawski, K., Kokar, M.K., Kogut, P.A., Hart, L., Smith, J., and Letkowski, J.: Extending

the Unified Modelling Language for ontology development, Software Systems Model,
Special Issue UML 2002, vol 1 (2002) 1–15

4. Berners-Lee, T. Hendler. J, and Lassila, O.: The Semantic Web, Scientific American. (2001)
5. Booch. G, Rumbaugh. G, and Jacobson, I.: The Unified Modeling Language User Guide.

Addison Wesley (1999)
6. Chang. W.W.: A Discussion of the Relationship Between RDF-Schema and UML. W3C

Note, URL http://www.w3.org/TR/NOTE-rdf-uml/ Aug (1998)
7. Cranefield, S. and Purvis, M.: UML as an ontology modelling language. In Proceedings of

the Workshop on Intelligent Information Integration, 16th International Joint Conference on
Artificial Intelligence (IJCAI-99). (1999)

8. Cranefield, S.: UML and the Semantic Web, Feb. 2001. ISSN 1172-6024. Discussion paper. (2001)
9. Gruber, T. R.: A Translation Approach to Portable Ontology Specifications, Knowledge

Acquisition, 5(2), (1993) 199-220.
10. Krogstie, J., Lindland O.I and Sindre, G.: Towards a deeper understanding of Quality in

Requirements Engineering, Proceedings of 7th CAiSE, Jyvaskyla, Finland (1995)
11. Lindland, O.I., Sindre, G and Sølvberg, A.: Understanding Quality in Conceptual

Modelling, IEEE Software, March (1994) 42-49.
12. Melnik, S.: Representing UML in RDF. URL http://www-db.stanford.edu/˜melnik/rdf/uml/

(2000)
13. Moody, D. and Shanks, G.: What Makes a Good Data Model? A Framework for Evaluating

and Improving the Quality of Entity Relationship Models, The Australian Computer Journal,
30(3) (1998) 97-110

14. Noy, N. and McGuinness, D.L.: “Ontology Development 101: A Guide to Creating Your
First Ontology''. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and
Stanford Medical Informatics Technical Report SMI-2001-0880, March (2001)

15. OMG Inc.: OMG-Unified Modeling Language Specification, v1.5. An Adopted Formal
Specification of the Object Management Group, (2003)

16. Pan J. and Horrocks, I.: Metamodeling Architecture of Web Ontology Languages. In: Cruz
I. F. et al. (Eds.). The Emerging Semantic Web. IOS Press. (2002)

17. Pohl, K.: The three dimensions of requirements engineering: A Framework and its
applications, Information Systems, 19(3) (1994) 243-258.

18. Protégé.: The Protege Project.http://protege.stanford.edu (2000)
19. Sølvberg, A.: Data and what they refer to. In: P.P.Chen et al.(eds.): Conceptual Modeling,

Lecture Notes in Computer Science, Springer Verlag, (1999) 211-226
20.Web Ontology Working Group.: OWL Web Ontology Language Overview W3C

CandidateRecommendation 18 August 2003, http://www.w3.org/TR/2003/CR-owl-features-
20030818/ (2003a)

21. Web Ontology Working Group.: RDF Vocabulary Description Language 1.0: RDF Schema
(2003b)

22. Web Ontology Working Group Working Draft, http://www.w3.org/TR/2003/WD-rdf-
schema-20030123/ 23 January (2003)

23. Web Ontology Working Group.: OWL Web Ontology Language Reference W3C Candidate
Recommendation 18 August 2003, http://www.w3.org/TR/2003/CR-owl-ref-20030818/
(2003c)

24. Web Ontology Working Group.: OWL Web Ontology Semantics and Abstract Syntax.
W3C Candidate Recommendation 18 August 2003, http://www.w3.org/TR/2003/CR-owl-
semantics-20030818/ (2003d)

48

