
Integration of Heterogeneous Web Service
Components

Xinjian Xu, Peter Bertok

School of Computer Science and IT, RMIT University, GPOBox 2476V, Melbourne,
Victoria 3001, Australia

Abstract. Integrated value-added Web services can be developed by
combining existing Web service components that are often heterogeneous in
many aspects, such as having different interfaces and data encoding schemes.
Web service integration also has to face the challenge that Web service
components evolve frequently in response to business needs. This paper
describes a three-layer-structured model for building reliable Web service
compositions. The proposed layered structure can significantly reduce the
complexity of integrating heterogeneous service partners. Furthermore, the
evolution of a Web service component can be supported by making a rather
minor amendment to the mapping file corresponding to this particular
component.

1 Introduction

To provide value-added Web services multiple components may need to be
integrated. However, different Web service components can be heterogeneous in
many aspects: such as programming languages used, platforms, communication
methods (synchronous and asynchronous), interfaces, data formats, data encoding
schemes, content capabilities, supporting platforms, etc. In this paper we focus on two
facets of heterogeneity: on capabilities, when different components provide different
services, and on semantics, when some Web service components provide a similar, or
exactly the same service.

Integration of service partners enhances a web-based service-oriented framework
by providing a composite service over several existing services. However, building
such a composite service can be difficult. Due to the dynamism and modularity of the
environment in which Web service components operate, current models and solutions
used in traditional component based distributed systems (CBDS) can not be applied to
the Web services directly.

This paper presents a multi-layered model for integration of web services with
heterogeneous interfaces. The model adopts interface conversion for building
connection between Web service components. Method mapping, parameter mapping
and return value mapping ensure good adaptability in dynamic environments. Our
model divides the integration of heterogeneous Web service components into two sub-
tasks: (i) building a layer of homogenized Web service components over the pool of
components and (ii) building a composition on top of the layer of homogenized Web

Xu X. and Bertok P. (2004).
Integration of Heterogeneous Web Service Components.
In Proceedings of the 2nd International Workshop on Web Services: Modeling, Architecture and Infrastructure, pages 87-94
DOI: 10.5220/0002678600870094
Copyright c© SciTePress

service components. The proposed method simplifies web service integration
considerably, both in static and in dynamic environments.

The next section gives an overview of existing approaches to web service
integration, and briefly explains different approaches. It is followed by a description
of the proposed model, and implementation details are also provided. Finally,
discussion and conclusion are presented.

2 Existing Work

There have been two different approaches to web service integration. The first
approach adjusts the relationships between components without breaking them. The
most frequently used solutions with this approach are the following [1].

1. Manipulating the parameters of components to provide variant services.
2. Providing multiple classes of service.
3. Re-customizing the services according to user profiles
4. A dedicated object takes care of the integration of components.

With this approach adaptation to changes is faster, as there is no need to establish new
trust relationships. Redundancy is also reduced when components’ basic
functionalities are the same but constraints are different. The price for this better run-
time performance is paid at service creation time, as more comprehensive
specification of components is needed. The approach offers only limited fault
tolerance, as unavailability of a particular service cannot be predicted at service
creation time.

The second approach breaks up the relationship between the composed components
and performs re-composition by rebinding [1]. This can be performed in the following
ways.

5. Replacing one component at a time, such as replacing the old component
with a new component. In this sense, the composition structure is relatively
static.

6. Breaking the composition structure by replacing two or more components at a
time.

This solution solves the problems from a different point of view than the previous
approach. It stores multiple integration plans that offer the flexibility of selecting the
most suitable Web service components, because one sub-request could be served by
one or more Web service components. This approach also supports dynamism, as the
selection decision will not be made until the last minute. However, this solution also
has some disadvantages. Similarly to the previous solution, fault tolerance is also a
problem here as outsource agents do not check the availability of the selected Web
service components and the invocation of a selected Web service component can fail
due to the unavailability of that component.

88

3 Proposed Model

3.1 Issues

Providing interoperability between Web service components is a more difficult task
than it is in a traditional Component Based Distributed environment because the
interaction between Web service components is driven by a business logic that is
affected by market or business objectives, and thus can change from time to time.
This leads to possibly dynamic connections between Web service components and can
affect their behavior. To cater for these, several issues need to be addressed when
integrating service partners.

• Compatibility with current XML-based standards
• Support for Web service component dynamism
• Dealing with semantic differences
• Handling service capability differences
• Quality of Service (QoS)

3.2 Structure of the Proposed Model

The proposed model employs a layered structure to reduce the complexity of the
solution. It separates the integration of Web Service components into two sub-tasks,
as integrating semantically equivalent service components and integrating
semantically non-equivalent service components are performed in different layers.
The model has three layers: pool of Web service components, service collector layer,
and composite service collector layer. The structure of the model is shown in Figure
1.

In this model, application programs interact with the layer of composite service
collector, which provides a composite service on top of the service collector layer.
The homogenized interface for the top layer is produced by a set of service collectors
via performing an interface conversion for the several semantically equivalent Web
service components below. To perform the task, this layer contains relevant mapping
information about interface conversion and also contains relevant mechanisms to
handle the key issues discussed in the previous section.

89

The proposed model

Composite service
collector layer

Composite service collector

Application Program

Service collector
layer

Service collector A Service collector B

Pool of Web service
components

Web service
component A

Web service
component B

Web service
component D

Web service
component C

Fig. 1. Structure of the proposed model

3.3 Details of the Proposed Model

The Pool of Web service components
The Web service components form the bottom layer of the model. They services are
distributed across the Internet. Each component is an individual application that does
not rely on any other service components. We assumed that every Web service
component had a WSDL defined interface, regardless of the programming language
used to implement it. The services are registered with UDDI, which accepts SOAP
query messages and returns the description (including the location) of the required

90

component. The Web service components can be heterogeneous in many aspects. The
proposed model, however, addresses only heterogeneity in their interfaces.

The Service Collector Layer
Interface heterogeneity is handled mainly in this layer. The service collector layer
consists of multiple service collectors, which aggregate semantically equivalent or
alternative components. The service collectors themselves are semantically non-
equivalent, since there are no two service collectors providing similar or the same
services in the proposed model.

The major responsibility of a service collector is to implement interface conversion
by building a homogenized interface based from the interfaces of the aggregated
components. It is performed by mapping the interfaces of aggregated Web service
components to a new interface, as shown in figure 2. A service collector has the
following components: a service collector coordinator, mapping file(s) and a
description file.

Fig. 2. Components of a service collector

The service collector coordinator
The service collector coordinator communicates with the upper layer, accepts requests
from there and sends the results back. It also selects the most suitable component to
serve the request, based on the content of the request and the service description file
of the aggregated components. Based on the relevant mapping file, it converts the
interface of the service collector to the interface of the selected Web service
component. The service collector also communicates with the lower layer, invokes the
selected components and accepts the returned data. It also interacts with the
coordinator of other service collectors, if the invocation of other service collectors
depends on the result of invoking the current service collector. Finally, it exchanges
messages with the UDDI service to retrieve the WSDL interface of the selected Web
service component.

Mapping file(s)
There is a map file created by the “implementer” for each aggregated component
respectively to do the mapping between the interfaces dynamically. When the service

91

collector coordinator selects a specific Web service component, it loads the relevant
mapping file.

Description file
This file, also in XML format, contains specification about the aggregated

components. The specifications consist of the information about the service
component, including service description, name, location, interface data, and rank.

WSDL interface vs. Java Interface
In addition, there are two options to create the interface of a service collector. One is
to create a WSDL interface and a Java interface, the other is to only build a Java
interface. The advantage of the availability of a WSDL interface is that the service
collector can also advertise its service through the UDDI server. Therefore, external
users can access the service collector directly (no need to use the service of the upper
layer). In contrast, the advantage of having only a Java interface is that the mapping
between a Java interface (of the service collector) and a WSDL interface (of
aggregated Web service components) is simpler.

The Composite Service Layer
The composite service layer is built on top of the Service collector layer. It provides
the end user with general access to its composite service, which aggregates multiple
service collectors. Compared with the aggregation in the service collector layer, the
aggregation in this layer is more straightforward. Since different service collectors
provide different services, the likelihood that their services may overlap is low.
Therefore, the composite service layer just extracts interface data from all the service
collectors and “glues” them together.

In this layer, metadata about all of the aggregated service collectors is used.
Metadata describes capability, location and access information of services collectors.
Therefore, this layer contains the following components: a composite service
coordinator, metadata storage, and an execution model file.

The composite service coordinator
In the top layer the coordinator decomposes the requests into several sub-tasks. Then
it assigns each sub-task to a service collector for processing, after checking the stored
metadata. In the next step it invokes service collectors via exchanging information
with the service collector coordinator. Finally, it synthesizes the results from
collectors and returning the synthesized results to the calling application.

Metadata Storage
This storage file serves the same purpose as the description file residing in the service
collector layer. It describes capability, location and access information of the services
collectors. The coordinator uses these metadata to locate, browse and invoke the
service collectors.

92

Execution model file
This file is about how to compose service collectors and is created manually.
According to this file, the coordinator invokes the service collectors in the format of
sequence, parallel, or combined. It can be also presented in an XML file format.

Implementation
To test the feasibility of the proposed model, the proposed model has been
implemented in Java programming language under JWSDP1.2. Our implementation
has concentrated on the interface conversion, which is carried out by the service
collector layer.

4 Discussion

The proposed model is compatible with current XML-based technology. In our
solution, each Web service component has a WSDL interface, which is accessible
from the web and published on the UDDI registry server. In this way, the requester of
a Web service can first query with the UDDI registry server for the location and
description of the requested Web service component by using JAXR APIs, and then
invoke the Web service component by using JAX_RPC APIs. The middle layer does
not know which Web service components will be selected until runtime since it has to
dynamically make the selection based on the selection policy and the data input by the
end user. Consequently, a dynamic invocation interface (DII) had to be adopted by the
service collector that acts as a DII client. The invocation between the top layer and
the middle layer is different, since the location and interface of the service collectors
are relatively static. Each service collector has a stub object, which is generated by
“wscompile” from the WSDL interface of the service collector and resides in the top
layer. This local stub object acts as a proxy for the service collector as shown in figure
3. In our implementation, a dynamic proxy client is created for the top layer to interact
with the middle layer.

In the proposed model, the change made to the interface and location of one Web
service component does not have any significant affect on the integration of service
partners; all we have to do is to make a rather minor amendment to the mapping file
corresponding to that particular Web service component.

Composite service
collector

JAX_RPC Stub Tie DII

Web service
componentsService collectors

JAX_RPC Tie

 SOAP Message / HTTP

Fig.3. Invocations between three layers of the proposed model

93

5. Conclusion and Future Work

Our implementation has shown that the proposed solution is feasible and can be
implemented in JWSDP. Interface conversion proved to be a stable and efficient
method to build connections between components in an ad-hoc environment. With the
layered structure, the task of providing a composite service is decomposed into two
sub-tasks: (i) creating a service collector layer, to homogenize the semantically
equivalent Web service components, and (ii) aggregating the different service
collectors, and providing a common access to service requesters. During runtime, the
coordinators of the service collectors can dynamically select a Web service
component and perform the conversion by using mapping files.

Security is not addressed by the model described here, it will be addressed in
future extensions.

References:

1. V. Tosic, B. Pagurek, B. Esfandiari and K. Patel, “On Various Approaches to Dynamic
Adaptation of Distributed Component Compositions”, Technical Report OCIECE-02-02,
Ottawa-Carleton Institute for Electrical and Computer Engineering (OCIECE), June 2002

2. Benchaphon Limthanmaphon and Yanchun Zhang, “Web Service Composition With Case-
Based Reasoning”, in Proceedings of the 14th Australian Database Conference
(ADC2003), Conferences in Research and Practice in Information Technology, Vol. 17,
Page(s): 201-208, 2003

3. Francisco Curbera, Ignacio Silva-Lepe and Sanjiva Weerawarana, “On the Integration of
Heterogeneous web service partners”, in Proceedings of the OPPSLA 2001 Workshop on
Objected-Oriented Web Services (OOWS2001), 2001,
http://www.research.ibm.com/people/b/bth/OOWS2001/curbera.pdf

4. Paolo Predonzani, Alberto Sillitti and Tullio Vernazza, “Components and Data-Flow
Applied to the Integration of Web Services”, Industrial Electronics Society, 2001. IECON
'01. The 27th Annual Conference of the IEEE, Volume: 3, 29 Nov.-2 Page(s): 2204 –
2207, Denver, USA, Dec. 2001.

5. Paulo F. Pores, Mario R.F. Benevides and Marta Mattoso, “Mediating Heterogeneous Web
Services”, in Proceeding of the 2003 Symposium on Applications and Internet Workshops
(SAINT'03 Workshops), pp 344 - 347, Orlando, USA, Jan. 2003.

6. Peer Hasselmeyer, “Managing Dynamic Service Dependencies”, in Proceeding of 12th
International Workshop on Distributed Systems: Operation and Management
DSOM’2001, pp 141-150, Nancy, France, 2001

94

