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Abstract: To reinforce interest of a general optimization algorithm obtained in a previous paper (Jolly et al., 2005),
we consider three applications : an original one about control of cycles for a thermostat with anticipative
resistance, a classical one with a new resolution for a car with two gears and a last one about an obstacle-
avoidance problem in robotics. For the first case, we optimize the adjustment of thermostat thresholds to
control at best the room temperature. For the second case, we optimize the switching times to stop the car as
near as possible of chosen points and this, in a minimum time . In the last example, we optimize parameters
of the switching surfaces in order that the robot reaches a chosen target without meeting a mobile obstacle.

1 INTRODUCTION never meating a given mobile obstacle. Compared to
(Boccadoro, 2004) where the considered obstacle is
fixed, this example underlines interest of mobility for
switching surfaces in applications.

In section 2, we briefly present the theorical algo-
rithm found in (Jolly et al., 2005). From section 3 to
section 5, we detail each application presented above.
Section 6 concludes the paper.

In (Jolly et al., 2005), we have found results on the
guestion of optimization of switching surfaces for a
hybrid dynamical system (h.d.s), generalizing what
was in (Wardi et al., 2004).

Here, we consider three applications that underline
interest of these theorical results. The first, somewhat
original, is one of a thermostat with anticipative resis-
tance controlling a convector in a same rooralgédon,
2000), (Qemard et al., 2005). In this example, we 2 OPTIMIZATION ALGORITHM
optimize the adjustment of thermostat thresholds to
control at best the room temperature. This applica- REMINDER
tion can be taken as a pattern for h.d.s leading to some
cycle solutions. Let tg, z0 = x(tp) € R™ be given initial time

The second application is one of a car with two and state. Here, we consider a h.d.s which sustains
gears (Gapaillard, 2003), (Hedlund and Rantzer, Switchings at increasing times, ..., ¢y in [to, tn41]
2002). We optimize the switching times, firstly, to (¢v+1 is the final time) so that for = 1,..., N + 1,
stop the car as near as possible of a first desired desstatez; = x(t;) belongs to a given mobile surface
tination and then, after a new start-up, to stop the car parameterized by; € R" and of equation:
as near as possible of a final destination and this, in a
minimum time. Interest of this classical h.d.s problem V(@i i, ai) = 0, @)
for us is to bring a new resolution improving numeri- |\ hare W, is from C! class with values irR. In
cal performance. . [to, N1, Statex(t) is supposed to be continuous and

The last application solves an obstacle avoidanceip [ti_1,ti),i =1,..., N +1, stater(t) complies with
problem in robotics (Boccadoro, 2004). Here, we dynamical system:
optimize parameters of the switching surfaces in or-
der that a robot reaches a pre-specified target without &= fi(z,1), 2)
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OPTIMAL CONTROL APPLIED TO OPTIMIZATION OF MOBILE SWITCHING SURFACES PART 1II :

where f; is from C! class with values iR”. Un-
der suitable assumptions (Jolly et al., 2008)js a
function ofay,...,a;,7 = 1, ..., N + 1. For our opti-
mization problem, the criterion we have to minimize
or maximize is in the form:

N+1

0=,
i=1

ts .
whereJ? = ¢;(z;,ti,a;) + ftH Li(z,t)dt with ¢;
andL, from C! class.

Optimization problem - Considering;; as a function

ofai,...,a;, i = 1,..,N + 1, we search values for
ai, ...,an+1 Which optimize criterion/.

We consider the following augmented criterion:

N+1

Z Ji,

i=1

t;
Ji = di + v, +/ (H; — \Ti)dt (3)

ti—1

wherev; is a control parameteh,; is the adjoint state

andH; = L; + A f;. Those variables play a key role

in the following algorithm:

Letay,...,an+1 beinitialized parameters.

1. We solve system (2) forwards for=1,.., N + 1.
In the same time, we compute switching tinmes
i=1,.., N + 1, with constraint (1).

2. Starting frométni1, onvy1 = x(tn41) just ob-
tained, we solve system (4) backwards given by:

0H;
ox

In the same time, we compute suites \;, i =
N +1,..,1 given by:

v, = —(Lz — L¢+1 + )\;1;_1(](1 r fi+1)

+ A =0,i=N+1,..,1. (4)

0pi 9p; ov; oW, \—1
+3§i fi + Ti)tl(a; it 8\115,1- )ti ) (5)

Opi i

)\ZT(ti) = A?+1(t¢) + 83’21 +v; g;léi,

i = N +1,..,1. The notation used is that variable
t;, which follows an expression in a lower position,
means that this expression is evaluatet at(t;).

In (5), to start the backward recurrence, we define:
(6)

3. Then, with all elements computed in the previous
steps, we can deduce:

dJ° dJ 0,
dai o d(ll' o ﬁai

>\N+2(t]\/+1) =0, LN+2|tN+1 = 0.

ov;
V'L L
3ai

i=1,.,N+1.
@)

. Finally, with the criterion gradient, we apply a de-
scent method to obtain optimal results.

APPLICATIONS

3 OPTIMIZATION OF LIMIT
CYCLES. APPLICATIONTO A
THERMAL DEVICE

3.1 Studied Thermal Device

Figurel represents a thermostat with anticipative re-
sistance controlling a convector located in the same
room. Such a thermostat is common in the industrial
market (Cyssau, 1990). The principle is the follow-
ing. The thermostat, which is controlled by a hystere-
sis phenomenon (Figurg), heats the room through

a convector (powerP.) and itself through a resis-
tance (powel;) until its temperature reaches its up-
per threshold. Then, it switches off until its tempera-
ture reaches its lower threshold.

outside
temperature : 6,

thermostat :
temperature x,
convector : power P, (of
temperature z, anticipative
power P, i )

room :
temperature y [

I

6, < 9, x

Figure 1: Thermal process and hysteresis variable

With notations of Figure 1, a power assessment
and Newton law give, in the state form proposed in

(Cébron, 2000), the following system:
T —a a 0 T
z 0 c —c z
Dt 0
+q 0 =+ 9&
De 0
xr
Yy
z
(8)

with numerical values setz = 0.001 s~ !, b = 2.81
1074 s ¢=0011s1,d= 0,2 1074 571, Pt
0.0035 K.s7 %, p. = 0.1 K.s7', 0, = 274.d K.s~ 1.
Here, we consider two heating ways, say a day one
and a night one, each one having its own lowgerfor

the dayg; for the night) and uppe#f for the dayf,

for the night) threshold. We also consider here that
we change the way of heatingtat 20000 s.

Discrete variablegy takes the value) or 1. Here,

we are in the same situation that the one exposed in
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the second section withy < ts... < ¢y switching e aq; = 0, if iis even and if; < 20000, a; = 05 if ¢
times in [to, ty+1], Wherety and ¢y, are respec- is odd and ift; < 20000, a; = 65 if i is even and if
tively initial and final times. A simulation with Mat- t; > 20000, a; = 60, if 7 is odd and ift; > 20000,
lab, with ¢y = 1 atty = 0 and with initial values R Ty o VIRY
X(to) = (288 288 288)T,0, = 293 K, 6, = 204  ° ng__Afg, i A?Bf:'L Vc‘ihereL’ = BEX: — 64)%,
K, 0; =290 K, 6, = 291 K gives Figure 2. ¢ = Ak '

ea+p(3=1, a>0,08>0,

e j=1if t; < 20000 andj = 2 if ¢; > 20000.

— thermostat temperature

2941
T omiemperalite  seraure G From there, we apply the algorithm we report in the
2os| [ INAV et tomporanne atodt aviehing fostnts (dey) second section to obtain an optimal trajectofyt)
—— desired temperature at odd switching instants (night .
LNV S for J as a function ob, 6y, 0, 0.

Firstly, for arbitrary initial conditions, we solve direct
system (8), variable withand we compute switching

~

Py

N
T

Temperatures (K)

2o times and states and the final time and state. Secondly,
}T\ Z\ I\ I\ I\ }I\ }T\ [\ Z\ Z\ Z\ }\ we solve adjoint system (4) backwards given here by:
WW(\\(\\(\\(\WW\W\\

289

In the same time, we can defing \;(¢;) with equa-
tions systems (5) and (6):

288

L L L L L L
0 1 2 3 4 5 6

Time (s) Y 10°
vi = —HE(B(EX: — 04)* — (BEXit1 — 0ar)?)
Figure 2: Temperatures before optimization +/\f+1(fi — fix1) + q,-]\?—_‘il(EXi —0u;)Efi),
o AT (t) = M5 (t) + i 55 (EXy — 05 E
Optimization problem - How can we choose thermo- Lup
stat thresholds (considered not fixet]) : = 1,...,4 N1772

to have the room temperature at odd switching times wherek = 1 if ¢;,, < 20000, otherwisek = 2.
(upper stars) as near as possible of desired tempera- Tys, from (7), we can deduce:

turesf,,; = 293 K (for the day)f... = 290.5 K (for

the night)? Moreover, in the same time, how can we dJ? Vi
choose them to have the room average temperature d;, N+1
as near as possible of desired room average tempera-

turesfy; = 292.5 K (for the day)f4, = 290 K (for ~ Regrouping those terms according to values; @nd
the night)? to parity ofi, we obtain the criterion gradient. Thus,

we can apply a descent methode to define an optimal
. A solution. The using of Matlab and patrticularly of
3.2 Gr'aglle.nt C_:aJCUIUS' Criterion function fmincon with initial valuesx = g = 0.5,
Minimization 01 = 293K, 0, = 294K, 03 = 290K, 0, = 291K,
gives after thirteen iterations the algorithm end. We
Results obtained in (@mard et al., 2005) and Figure ©obtain Figure 3 and the following optimal values:
2 let us to establish that thermostat model is a h.d.s for (601, 02, 05, 04) =(292.32,293.744, 290.149, 291.249),
which a trajectoryX (t) can converge towards a stable J/° = 18.5046. o
limit cycle. Following notations used in the second This optimization leads to the following differences
section and particularly in equation (3), we can con- (indexed quantities rely on switching quantities):

i=1,.,N+1.

sider the augmented criterioh= """ J;, with: e Initially (Figure 2):|[EX; — 01| ~ 0.2872, |EX,; —
) 0.2 ~ 0.1378. Moreover,|0,,,1 — 041| ~ 0.4371
«
J; = q; EX; —0,)?+vi——(DX; —a; K for t < 20000 and |0,,2 — 041 ~ 0.0132 K
e N + 1( 2 N + 1( ) for ¢ > 20000 whith 6,,,; andd,,,» corresponding
N respectively to the obtained room average tempera-
. 1 / ’ (Hi — \TX,)dt, ture for¢ < 20000 and fort > 20000.
tner Jiy e After optimization (Figure 3): |[EX; — 0,1] =~
where: 0.0222, |[EX; — 0,2| ~ 0.0865. Moreover,|0,,,1 —
o oo 041] = 0.0362 K for t < 20000 and|f,,2 — 641 ~
e ¢ =0ifiisevenand; = 1if iis odd, 0.2058 K for t > 20000. So, just this last result is
eD=(1 0 0,E=(0 1 0), not improved.
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(mass of the car); (frictional damping) and: (con-
R stant of transmission shaft) are set to 1 without loss of
!

294

293 R (\ I\ }I\
\ desired temperature at odd switching instants (day)

I\
| e tomperature i 04d swiching instants (Vo) Optimization problem - Firstly, contrary to (Hed-

+ switchings on thermostat temperature

200} onfoom lund and Rantzer, 2002), we impose rules rather nat-
ural for the car evolution which are listed below:

— thermostat temperature

— toom emperature generality.
—— desired room average temperature (day)
I desired room average temperature (night)

Temperatures (K)

[to, t1] [ta, ta] [ta, t3] [t3,ta]
[ta, ts] [ts, te[ [te,t7[ | [t7,ts]
Action | accelerate| accelerate| brake brake
Gear 1st 2nd 2nd 13t

289

Here, we optimize switching and final timgsi =
250 \ \ : : \ \ \ 1,..,8 to stop the car as near as possible of a first
Time () <10 chosen destinationtf = 0), then, after a new start-
up, to stop it as near as possible of a second chosen
Figure 3: Temperatures after optimization destination £; = 5) and this, in a minimum time.

4.2 Gradient Calculus. Criterion

4 OPTIMIZATION OF Minimization
SWITCHING TIMES. Foloud _ 4 gl g _ g
ollowing notations used in the second section an
APPLICATION TO A CAR particularly in equation (3), we can consider the aug-
WITH TWO GEARS mented criterion/ = > 1" J;, N = 7, with:
. a T ti —a;
4,1 Studied Car Model Ji = N+1(F_U9i)2+ViN7_H

Following (Hedlund and Rantzer, 2002), we consider

tq
Ty,
the following system: i /ti_l(HZ Ai Xi)dt,

T1 = To where:

Ly = =(—cag + kas) 9) e § = 50: tolerable changing amplitude,

gy = —wp + 22y o vy = 0.8,i=1,5v, =12,i = 2,60, = 0.2,
whereq = 1, 2. In (Hedlund and Rantzer, 2002), the 3/;0?;7itz;,1)gi =0, = 4,8: recommended changing

authors find that optimal input throttlee [—0.1,1.1] ,
is essentially a bang-bang pattern what we take in as-® @ =t;,%=1,..,8,

sumption. So, here, we chooges {—0.1,1.1}. o H; = L;+ )\ fiwhereL; = B(z3(t) +3(t)),i =
The three continuous states of the system repre- 1 .4 L, = B((w1(t) — 5)2 + x3(t)), i = 5,..,8

sent respectively the car positian §, the car velocity fi = AX; + B, with:

(z2) and the rotational displacement of its transmis- 0 1 0

sion shaft £3). Functiong,, plotted in Figure 4, rep- cA=1[ 0 -1 1

resents the efficiency of gear numlgerConstantsn 0 -1 0 !

0
x B= ( 0 )Withuzl.lfOl’izl,Z
UGq
u = —01fori = 3,4, g = g1 fori = 1,4,
gq = g2 fori=2,3.

Then, like for the thermostat problem, we apply the
optimization algorithm related in section 2. Firstly,
we solve numerically direct system (9) to define
switching and final times and states. Then, we solve
; o, : adjoint system backwards given by (4) which is given
here by:

AT = —ATAT — (281 (t) —d)  2Bra(t) 0)7.

of g1and g2

Values

Figure 4:g; andg. behaviors
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with ¢ € [tiy1,t;[,d =0fori =1,.,4,d=5for 5 OPTIMIZATION OF
1=3,.,8. SWITCHING RULES.

In the same time, we obtain suites \;(¢;) given by
(5) which, applied to the car problem for= 8, .., 1 APPLICATION TO ROBOTICS

and considering (6), gives system:

5.1 Studied Robot Mode

vi = —=8(8((= ( i) —d)? + 23(t;)
—(z1(tix1) — da)? — 23 (tix1)) Following (Boccadoro, 2004), we consider system
sl i) +© 3 0, 0, GO

& = vcos(¢)

)
i)

() = AT () + (0 §(352 —vs) 0), j = vsin(¢) (10)
whered = 0fori = 1,..,4,d = 5fori = 5,..,8, o=w
dy =0fori=1,..,3andd, =5fori =4,..,7. where(z, y) is the robot positiong is its orientation,
Then, we deduce from (7): v andw are the controlled translational and angular
velocities. Moreover, the robot can move using two
dJ? Rz modes, an approach-goal one and an avoid-obstacle
da; 8’ 1=1,.,8, one, which are respectively given by:
which is the criterion gradient. Mode1 { =1 ' oy
Thus, we apply a descent method to define an op- w = C1(¢g — @) With ¢y = arctan(3*=7)

timal solution. We use again Matlab and function
fmincon with initial values:a = 6 = 0.5, t; = Mode2d U= 1
1.7, t» = 5.1, t3 = 6.9, t4 = 8, t5 = 10.1, = C1(¢ — @) with ¢, = arctan(22=Y%)

t¢ = 12.8, t; = 14.1, tg = 15.4 . The algo- ) defi h " f th h
rithm stops after thirteen iterations and gives the fol- P2t (z,,y,) defines the position of the target that
the robot has to reach and,,y,) defines the po-

lowing optimal results:(¢1, ta, t3, t4, t5, tg, t7,tg) = P .
@ 2587 5?4952 6 0851 (71é2%’3 31’042’3%23 61’2_77’53)% sition of the obstacle that the robot has to avoid.

13.9783,15.3068), J° = 203.1983. Figure 5 shows H€re, contrary to (Wardi et al., 2004), we choose a

car traiectory in the phase portrait.of and.. mobile obstacle which follows a circle of equation
Jectary inthe phase portraitof 4 (20 — 1)2 + (yo — 1)2 — (0.3)2 = 0.

The crossover between the two modes can be de-

scribed as follows. We define for each obstacle po-

12y e e sition two switching surfaces of equation:

Car trajectory

\I](l',y,(h') = (1' *xo)Q + (y*yo)2 *Q?,i: 1,2

Firstly, the robot operates in mode 1 until it crosses
a switching surface of radius, and then, it switches
to mode 2. It remains in mode 2 until it crosses a
switching surface of radiug, and then, it goes back
to mode 1.

Optimization problem - How can we choose radii
a1 and as in order that the robot reaches the pre-
specified target without never meating the mobile ob-
stacle ?

Position

Figure 5: Trajectories before (dotted line) and after (solid 5.2 Gradient Calculus. Criterion
line) optimization Minimization

Figure 5 confirms that our optimization algorithm en- Following notations used in the algorithm reminder
ables the car to approach desired destinations. Be-and particularly in equation (3), we can consider the
yond the simplifying assumption about bang- bang augmented criteriod = ZN“J N = 2, with:
control « we have made, this algorithm is numeri- .

cally less expensive than the one based on dynamchi _ V_[(x_xo)2+(y_yo)2_a?]+/ (Hi—ATX,)dt,

programming used in (Hedlund and Rantzer, 2002). ti s
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WhereHi = Lz-‘r)\szz,Wlth L; = ($—$9)2+(y— ’
Yg)? fi = (veos(g(t:))  vsin(p(ti)) w)”. s
From there, we apply algorithm of section 2. Firstly,
we solve direct system (10) forwards. Secondly, we
solve adjoint system (4) backwards which is given
here by:

A = —ATAT — (=2(zg—2) —2(ys—vy) 0)7,

where, if the robot operates in mode 1.:
Yg—Y
[ 0 P T
-0 0 O e
—vsin(p) wvcos(p) —Ci
and if the robot uses mode 2:
_ Yoy
0 0 02 (ﬂ?o*ml")_zir(yo*y)z
A=10 0 O o o P
—vsin(p) wvcos(¢p) Cs
In the same time, we compute, \;(t;), ¢ = 3,..,1
given by (5). Considering (6), we obtain:

vi = —((x(t:) — )% + (y(t:) — yg)?
_(I(ti+1) - Jl‘g)2 - (y(ti—H) - yg)2
AN (fi = fig1) (2u(cos(6(t:)) (x(ti) — ) e
+sin(p(t:)) (y(t:) — yg)))

)‘zT(ti) = )‘iT+1

—2v3((zo — 2(t3)) (Yo —y(t3)) 0).

(] 05 1 15 2 25 3 35

Figure 7: Trajectory of the robot after optimization
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