
XML-BASED EVALUATION OF SYNTHESIZED QUERIES

Ron G. McFadyen+, Yangjun Chen*, Fung-Yee Chan
Department of Applied Computer Science, University of Winnipeg,

515 Portage Avenue, Winnipeg, Manitoba, Canada, R3B 2E9

+Supported by NSERC 105709-03 (139988) (Natural Sciences and Engineering Council of Canada)
*Supported by NSERC 239074-01 (242523) (Natural Sciences and Engineering Council of Canada)

Keywords: XML, business rule, query tree, query evaluation

Abstract: XML repositories are a common means for storing documents that are available through Web technologies.
As the use of XML increases, there is a need to integrate XML repositories with other data sources to
supply XML-oriented applications. In this paper, we examine documents that express business rules in
XML format, and where the triggering and instantiation of rules requires execution of database queries. In
this way, an inference process is governed by an XML document tree that controls the synthesis and
evaluation of database queries.

1 INTRODUCTION

XML and related technologies are becoming a
dominant standard for storing, managing, and
exchanging information. In its basic application,
XML is used to semantically enhance web pages
through the use of user-defined tags. This
enhancement allows one to understand the context in
which data appears. For example, XML.org was
formed in 1999 and its web pages (XML.org, 2005)
provide a portal to XML technologies for data
exchange purpose. At the time of writing, XML.org
lists focus areas that include Human Resources and
Printing & Publishing; other focus areas such as
Defense, Insurance, and Retail are planned. XML is
being adapted for use in many industries.

In this paper, we consider documents describing
requirements or rules to be met to achieve some
designation or status. As an example, consider a
university setting where specific requirements are
set out for students to receive a degree. Typically
these documents are found in university calendars
and are expressed in natural language as illustrated
in Figure 1. This sample document presents the
requirements for graduation for a 3-Year BSc in
Geography from some university. It can be used by a
student to guide the progress of his/her studies, a
graduation officer to determine if a student can
graduate, or by a university department to publish
established requirements.

An observation shows that when applying such
requirements to student histories, we can determine
those students who can graduate. This is essentially
a process deriving new information by making
inference based on rules and facts (Business Rules
Group 2000, Ross 1997). However, unlike a general
rule-based system, the inferences here can be
deduced only in the order implicit in a document
structure. For instance, to know whether a student
can graduate, we have to check whether the student
has earned at least the required 90 credit hours,
whether the residence requirement is satisfied, and
so on. Furthermore, to determine whether the

3-Year BSc (Geography)
Graduation Requirement

90 credit hours
Residence Requirement

Degree: minimum 30 credit hours
Major: minimum 18 credit hours

General Degree Requirement
Humanities: 12 credit hours
Science: 6 credit hours

Major Requirement
Minimum 30 credit hours
Maximum 48 credit hours
Required Courses

23.202 Intro Geography I
23.203 Intro Geography II
23.331 Advanced Geography

Choice
23.205 Atmos Sci or 23.206 Earth Sci

Figure 1: Graduation Requirements

24
G. McFadyen R., Chen Y. and Chan F. (2005).
XML-BASED EVALUATION OF SYNTHESIZED QUERIES.
In Proceedings of the First International Conference on Web Information Systems and Technologies, pages 24-31
DOI: 10.5220/0001232100240031
Copyright c© SciTePress

residence requirement is satisfied, we must check
the number of degree credit hours and the number of
major credit hours. Obviously, it is an ordered
inference process.

In addition, during the process, a series of
queries must be evaluated and each query
corresponds to some inference step.

To handle the above problem, we introduce the
concept of synthesized query tree, which is an XML
document tree, to represent a set of queries that are
evaluated along a tree structure.

The remainder of this paper is organized as
follows. Next in section 2 we describe the system
architecture. In section 3 we describe the
requirements documents and in Section 4 we
introduce the boolean and general synthesized query
trees that are required to process the documents.
Section 5 presents a short conclusion and directions
for further work.

2 SYSTEM ARCHITECTURE

In Figure 2, we present a layered architecture for
processing student graduation requests.

In the architecture, the End-user Layer manages
the interaction with the end-user and relays requests
to the Application Layer which analyses a request
and activates appropriate rules. Rule processing may
require access to XML documents and to various
other data stores. This architecture is designed for
handling end-user requests and not for managing
workflow as in the XRML architecture discussed in
(Lee and Sohn, 2003).

The use case shown in Figure 3 illustrates how a
user uses the system to determine a specific
student’s graduation status. From this, we can see

that to handle the use case, the system needs to do
the following:

1. retrieve relevant student identification
information (see Figure 3, steps 3 and 4)
2. manage rule execution (see Figure 3, steps 5
and 6)
3. manage connections to other data sources such
as XML and student history (see Figure 3, steps 3,
4, 5, and 6)

All these are the main tasks of the application
layer. In fact the Application Layer is basically an
inference engine that derives knowledge using a rule
set represented in an XML document and data from
various data stores. The application layer
implements all the operations that will be discussed
in Sections 3 and 4.

From the above discussion, we can see that the
sample document can be considered as a rule set that
will be used to determine whether a student can
graduate with a specific major. Our model assumes
that querying some data store for ancillary
information is required, but in this paper we are
concerned only with query access and not updates to
these data.

3 REQUIREMENTS DOCUMENTS

In this section, we describe the document category
we are considering and specify how the document is
coded as an XML document. To the best of our
knowledge, this document category has not been
studied elsewhere.

We consider documents that describe
requirements to be met to achieve some designation
or status, as exemplified in Figure 1. The sample
document is typical of requirement specifications
that a student must meet in order to graduate with a
specific degree. As discussed previously, to

user request result

Figure 2: Rule Processing Architecture

End-user Layer

Application Layer

Rule Processing

Students
Histories

XML
Documents

Use Case: Obtain Student Graduation Status
Main Success Scenario

1. Graduation officer selects the 3-Ye ar BSc (Geography)
graduation requirements page to view

2. System presents graduation requirements page
3. Graduation officer selects a student
4. System retrieves and presents student information
5. Graduation officer requests student graduation status
6. System evaluates document rules using student

history data store and displays graduation status to user
Alternate Flows

5a) The student’s status relative to a specific
requirement in the document is requested
1. Graduation officer selects a specific requirement and

requests status relative to that requirement only
2. System evaluates the specific rule and displays status

Figure 3: Student Status Use Case

XML-BASED EVALUATION OF SYNTHESIZED QUERIES

25

determine if a student can graduate, an inference
process is required that must adhere to the order
implicit in the document structure.

The XML version of the sample document is
shown in Figure 4. Next we describe how this
document is established from the document shown
in Figure 1.

As we know, XML documents comprise
elements and attributes, which are marked up using
tags. Therefore, when we translate a plain text like
that in Figure 1 into an XML version, tags for
elements, as well as attributes have to be defined.
Especially, to model the inference process implied in
a requirements document, the following principles
should be followed.
1. Any requirement/sub-requirement relationship is

handled as an element/sub-element relationship
in XML.

2. For each element we define the attributes:
 title: each element has a title for display

purposes.
 display: each element may have additional text

for display purposes.
 query: the query attribute holds a database query

that will be used to determine if the
corresponding requirement is satisfied for a
specific student. Only those elements that do not
have sub-elements, have a query attribute.

 expected: the result expected from the query.
 comparison: the operator to use to verify the

query result is the expected result.
 combining: the combining attribute is a logic

operator “and” or “or” or a function call, which
indicates how sub-requirements are combined.
Only those elements that have sub-elements
have a combining attribute.

Figure 4: XML expression of graduation requirements

<GeographyRule title= “Degree Requirement for 3-Year BSc
 (Geography)”,
 combining = ”AND” >
<GraduationRule title=”Graduation Requirement”,
 display=”90 credit hours”, query= “...”, ...>
</GraduationRule>
<ResidenceRule title = ”Residence Requirement”,
 combining = ”AND” >
 <DegreeRule title = ”Degree Requirement”,
 display = ”minimum 30 credit hours”,
 query = ”SELECT sum(creditHours)
 FROM studentHistory
 WHERE
 studentNumber=parameterValue”,
 expected=”30”,
 comparison= “>=” >
 </DegreeRule>
 <MajorRule title=”Major”, display=”minimum 18 credit hours”,
 query=”... ”, ...>
 </MajorRule>
</ResidenceRule>
<GeneralRule title=”General Degree Requirement,
 combining = ”AND”>
 <HumanitiesRule title=”Humanities”,
 display=”12 credit hours”, query=”... ”, ...>
 </HumanitiesRule>
 <ScienceRule title=”Science”, display=”6 credit hours”,
 query=”... “, ...>
 </ScienceRule>
</GeneralRule>
<MajorRule> title=”Major Requirement”
 combining = ”AND”>
 <MinMaxRule
 display=”Minimum 30 credit hours, Maximum 48 credit hours”,
 query=”... “, ...>
 </MinMaxRule>
 <ReqCoursesRule title=”Required Courses” ,
 combining = ”AND”>
 <Course
 display=”23.02 Intro Geography I”, query=”...”, ...>
 </Course>
 <Course
 display=”23.203 Intro Geography II”, query=”...”, ...>
 </Course>
 <Course
 display=”23.331 Advanced Geography”, query=”...”, ...>
 </Course>
 </ReqCoursesRule>
 <ChoiceRule title=”Choice”,
 display=”23.205 Atmos Sci or 23.206 Earth Sci”
 combining = ”OR”>
 <Course query=”...” , ...> </Course>
 <Course query=”...” , ...> </Course>
 </ChoiceRule>
</MajorRule>
</GeographyRule>

We give an example of the process to construct
an XML document. Consider the Residence
Requirement. This requirement has two sub-
requirements as shown in Figure 1. So we need a
Residence element and two sub-elements for Degree
and Major in its XML version. Furthermore, the
Residence element has a title with a value of
“Residence Requirement”, but does require any
further text to be displayed and so there is no value
for the display attribute. There is no query to execute
to determine if the Residence Requirement is
satisfied, rather it is necessary to determine if all
sub-requirements are satisfied. Therefore, there is no
value for the query attribute; queries will appear in

WEBIST 2005 - INTERNET COMPUTING

26

its sub-requirements. Lastly, since the Residence
Requirement has sub-requirements, the combining
attribute must be “and” since both sub-requirements
must be satisfied for the Residence Requirement to
be satisfied.

We continue this example one step further by
considering the Degree Sub-requirement. This
requirement does not have sub-requirements itself
and so we do not define any sub-elements of the
Degree element. The Degree element has a title with
a value of “Degree Requirement”, and requires a
value for the display attribute for the additional text
of “minimum 30 credit hours“. The Degree
Requirement needs a value for the query attribute so
that the minimum of 30 credits can be verified
against a database of student history information.
This query requires a parameter for the student
number since the student would not be known until
the query is executed. Note that the exact function or
query expression required here depends on the
database system being used. To pass the
requirement, the result must be at least 30 and so the
expected attribute is “30” and the comparison
operator is “>=“. Finally, since the Degree
Requirement has no sub-requirements, the
combining attribute is not given any value. The
above discussion leads to the following definitions
which appear in the XML document shown in
Figure 4.

Figure 4 can be viewed as a set of rules that
require evaluation to know the graduation status of a
student. Specifically, the rules will be evaluated in a
bottom-up way. That is, to know the value of any
rule, the value of its contained rules must be made
available first. In the next section, we discuss how
such a set of rules are evaluated.

4 SYNTHESIZED QUERY TREES

In this section, we describe the evaluation of the
rules represented in an XML document. For this
purpose, we introduce the concepts of synthesized
query trees, which are implemented in our system to
control the inference process. We distinguish two
kinds of synthesized query trees. One is the so called
boolean synthesized query tree, which will be
discussed in 4.1. The other is its extended version
for handling more complicated cases, and will be
discussed in 4.2.

4.1 Boolean Synthesized Query Tree

The documents discussed in Section 3 form a single
compound rule that comprises some other sub-rules.
The evaluation of such a rule requires either for all
of its sub-rules to be true, or, for at least one sub-rule
to be true. To control the evaluation of such a rule,
as well as the execution of the queries involved, we
present the Boolean Synthesized Query Tree as
follows.

Definition 1: a boolean synthesized query tree
(BSQT) is a tree where each leaf node v is associated

with a boolean query Q v() , and each internal node v
is labelled with a tag T(v), and an operator
θ or∨ ∧= ; and each node v is assigned a
boolean value, V(v), determined as follows:

 a) for a leaf node, V(v) is true if the return value

of Q v() is not empty; otherwise, it is false, and

 b) for an internal node, with children v1, ... vn,
V v() V v1()= θV v2()θ…θV vn()

In Figure 5, we show a tree which is a BSQT,

derived from the XML document shown in Figure 4.
From this, we can see that the whole process of
evaluating the corresponding rule is explicitly
specified.

We also notice that in the BSQT an internal node
is either an and-node or an or-node according to the
operator used at that node. In addition, the value of
any node depends on the values of its descendants.
To determine the value of a node v, V(v), the value
of each descendant node must be determined first.
Therefore, the function V(v) is evaluated bottom-up.

For instance, the 3-Year BSc (Geography)
Requirement is satisfied if all of Graduation
Requirement, Residence Requirement, General

<ResidenceRule title = ”Residence Requirement”,
combining = ”AND” >

<DegreeRule title = ”Degree Requirement”,

display = ”minimum 30 credit hours”,
query = ”SELECT sum(creditHours)

FROM studentHistory

WHERE
studentNumber=parameterValue”,
expected=”30”,
comparison= “>=” >

</ResidenceRule>

</DegreeRule>
...

XML-BASED EVALUATION OF SYNTHESIZED QUERIES

27

Requirement, and Major Requirement are satisfied.
Thus, the node labelled 3-Year BSc (Geography) is
an internal and-node representing a compound rule
where all sub-rules must be true for the requirement
to be satisfied. However, the node labelled Choice is
an internal or-node representing a choice a student
must make: to take one of two courses 23.205 or
23.206 (see Q6 and Q7 in Figure 5).

Of course, some rules do not have sub-rules; for
instance, the Degree Requirement specifies that the
student must have completed at least 30 credit hours
at the institution (see Q2 in Figure 5). There is no
sub-rule this rule depends on; this rule requires the
evaluation of a query to determine if it is satisfied or
not. Degree Requirement is a leaf node in the BSQT.

A leaf node represents a simple requirement that
is not subdivided any further. In Figure 5, queries
are indicated for each leaf node. For instance, the
Graduation requirement is met if the student has at
least 90 credit hours in courses that have been
completed satisfactorily (a grade point of at least 1
in each course; see Q1 in Figure 5). This can be
determined by querying an appropriate data store,
and the result is either true or false. For other leaf
nodes, similar queries would be specified. For the
purposes of this paper, we consider these queries are
explicitly coded, as they are typically done for
database applications.

Each node in the tree in Figure 5 expresses a
business rule for graduation. The tree is organized in
such a way that all data access is at leaf nodes and
each internal node organizes and accumulates the
results from its child nodes using logical and or or
operators.

When the graduation officer requests a student’s
graduation status for a degree, the graduation rules
must be evaluated bottom-up. This is accomplished
by the application layer performing a post-order
traversal of the tree. When leaf nodes are being
evaluated, a data store of student history information
must be accessed. Typically, this data store is a
relational database and SQL would be used by an
application layer to retrieve relevant information for
the officer to assess.

4.2 General Synthesized Query Tree

We now generalize our model to distributed
documents. In our exemplary requirements
document, there is a list of required courses for the
degree. Suppose the list of courses is not in this
XML document; rather, suppose the list of required
courses is stored in some data store and that the list
can only be retrieved in a query. This situation is one
where the list of required courses is maintained
separately from this XML document.

Residence

Degree Major

General Major

Required
Courses

Huma-
Science

Graduation

or-node:

Choice

3-Year BSc (Geography)

and-node:

Figure 5: A BSQT for graduation requirements

Q1

Q2 Q3 Q4 Q5

Q6 Q7 Q8 Q9 Q10

Q11
nities

MinMax

WEBIST 2005 - INTERNET COMPUTING

28

As we will discuss, this type of document
requires more expressive data manipulation, and so
we propose a more general query tree where a leaf
node may be single- or set-valued, and an internal
node may have operators other than and or or
associated with it. We define the general synthesized
query tree as below.

Definition 2: a general synthesized query tree
(GSQT) is a tree where each leaf node v is associated
with a query Q(v), which returns a value or a set of
values, and each internal node v is labelled with a
tag T(v), a function f, and each node will be assigned
a value V(v), as follows:

 a) for a leaf node, its value V(v) is equal to the

return value of Q v() , i.e., V v() Q v()= , and
 b) for an internal node, with children v1, ... vn,

V v() f V v1() V v2() … V vn(), ,,()=

In Figure 6, the same requirements as before are
illustrated, but we imply that the set of required
courses is obtained using a query submitted against
some data store. Here, we assume that external data
can be obtained from any available or required data
store.

Now, given that the required courses for the 3-
Year BSc (Geography) are kept elsewhere, to
determine if a student has successfully passed all
courses, the process of evaluating the requirement
has to be carried out differently from before. To
evaluate the requirement, the graduation officer must
run two queries and combine their results as we
explain next.

First, a list of courses successfully passed by the
student is obtained. Let us name this result
SuccessResult and assume this result is a relation
with two attributes: student number and course
number. Since we are considering a single student,
the same student number will appear in each tuple.
The other list obtained is a list of required courses.
Let us name this result RequiredList and assume this
result is a relation with one attribute: course number.
Note these two relations have one common attribute:
course number. The graduation officer needs to
determine if the set of courses successfully passed
includes the set of required courses. To do this, the
relational algebra division operator (Elmasri and
Navathe, 2003) should be conducted:

SuccessResult[studentNum, courseNum]
 ÷ RequiredList[courseNum].
The result of this operation is a relation of one

attribute: student number. In the result, a student
number appears if the student number appears in
SuccessResult with some course numbers which
form a super-set of RequiredList. In our example, if
the student has successfully taken each required

course, then the result of division is a relation of one
tuple having the student number of that student. If
the student has not taken all of the required courses
then our result is a relation of zero tuples - an empty
relation. The division operator is difficult to explain.
It is even more difficult to express in the standard
relational language SQL and error-prone since it is
not directly supported in that language. For this
reason, the document designer may prefer a different
approach where division is directly supported. We
note that the division can be expressed simply, as
shown in Figure 6.

In Figure 7, we illustrate a subtree rooted at
Major in the GSQT for our running example, for
which various functions are required to manipulate
the values obtained from descendant nodes in the
GSQT. For instance, associated with v8, we have a
division operation while for v6, the operation is the
projection.

In the Figure, the functions f() and g() are
defined as follows:

 f(x, y): if x ∈ y, returns true; otherwise, false.

 g(x): if 30 ≤ x ≤ 48, returns true; otherwise, false.

As with the other operations, they take the values
from the corresponding child nodes as the
parameters. We also note that each leaf node in the
tree is associated with a query, which provides the
initial values for computation. Therefore, the
evaluation of V(v) for any node is performed
bottom-up. For instance, the value of v8, V(v8), is
calculated by dividing the result of Q(v10) through
the result of Q(v11) (i.e., Q(v10) ÷ Q(v11); both of
them come from its children); V(v3) is obtained by
computing g(V(v6)), and so on.

The GSQT is similar to the concept of query
trees used for constructing query execution plans in
relational database systems (Elmasri and Navathe,
2003). We note that, however, our documents have a
number of queries and for the purpose of evaluating
sub-rules separately, it is necessary for each sub-rule
to be self contained and for its query requirement to
be expressed independently of other rules.

select all
required courses

select all
courses taken
by student s1

Q3 = Q1 divide Q2

from external source

Figure 6: Division operation

Q1: Q2:

XML-BASED EVALUATION OF SYNTHESIZED QUERIES

29

Furthermore, for queries in our example, several
queries access the same data and some query results
can even be derived from other queries, which
cannot be expressed in any kind of query trees.
(Finally, if this knowledge is exploited during
document/query processing, it is possible for us to
realize efficient query processing.)

In (Bonifati, Ceri and Paraboschi 2001,
Abiteboul, Benjelloun, Manolescu, Milo, and Weber
2002), distributed XML documents are considered.
In these, document queries are used to retrieve
distributed portions of an XML document. The
queries and documents in (Bonifati et al 2001,
Abiteboul et al 2002) are not the same as the
situation here since in our model the queries we are
considering are used to retrieve data from (for
example) SQL database systems.

5 CONCLUSION AND FUTURE
WORK

In this paper, we consider a kind of document, the so
called requirements document. Each document can
be considered as a single compound rule. When such
a document (e.g. BSc Graduation Requirement) is
evaluated in a certain context (e.g. for a specific
student) there will be a value generated for it. In our
example, the value generated for the document is the
graduation status for a particular student. For this
type of document, the BSQT and GSQT succinctly
represent the document evaluation and query
requirements; a simple tree traversal is required to
evaluate a document.

The BSQT and the GSQT structures can be
applied to any part of a document, and the BSQT
and GSQT could appear in multiple places of a
document. For example, the General Calendar
published by a university would have many GSQTs,
one for each degree program for each department.

We are currently developing a prototype system
which requires a complete specification of rule
processing, synthesized tree instantiation, and
connection to a database system. Concurrently, we
intend to examine other issues related to the
processing of these types of query-based documents,
such as rule markup, event-condition-action model,
Document Object Model, query optimization,
workflow, active XML documents, and
composing/assembling documents from other
documents. For example, the event-condition-action
model for rule processing can be incorporated if we
take into account the updates to the Student History
Data Store. At the end of term, when marks for a
student have been entered, the graduation
requirements document/rule processing can be
activated. As another example, a university may
offer a double major program that can be
represented as a composite requirements document
defined and assembled from existing documents.

REFERENCES

Abiteboul, S., Benjelloun, O., Manolescu I., Milo, T.,
Weber, R., 2002. Active XML: peer-to-peer data and
web services integration (demo), in Proceedings of
VLDB.

Major

Select sum(cr hrs)

Figure 7: Graduation requirements as a GSQT

select all
required courses

select all
courses taken
by student x

Q(v10) ÷ Q(v11)select *
where course taken
is 23.205 or 23.206

by student x
from ...

from external source

V(v8) =

v0

v1 v2 v3

v4 v5

v7
v8

v9

v10 v11

Q(v10): Q(v11):

Q(v7): Q(v9):Q(

V(v4) = πSTUDENT NUM(V(v7)) V(v5) = πSTUDENT NUM(V(v8))
v6 V(v6) = πSUM(V(v9))

V(v0) = V(v1) ∧ V(v2) ∧ V(v3)

V(v1) = f(x, V(v4))

V(v2) = f(x, V(v5))

V(v3) = g(V(v6))

WEBIST 2005 - INTERNET COMPUTING

30

Bonifati, A., Ceri, S. and Paraboschi, S., 2001. Active
rules for XML: A new paradigm for E-services, in
VLDB Journal, 10, 39-47.

Business Rules Group, July 2000. Defining business rules:
What are they really?, 3rd edition,
http://www.businessrulesgroup.org.

Elmasri, R. and Navathe, S. B., 2003. Fundamentals of
database systems, Addison-Wesley, 4th edition, ISBN
0321122267.

Lee, J. K. and Sohn, M. M., May 2003. The extensible
rule markup language, in Communications of the
ACM, 46(5).

Ross, R. G., 1997. The business rule book, Business Rule
Solutions, Houston, 2nd edition, ISBN 0941049035.

XML.org, retrieved January 2005, from http://XML.org

XML-BASED EVALUATION OF SYNTHESIZED QUERIES

31

