
A MICROKERNEL ARCHITECTURE FOR DISTRIBUTED
MOBILE ENVIRONMENTS

Thomas Bopp, Thorsten Hampel
Heinz Nixdorf Institute,University of Paderborn, Fuerstenallee11, Paderborn, Germany

Keywords: Microkernel, Distributed Objects, Peer-to-Peer, CSCL.

Abstract: Microkernels are well known in the area of operating systems research. In this paper we adapted the concept
of microkernel to the field of Computer Supported Cooperative Work and Learning (CSCW/L) to provide a
basic underlying architecture for various collaborative systems. Such architecture serves well for the fields
of mobile and distributed collaborative infrastructures with its new inclusion of small mobile devices and
ad-hoc network structures. Our architecture provides a distributed object repository for an overlay network
of CSCW/L peers. Nodes can dynamically join and leave this network and each peer is still autonomous. In
this network different kinds of peers exist depending on the module configuration of a system. So-called
super-peers with lots of storage and computing power provide gateways to the network (for example
HTTP).

1 INTRODUCTION

While the World Wide Web is still the standard way
of accessing documents in the Internet, various new
applications are created for communication and
collaboration. In particular, the emergence of Peer-
to-Peer systems with the pioneers of Napster and
Gnutella reduced the gap of consumers and
producers. Everyone can bring their own content
into the peer-to-peer network and share it with other
users. Instead of the classic client/server
infrastructure we now have a collaboration of equal
partners.
 Furthermore the Internet has grown from
machines with a permanent connection at the office
to users at home connecting temporarily to the
Internet. The latest developments are wireless
networks where users can connect with notebooks
and personal digital assistant (PDA). Instead of a
communication to a central server there is also the
possibility to communicate with another device in
close proximity.

As another development more and more smaller
mobile devices come into the focus of the users.
Mobile devices lack resources such as memory and
computing power required for existing centralized
architectures.

In this paper we present a microkernel
architecture to support different kinds of
environments. On one hand there are static
environments with machines with good processing
power and in general a lot of resources to be used by
an application. On the other hand there are also
networks without a permanent connection to the
Internet and there are nodes joining and leaving that
network dynamically. Each of these nodes might
have varying processing power and storage capacity.

As a common underlying architecture for
applications on different devices the microkernel at
first offers functionality to load, exchange, and
remove modules. Appropriate modules will provide
all other necessary functionalities.

The core components of our architecture support
interaction, offer persistence of objects and provide
security. Using protocols like JXTA the different
nodes build an overlay network where different
peers are in contact with each other. Each node of
this network can have a different configuration
though and we can roughly distinguish between two
types of peers:

• Devices on users’ site connecting to the
network

• Server machines with huge storage and
processing capacity

To make all devices in the network work
together it is necessary to meet the requirements of

151
Bopp T. and Hampel T. (2005).
A MICROKERNEL ARCHITECTURE FOR DISTRIBUTED MOBILE ENVIRONMENTS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 151-156
DOI: 10.5220/0002545101510156
Copyright c© SciTePress

the ones with limited resources. The microkernel
allows different module configurations and therefore
the same software is able to run on the different
devices.

The main reasons for microkernel architecture
instead of a monolithic system can be identified as:

• Use of resources: Mobile devices have less
processing power and disk capacity than
large server systems.

• Extensibility: The modular architecture
allows flexibility in adding new modules and
replacing existing ones.

• Maintainability: The components (modules)
of the system can be maintained separately.
Each server administrator can maintain his
own server.

• Configurability: On different platforms the
system can be configured with different
modules.

• Alternative communication infrastructure
and mobility: The architecture does not rely
on a central communication infrastructure. In
particular, ad hoc communication as part of
mobile scenarios is now possible.

• Security: The module concept allows
different security modules to run on the same
system and interact with each other. Each
server can set its security policies.

• Platform independence: The system is
independent from the operating system. This
means the same software can be used in
different environments.

Our recent conceptual approach in the field of
Computer Supported Cooperative Work and
Learning (CSCW/L) has been to build cooperative
knowledge spaces. As one implementation the result
is a monolithic client/server system called sTeam
(Hampel and Bopp 2003). The idea of this system is
to combine document management facilities with a
room metaphor in collaborative knowledge spaces.

Although in our system there is some basic
support for modules, it fulfils part of the criteria
above and will not run on small devices like PDA.
Each sTeam server uses a local database and is not
able to use different persistence layers.

Apart from that it is our goal to connect rooms of
different servers. Therefore our first solution was an
enhancement of our monolithic server architecture
by creating a new type of inter-server object called
“shadow” (Bopp et al, 2004). Unfortunately the old
server architecture needs a fundamental redesign to
be able to transparently connect these rooms.

Due to the shortcomings of a monolithic system
we developed a new underlying architecture. This
architecture has been designed to be as simple as
possible in order to make it understandable for a
larger Open-Source development Community.

This paper will outline the main characteristics
of this Microkernel-based architecture for both
mobile peer-to-peer scenarios and multi-server
approaches.

First we briefly present some related work. The
Microkernel itself is described in section 3. At the
end of the paper we present some important modules
and how a distribution of object can be achieved.

2 RELATED WORK

A kernel is the essential part of a system. It is
responsible for allocating resources, security and
other crucial tasks.

A microkernel (Rashid et al, 1989) is a kernel
that consists of the minimum required functions to
run a system. All additional functionality is moved
into modules, which are dynamically loaded by the
kernel.

The concept of microkernel is common in the
area of operating systems. The idea of this work is to
adapt this concept to the area of computer supported
cooperative learning and working.

The JADE project (Oliveira et al, 1999) has
taken a quite similar approach for the area of
graphical virtual environments. The Java-
Implementation guarantees platform independency
and makes it possible to run the software on
different devices. The microkernel manages
modules, which are executed in the context of their
creators. Therefore each module can has different
permissions.

Another important concept of the JADE
microkernel is the communication design. It
provides three possibilities:
• Passive Communication: Objects provide static

methods for invoking the functionality.
• Local Events: Objects are subscribing to events

inside modules and modules are also able to
subscribe events inside any object or other
modules.

• Central Events: There are central instances
keeping track about any event. It is possible for
modules to subscribe to central events and
therefore be notified about everything.

Maverik (Hubbold et al, 1999) is a GNU Project
similar to JADE, but is implemented using the C
language. It is a platform for large-scale applications
of virtual reality. Even though the system runs on
different operating systems, there is no general
platform independence. Another microkernel
architecture for virtual environment is Bamboo
(Watsen and Zyda, 1998), which is written in the
C++ language.

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

152

All of the microkernels above are designed for
graphical virtual environments. Therefore the kernel
includes a lot of predefined functionality for this
context. Due to that they are not working on mobile
devices like PDA.

Also the MadKit agent infrastructure (Gutknecht
et al, 2001) is based on a microkernel approach. It
offers an underlying agent platform, which is able to
integrate different agent architectures. At its core it
offers some agent-specific functionality like the
control of local groups and roles and agent-lifecycle-
management. It launches agents and assigns them
global unique identifiers. Apart from that the
message passing between local agents is handled by
the microkernel.

OceanStore (Kubiatowicz, 2000) is a peer-to-
peer cooperative file system. It is object based and
objects are replicated. This replicas are called
floating replicas because they are independent from
a server and might be moved from one server to
another. The system creates an overlay network
where users can access the content of all the nodes
in the network.

Even though Eclipse is known as a JAVA
development tool, it is also a microkernel-based
architecture. It provides a plug-in management,
which resolves dependencies between different plug-
ins. The system is not suited for a CSCW-
microkernel, because it loads some core modules by
default. Those are responsible for the user-interface,
which is not needed by all peers in a peer-to-peer
network. Also it is too resource hungry to run on
mobile devices like PDA, because it is a Java-AWT
interface. Apart from that the eclipse system
includes a lot of important concepts, which have
been integrated into our microkernel architecture.

3 MICROKERNEL
ARCHITECTURE

The microkernel is the core component of our room-
based CSCW/L-System. Its functionality is
minimized to load and configure modules. As the
second main function it provides the object class as
the core class of an object-oriented system. Apart
from that there is basic network support to open
ports and connections with different protocols to
other hosts.

Figure 1 shows the kernel with different modules.
Beside the module manager there is persistence and
network support. The communication between the
kernel and the modules is handled by events (a
detailed description of the event system can be
found in the next section).

The resulting application is defined by the set of
modules configured. The minimum configuration

Figure 1: Microkernel

consists of a persistence module, at least one
protocol and a security module.

When loading the modules of the application, it
is important to determine an order for the load
process, because of dependency. The Eclipse
Framework offers a comprehensible plug-in
mechanism: modules can require each other or
extend others. This model has been adapted for our
architecture. Each module has its own configuration
file to define dependencies between different
modules. For example there might be a file
persistence module for storing objects in the local
file system. Furthermore there could be a persistence
module, which provides a database for storing the
objects. Both modules would extend the basic
persistence layer.

The persistence manager of the microkernel is
able to deal with several persistence modules. Those
modules can use a database or other locations to
store objects. The system is also able to provide
objects for external clients using protocols like
JXTA. The result is a remote persistence module
that works on the resources of another node. In this
sense the other node provides a repository for
objects. So there is a remote persistence module on
the one side and a repository on the other. The
repository is just another view on the objects of that
node. This is called a network view and is derived
from the basic view module. In a classical sense, a
view represents a graphical display of the objects
(see Krasner and Pope 1988).

The overlay network is created using this
functionality. Each node can have its own repository
of objects and provide them to other nodes, which
access objects by a special kind of persistence layer.
This remote persistence works in the same way as
any other persistence module, but needs to keep
connections to other nodes of the network. If every
object is accessible within the network the nodes
build a shared space. Any node can access any

A MICROKERNEL ARCHITECTURE FOR DISTRIBUTED MOBILE ENVIRONMENTS

153

object (of course permissions are checked) in the
network and due to that it is possible to transparently
move through the shared object space.

Figure 2 illustrates the idea of the shared object
space with some peers and one super-peer (Mizrak
et al, 2003), which contain more storage space and
some additional protocols. Due to that it also
functions as a gateway and provides access to the
whole shared object space to external users (for
example using a Browser to access objects).

Due to the different module configurations of the
nodes, each node can provide varying functionality.
In general we distinguish between two types of
nodes:

• Static Nodes: typically on machine with
static IP; they provide lots of functionality
and consist of many objects since there have
large capacity; they are similar to classic
servers.

• Dynamic Nodes: with changing Internet
address; they provide varying functionality
depending on the device and application; the
minimal functionality is to work as an object
broker and provide communication with
other nodes.

Although in a peer-to-peer network all peers are
equal and should have the same functionality, the
two classes above are acceptable. The first class of
nodes offers the same functionality as the second
class, but in addition provides more capabilities.
Those nodes can be called super-peers. They offer a
gateway into the network with different protocols.
For example a device with limited resources, like a
PDA, might not be able to offer a HTTP-Server.
Super-peers provide this kind of functionality. Apart
from that they have a static IP address and allow
other nodes to build their initial connection to the
network.

In order to make the microkernel run on all
different devices, it needs to be platform
independent. This can be accomplished by using
JAVA (or any other platform independent language)
as the programming language. With the possibility
of different module configurations the kernel is
scalable to use different resources and thus works on
devices with small resources. On a PDA the
persistence layer could use a memory card and
provide basic functionality for storing and retrieving
objects.

The speed of the JAVA language compared to
compiler languages like C or C++ is not such an
important issue, because the design of the network
with sharing of processing power and storage
capacity of the different nodes distributes the load
on the nodes. Apart from that, a CSCW/L system
uses fewer resources than a graphical virtual
environment like Bamboo. The platform

independence is much more important in the context
of a CSCW-system. Moreover all critical code can

Figure 2: Shared Object Space.

be implemented as a library and imported to the
microkernel as a module.

Due to the modular design of the system it is
always possible to add new modules and thus
enhance the system. On the other hand modules can
be exchanged with different ones providing the same
interface, but working in a different way.

Good examples for this are security plug-in that
might work differently on each peer and define own
security policies. Thus any peer in the network is
autonomous and can be maintained by its local
administrator.

Since the modules are the key components of the
microkernel and define the application, the next
section will describe the most important module
types of our architecture.

4 MODULES

Modules are the key components of the CSCW/L
application. Some of them are loaded at system start-
up and some functions are called to initialize the
modules. Other modules are dynamically added to
and removed from to the system as and when
necessary.

The communication between the modules takes
place through events. The design of our event
system is similar to the JADE implementation of
events. There are local events inside any object in
the system and there are also global events. For local
events the subscriber has to specify the object and
the type of event. When the event takes place the
subscriber is notified.

The global events work quite similar, but instead
of subscribing to a single object the subscriber calls
one central event-instance, which keeps track of all
events inside the system. The subscriber is notified

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

154

about any event-type that takes place for all objects.
The subscription of events enables the modules to be
notified about all actions within the server.

In a room-based CSCW/L system, the modules
that provide persistence; offer communication using
different network protocols; and provide security are
core modules. Security modules handle permissions
for users in the context of their environment
(rooms). In particular, the possibility of using
different security modules guarantees the autonomy
of peers within the network.

The following types of modules can be found in a
CSCW/L system based on our architecture:

• Security: Provide a security layer for the
application. The security system is bound to
the event system. Since each action triggers
an event it is possible to block them and
thus a security mechanism is provided.

• Persistence: Objects need to be stored in a
database and must be retrieved at the point
of access. After a reboot of the system all
objects must be still present and no data is
lost. The types of persistence are usual a
database or a file system. A remote
persistence module allows the access of
objects on different nodes of the network.

• Views: A view displays the objects of the
microkernel in a certain way. An application
like a whiteboard offers a view of the
objects by displaying them in spatial,
synchronous view. There are also network
views, which provide the objects by some
object-oriented protocol.

• Controller: The application logic is part of
these modules. They offer various
functionalities and combine the components
of the application.

Any loaded module is just available once in the
server (a singleton). It is not possible to create
several instances of a single module. Also unlike the
objects the modules are not distributed through the
nodes of the network.

5 DISTRIBUTED OBJECTS

Our microkernel-based CSCW/L architecture uses a
fully object-oriented design with different classes.
Each object in the server can be uniquely identified
by its object id (OID). Since this id is only unique
for the local persistence layer, the id must be
extended by an id for each persistence layer. This
namespace id (NID) describes the physical location
of an object. When the persistence layer needs to
locate an object it has to identify the place where to
look for the object. Otherwise it is not possible to

uniquely retrieve the object, because the same OID
could be used in different persistence modules.

Apart from that for a globally unique
identification of an object the server ID (SID) must
also be included in the id of the object.

The attempt to generate a unique global
identification for each object is common in the area
of peer-to-peer systems. For example OceanStore
uses a GUID (global unique identifier) (Kubiatowicz
et al, 2000). It is composed from the objects name
and its owners key.

The objects are distributed through the network
and a shared object space is the result of the
combination of view and remote persistence layers.
The persistence managers retrieve objects from
remote repositories and create local replicates of
them. For the lifetime of those replicates the state is
synchronised using the event system of the
microkernel.

Any action of a user triggers events, which are
distributed through the views to the remote
persistence modules. Those events can be used for
notification about modification of objects. The local
replicates are updated accordingly.

Figure 3 shows the modification of an object as a
result of a user’s action. The persistence managers of

Figure 3: Network Views and Object Synchronisations

two servers communicate with each other using the
event mechanism.
 Apart from this the events need to be propagated
between servers to allow cooperation of users. When
synchronous cooperation takes place it is necessary
to be notified about all changes within a user’s
environment.

In this context one important concept is the use
of virtual rooms as a meeting place for users.
Besides this room-class there are some more classes
for all components of a CSCW/L system, e.g. for
Documents, Users, Groups and so on. Each of these
classes provides the same interface as the object
class. Additionally there are some special methods

A MICROKERNEL ARCHITECTURE FOR DISTRIBUTED MOBILE ENVIRONMENTS

155

for each class. For example the class Document
provides methods for storing and retrieving content.

6 CONCLUSION

This paper can only focus on some modules of our
architecture. As the core architecture is designed
around a strong object-oriented approach, all other
classes and objects are shaped to the same design
rules and architectural foundations as presented.

We have shown that the microkernel is a
reasonable concept for a CSCW/L system. With
protocols and object repository functionality it
builds an additional network layer. It works as an
underlying architecture for applications on static
servers as well as mobile devices.

Due to the java implementation with modular
functionality, it is independent of the platform and
works on almost any operating system.

Moreover our microkernel architecture supports
students with a very tight code base. All the
functionality is moved into modules with well-
defined interfaces. Due to this, it allows an open
source community to collaboratively extend the
overall architecture. E.g. it is possible to work on
just a few modules without understanding the rest of
it in detail.

Most importantly, the view/remote-persistency
pairs in our approach establish a CSCW/L overlay
network. All objects of every node in the system are
available in the shared object space. Most of them
are located at super-peers with huge storage capacity
and processing power. Those peers also provide a
gateway into the overlay network. Additionally they
provide a View for external clients like Browsers
and are also capable of accessing all objects of the
shared object space.

The shared space is also an active repository of
objects. All actions within the server are triggered
and events are propagated from one server to
another.

Current and future work focuses on the aspects
of ad-hoc communication as basis on the above
presented architecture. Here problems of replicated
and distributed objects in distributed knowledge
spaces have to be solved. Objects have to be moved
transparently for the user from one to another peer
when mobile peers are leaving or joining the
network. Concepts of mobile knowledge spaces and
persistent knowledge spaces apply. Our
microkernel-based architecture proves to offer great
flexibility in developing and evaluating these
concepts and architectures.

REFERENCES

Bopp, T.; Hampel, T.; Eßmann, B.: Connecting Virtual
Spaces. Proceedings of the ICEIS 2004, Sixth
International Conference on Enterprise Information
Systems, 475–479.

Eclipse Platform Technical Overview.
http://www.eclipse.org/whitepapers/eclipse-
overview.pdf, 2004.

Gutknecht, O.; Ferber, J.; Michel, F.: Integrating Tools
and Infrastructures for Generic Multi-Agent Systems.
Proceedings of the fifth international conference on
Autonomous agents, 2001, 441–448.

Hampel T.,Bopp T. (2003): Combining Web Based
Document Management and Event-Based Systems -
Integrating MUDS and MOOS Together with DMS to
Form a Cooperative Knowledge Space. ICEIS 2003,
Proceedings of the 5th International Conference on
Enterprise Information Systems, pages 218-223.

Hubbold, R., Cook, J., Keates, M., Gibson, S., Howard T.,
Murta, A.,West, A., Pettifer, S.: GNU/MAVERIK: A
Micro-Kernel for Large-Scale Virtual Environments.
Proceedings of the ACM Symposium on Virtual
Reality Software and Technology 1999, 66–73.

Krasner, G.E., Pope, S.T.: A cookbook for using the
Model-View-Controller interface paradigm. Journal of
Object-Oriented Programming 1(3) 1988, 26–49.

Kubiatowicz, J.; Bindel, D.; Chen Y.; Eaton, P.; Geels, D.;
Gummadi, R.; Rhea, S.; Weatherspoon, H.; Weimer,
W.; Wells, C.; Zhao, B.: OceanStore: An Architecture
for Global-scale Persistent Storage. Proceedings of
ACM ASPLOS, 2000.

Mizrak, A.; Cheng, Y.; Kumar, V.; Savage, S.:
Structured superpeers: Leveraging heterogeneity to
provide constant-time lookup. Proceedings of the
Third IEEE Workshop on Internet Applications, 2003,
104–111.

Oliveira, M.; Crowcroft, J., Brutzman, D., Slater, M.:
Components for distributed virtual environments.
Proceedings of the ACM Symposium on Virtual
Reality Software and Technology 1999, 176–177.

Rashid, R.; Baron, R.; Forin, A.; Golub, D.; Jones, M.,
Julin, D.; Orr,, D.; Sanzi, R.: Mach: A foundation for
Open Systems. In Proceedings of the 34th Computer
Society Ithe Second Workshop on Workstation
Operating Systems(WWOS2), September 1989.

Watsen, K.; Zyda, M.: Bamboo - A Portable System for
Dynamically Extensible, Real-Time, Networked
Virtual Environments. Proceedings of the IEEE
Virtual Reality Annual International Symposium
1998.

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

156

