
THREAT-DRIVEN ARCHITECTURAL DESIGN OF SECURE
INFORMATION SYSTEMS

Joshua Pauli
College of Business and Information Systems, Dakota State University, Madison, SD 57042, USA

Dianxiang Xu
Department of Computer Science, North Dakota State University, Fargo, ND58105, USA

Keywords: Software architecture, Security, Threat model, Use case, Misuse case, UML.

Abstract: To deal with software security issues in the early stages of system development, this paper presents a threat-
driven approach to the architectural design and analysis of secure information systems. In this approach, we
model security threats to systems with misuse cases and mitigation requirements with mitigation use cases
at the requirements analysis phase. Then we drive system architecture design (including the identification of
architectural components and their connections) by use cases, misuse cases, and mitigation use cases.
According to the misuse case-based threat model, we analyze whether or not a candidate architecture is
resistant to the identified security threats and what constraints must be imposed on the choices of system
implementation. This provides a smooth transition from requirements specification to high-level design and
greatly improves the traceability of security concerns in high assurance information systems. We
demonstrate our approach through a case study on a security-intensive payroll information system.

1 INTRODUCTION

Software security has been critical to information
assurance. Software security issues in information
systems are traditionally handled in an ad hoc or
afterthought (e.g. ‘penetrate-and-patch’), manner.
This offers little support for validation of desired
security properties due to the lack of a rigorous
process for security requirements analysis and
secure software design. In particular, design-level
vulnerabilities are a major source of security risks in
code. For example, design-level problems accounted
for around 50% of the security problems uncovered
during the Microsoft's "security push" in 2002
(Hoglund, 2004).

To address software risks at the design level, the
threat modeling approach centers around
determining and ranking the threats to the system
based on the decomposition of application or an
available architecture design, followed by choosing
techniques for mitigating and responding to the
threats. Since security threats, modeled by attack
trees, often involve much detail of implementation
techniques, it is not clear how the threat model can

be traced back to the application-specific security
requirements. In fact, the current threat modeling
approach does not provide any explicit way for the
elicitation and analysis of security requirements.

Misuse cases, i.e. negative scenarios or use cases
with hostile intent, appear to be a new avenue to
elicit security requirements (Alexander, 2002, 2003;
Sindre, 2001a, 2001b; McDermott, 1999, 2001;
Firesmith, 2003). Use case modeling is a proven
method for the elicitation of, communication about,
and documentation of functional requirements
(Jacobson, 1994; Bittner, 2003). The integral
development of use cases and misuse cases provides
a systematic way for the elicitation of various
system requirements, both functional and non-
functional (Alexander, 2003). A critical issue is how
misuse case based security requirements
specification can further facilitate the design and
implementation of software systems where security
is a major concern. To our knowledge, no work has
been done to meet this challenge.

This paper presents an approach to bridging the
gap between misuse case based security
requirements and high-level architecture design. On
one hand, we treat identification of security threats

136
Pauli J. and Xu D. (2005).
THREAT-DRIVEN ARCHITECTURAL DESIGN OF SECURE INFORMATION SYSTEMS.
In Proceedings of the Seventh International Conference on Enterprise Information Systems, pages 136-143
DOI: 10.5220/0002549501360143
Copyright c© SciTePress

as part of requirements elicitation and model them
with misuse cases. UML sequence diagrams (UML
2.0) are exploited to describe the decision-making
process an attacker would go through to compromise
or misuse the system. On the other hand, we drive
architecture design by dealing with the identified
security threats in the process of application
decomposition (as apposed to determining and
mitigating security threats after the decomposition in
the threat modeling approach). According to the
security threats modeled by misuse cases, we
evaluate whether or not a proposed candidate
architecture is able to resistant to the security threats
and what constraints should be imposed on the
choices of implementation techniques in order to
mitigate the threats. The treatment of security threats
in the earlier phases of system development can
reduce overall development cost due to the absence
of a variety of vulnerabilities. We also keep track of
the mapping between the use/misuse cases and the
architectural components. This makes it easier to
locate and fix security defects in later phases of
development. Moreover, since the software security
requirements are already taken into consideration in
the architecture design, the architecture specification
is an invaluable resource for detailed design,
implementation, and validation.

The rest of this paper is organized as follows.
Section 2 gives an overview of our approach.
Section 3 introduces the case study on a payroll
information system (PIS) and discusses the misuse
cases in PIS. Section 4 presents the design and
analysis of architectures for PIS. Section 5 reviews
related work. Section 6 concludes the paper.

2 THREAT-DRIVEN
ARCHITECTURAL DESIGN

Our approach places security as a primary system
goal as opposed to an afterthought or an add-on. It
starts by the elicitation of system requirements in
terms of use cases, misuse cases, and mitigation use
cases. The overall picture of the system
requirements is captured by use/misuse case
diagrams. Use cases as in (Jacobson, 1994) represent
the tasks that legitimate users perform during
“normal” usage of the system. Misuse cases depict
possible security threats that threaten the normal use
cases of the system. These are the threats that an
attacker may pose to the system to violate security
properties, such as confidentiality, privacy, and
availability. Mitigation use cases indicate the means
for mitigating corresponding misuse cases. Different
from existing work on misuse cases (Alexander,
2002, 2003; Sindre, 2001a, 2001b; McDermott,

1999, 2001), we also model the decision-making
process an attacker would go through to compromise
or misuse the system. UML 2.0 sequence diagrams
are used as a modeling tool for this purpose. The
modeling of attack processes is critical to evaluating
whether and to what extent a software architecture is
resistant to security threats.

Once the requirements are available, we
decompose the tasks into a list of fundamental
services that the system must produce. These
services are the basis for identifying components of
which a candidate software architecture will be
made. It is necessary to check for any overlapping
system tasks, though. If any are found, consolidate
the like tasks into one task that covers all the actions
of the consolidated tasks. Once a complete list of
unique system tasks are in place, identify each
system task as either direct (no changes needed to
the components involved) or indirect (changes
needed to the components involved). If a component
is indirect, then list the components affected and the
changes that need to be made. (Often times these
will be abstract in nature.) A candidate architecture
is formed by including the identified components
and configuring the connections among the
components. To support traceable design and
analysis, our approach uses a table to keep track of
the mapping between the use/misuse cases and the
components, as will be shown in Section 4. Given a
use case, for example, it is easy to know which
components realize the use case.

A candidate architecture is then evaluated
according to the security requirements. Specifically,
for each threat (i.e. misuse case), we check to see if
it can be prevented in the candidate architecture, and
if not, what constraints must be imposed on the
selection of implementation techniques to mitigate
the threat. Based on the evaluation of different
candidate architectures, we can take all the positive
aspects from each candidate and modify them to
make the components fit together into a
comprehensible model. An important factor to
include in this step is to supply the supporting
rational for the changes that were made.

The requirements elicitation and architecture
design in the approach is part of an iterative
development process. In addition, the security
threats modeled by the misuse cases can be rated in
terms of risks, as in the threat modeling approach
(Hoglund, 2004). When limited resources (e.g.
budget and time) are available, more attention can be
paid to mitigating the threats with higher risks. This
is beyond the scope of this paper.

THREAT-DRIVEN ARCHITECTURAL DESIGN OF SECURE INFORMATION SYSTEMS

137

3 MISUSE CASES IN PIS

This section introduces a payroll information system
that could be put in place at any company. We first
describe the basic functionality of PIS and then
discuss the use and misuse cases.

The PIS provides payroll services to every
employee that works for, and is paid by, the
company. The application server, database server,
and web server are responsible for applications,
database transactions, and web access, respectively.
The possible users of the system are administrators,
users, web developers, and auditors. Each employee
must have permissions set for the databases and data
warehouse that control what information each
employee is allowed to access. Also, each employee
will be assigned an access level by his or her
superior that restricts the areas of PIS that he or she
can enter. These two measures are an effort to
control the new information that each employee can
enter and to control the stored information that each
employee can retrieve.

Each employee has different tasks or use cases
that are completed during normal usage of the
system. For example, the tasks of a payroll
administrator include managing employee
information, completing administrative tasks,
generating reports, etc. For each task, we identify if
it is associated with security issues. In addition to
normal use cases, we also identify misuse cases and
mitigation use cases. Misuse cases are use cases with
hostile intent or threats to the normal use cases.
They essentially reflect various ways of violating
desirable security properties, including privacy,
confidentiality, availability, etc. Mitigation use cases
are the means for mitigating the corresponding
threats in order to achieve the security properties.

Figure 1: The use/misuse case diagram for PIS

We have identified the use cases, misuse cases,
and mitigation use cases for the PIS. Fig. 1 shows
the overall use/misuse case diagram. Each white
oval represents a use case; either a genuine use of
the system or a mitigation effort. The black ovals
represent misuse cases that are attempting to inflect
harm onto the PIS. They indicate various ways that
misusers would plan to harm the system and the data
within it. A use case connected to a misuse case with
a dashed arrow is a mitigation use case that mitigates
the corresponding threat. For the sake of clarity, the
‘mitigates’ relations are not labeled in the diagram.

We exploit UML sequence diagrams to model
the behaviors of use/misuse cases. In particular, the
sequence diagram of a misuse case describes the
decision making process an attacker or misusers may
go through to compromise or misuse the system. As
an example, Fig. 2 shows the sequence diagram for
the “Spoof Computer ID” misuse case. Each
rectangle across the top of the diagram represents a

business role that is related to the misuse case and
the arrows represent the sequence of actions that
take place between the roles during the execution of
the misuse case. ‘Spoof Computer’ is the computer

that is portraying a valid network computer
(‘Network Machine’), controlled by the misusers,
which is sending out corrupted network traffic in
hopes that the ‘System Server’ will deem it
necessary to simply drop the valid network computer
from the network to eliminate that traffic. Once the
‘Network Machine’ has been dropped by the

Figure 2: The sequence diagram for the misuse case
Spoof Computer ID

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

138

‘System Server’, the ‘Spoof Computer’ assumes the
identity of the dropped ‘Network Machine’.

Each use/misuse case also has a textual
description as in (Sindre, 2001b). Due to the limited
space, we will not elaborate on this.

4 ARCHITECTURE DESIGN AND
ANALYSIS OF PIS

Software design is in general a heuristic process.
Given the system requirements (use cases, misuse
cases, and mitigation use cases), there exist a variety
of possible architecture designs. For secure software
design, it is important to keep in mind not only the
fundamental services that the system must include,
but also those user actions that have a heavy security
influence. For the PIS case study, we have evaluated
three candidate architectures. Due to the limited
space, this section focuses on the design and

evaluation of one candidate architecture and then
describes the recommended architecture, together
with its associated security mechanisms and
constraints.

In general, we create candidate architectures
with the following requirements in mind. 1) The
architecture should include all the main actors from
the use cases and misuse cases. For the PIS, this
would naturally include ‘Administrator’, ‘User’,
‘Web Developer’, ‘Auditor’, etc. 2) The architecture
should include the use cases that the actors

complete. Not only the “normal” use cases such as
‘Complete Administrative Tasks’ and ‘Create Web
Pages’, but also the mitigating use cases such as
‘Invoke Authentication’ and ‘Recognize Users’ for
example.

According to use/misuse cases, a candidate
architecture is formed by including the functional
components and configuring the connections among
them. Fig. 3 shows the candidate architecture #1.
Any actual piece of hardware that had a definite
purpose in the system was classified as a component
such as the firewall and data storage. Also, a group
of related functionality was also classified as a
component such as Log-On Activities, Creating the
Web Site, and Administrative Tasks. Finally, the
core functionality of the system that needed to be
explored in more detail was also classified as
separate components such as Enter Information,
View Information, Request Audit, and Request
Information. While this component identification
process is informal in nature, it is sufficient to start

the process of proposing possible architectures that
meet the overall requirements of the PIS system.

Figure 4: Components vs use/misuse cases for
architecture #1

Figure 3: The candidate architecture #1 for PIS

Fig. 4 depicts the relationship between
use/misuse cases and all the components that appear
in architecture #1. Each component is shown with an
“X” marking what use/misuse case that the
component would be part of.

To evaluate the candidate architecture, we check
to see how well it “fits” the misuse and use cases.
Before further analysis can be done, we need to do
some grouping of system tasks - a determination of
whether each use case or misuse case is direct or

THREAT-DRIVEN ARCHITECTURAL DESIGN OF SECURE INFORMATION SYSTEMS

139

indirect. A direct use case means that a normal
execution of the system will allow the use case or
misuse case to be completed successfully. An
indirect use case means that some change needs to
be made to the architecture in order for the use case
or misuse case to be completed successfully. From
the listing of changes that are needed to each
component, we can tell that certain components
obviously need more changes that others. Table 1
shows part of the tasks and needed changes.

Table 1: Tasks and needed changes

Task Direct/
Indirect

Needed Changes

Invoke
Authorization

Indirect Changes to ‘LogOnAct',
and ‘RecUsers’ to ensure
that the authorization
measures will not interfere
with logging onto the
system and will work with
the recognition of users.

Throttle
System
Requests

Indirect Changes to ‘Main’ to
ensure that the throttling
of system requests will not
interfere with normal
usage of the system.

Recognize
Users

Indirect Changes to ‘LogOnAct’,
‘Authorization’, ‘RecUser’
to ensure that the proper
measures are in place for
user recognition. i.e.
passwords,biometrics, etc)

Using the above idea, we may evaluate and

compare a number of candidate architectures. For
space reasons, we won’t elaborate on other
candidate architectures for the PIS. Here, we briefly
compare architecture #1 with another candidate
architecture (i.e. architecture #2) we have evaluated.
Architecture #2 was much more generic in numerous
components. For example, where #1 had individual
components of ‘ReqInfo’, ‘ReqAudit’, ‘EnterInfo’,
‘PayInfo’, and ‘AuditInfo’, architecture #2 simply
had the components of ‘PayInfo’ and ‘AuditInfo’.
The two latter components would have included all
the functionality of the previous five components.
Because of the vast amount of functionality involved
in the use cases dealing with all audit and payroll
information, it was determined that the final
architecture should include individual components
as stated in the first proposed architecture. Inversely,
architecture #2 proposed the components of
‘HashAuthen’, ‘FormAuthen’, and ‘ACL’ to replace
the ‘Authentication’ component in the first proposal.
These are a few examples of the differences between

the two proposed architectures for PIS. These
differences can be fully seen in the final
architectural recommendation.

Based on the evaluation and comparison of
different candidate architectures, we can recommend
one with the best fit. Obviously, this is a process that
would include many different levels of stakeholders
of the system. In reality, most systems’ architecture
ends up being a combination of the positive points
illustrated by each architectural proposal. The goal
of selecting the architecture with the best fit should
be to extract those strengths and form a final
architecture that makes the most of these strengths.
At the same time, conserving the overall
functionality of the system must also be a very high
priority.

Figure 5: Component checklist of the recommended

architecture for PIS

Fig. 5 shows a recommended component

identification checklist that lists the components and
the use cases and misuse cases that they will interact
with. The architectural diagram to show how these
components are arranged and how they may interact
is unveiled in Fig. 6, which is a UML 2.0 class
(component) diagram with ports. The ports represent
how the components interact and how the
functionality within each component is utilized
during these interactions.

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

140

Figure 6: Recommended architecture for PIS

The recommended architecture includes

characteristics of each of the previous proposals in a
way that makes the overall architecture much
stronger and more efficient. For example, it is the
opinion of this case study that using ‘Biometric
Measures’ (from candidate #2) is superior to using
‘Recognize Users’ (from candidate #1), because it
identifies the exact manner in which this architecture
will provide that level of security. Another example
is to use ‘OLAP’ (from candidate #2) instead of
‘Ad-hoc Reporting’ (from candidate #1). Again,
‘OLAP’ is more definite than simply letting the PIS
have ‘Ad-hoc Reporting’ capabilities. Another
notable inclusion is that information pertaining to
payroll information, audit information, and
requesting that information were retained instead of
grouping all these components into more generic
versions. This made it easier to illustrate the
interaction between these components in a manner
that would be understandable. Other additions
include form-based and hash-based authentication,
and access control lists (ACL) for authorization
measure.

The recommended architecture can well protect
the system from the identified possible misuses.

Table 2 shows some components that are threatened
by the misuse cases as well as what components
mitigate the threats.

Further detail is also needed for each mitigating
component to truly know what security mechanisms
are in place to protect the system. Fig. 6 shows the
recommended component interaction architecture
with a more detailed explanation of the security
mechanisms that are present in order to mitigate the
misuse cases. Table 3 shows a detailed explanation
of the security mechanisms that are in place for each
mitigating component in Fig. 6.

Table 2: Misuse cases, threatened components and

mitigating components
Misuse
Case

Threatened
Components

Mitigating Components

Main FireOp, ACL
LogOnAct IPRestrict, BioMet

Spoof
ID

Admin Tasks FireOp
LogOnAct IPRestrict, BioMet
PayInfo ThrottleReqs, HashAuthen,

FormAuthen
AuditInfo ThrottleReqs, HashAuthen,

FormAuthen

View
Payroll
Info

DataWare ThrottleReqs, HashAuthen,
FormAuthen

Launch
DoS
Attack

ReqAudit
ReqInfo
WebBrow

ThrottleReqs,
FormAuthen,
FireOp

THREAT-DRIVEN ARCHITECTURAL DESIGN OF SECURE INFORMATION SYSTEMS

141

Table 3: Security mechanisms for mitigating components
Com-
ponent

Security Mechanisms

BioMet Biometrics use physical attributes of an
individual to initiate three approaches of
protection.
Physical access to resources (logging in)
Entitlement to resources (privileges)
Recording of forensic information (to use
at a later date)

IPRetrict IP Restrictions are a feature of Internet
Information Services (IIS). Any part of a
website can be limited so that only certain
IP addresses, subnets, and DNS names can
access it. Once a user logs into the system,
they are only allowed to access certain
parts of the site.

ACL Access control entities (ACEs) contain
what a user can do within the system (read,
write, create)
The access control list (ACL) is referred to
once a user has begun the authentication
process. An access check is performed
against the ACL when a user requests a
system resource.

FireOp A firewall controls communication (flow
of packets) to and from a group of
networked machines. Based on rules, the
firewall determines what is allowed to
reach the machines. Firewalls can also
modify packets that pass through the
network to disguise the address of the
machines behind the firewall.

Throttle
Reqs

Throttling requests is a measure that aims
to simply reduce the number of requests
made to the system. A small number of
anonymous requests are allowed. A large
number of authenticated requests are
allowed.

Hash
Authen

The main goal of hash-based
authentication is confidentiality. This is
realized by passing data through a
cryptographic function called a hash.
This process yields a relatively small value
that uniquely identifies the original data.
The hash tells nothing about the data; it
simply uniquely identifies it. Tampering is
combated by comparing the hash attached
to the data with a newly computed hash of
the same data. If a match occurs, the
original data has not been tampered with.

Form
Authen

Forms-based authentication is generally an
application-specific implementation. This
process takes places over a secure SSL/
TLS connection.
Login information for each user is stored
in a database or XML configuration file.

5 RELATED WORK

Threat modeling (Hoglund, 2004) is a sound
approach to addressing software risks at the design
level. Based on the decomposition of application, it
evaluates the threats and risks to a system and
chooses techniques to mitigate the threats. Security
threats are modeled by attack trees, which describe
the decision-making process attackers would go
through to compromise the system. To make the
current threat modeling a rigorous engineering
process for engineering secure information systems,
the missing link is an explicit way for security
requirements elicitation and a smooth, traceable
transition from security requirements to system
design. From this perspective, our work is obviously
different from the threat modeling approach. Our
approach deals with threat identification and
mitigation during the requirements phase rather than
the design phase. The security requirements are
addressed throughout the process of architecture
design and analysis.

Sindre and Opdahl proposed misuse cases as the
inverse of use cases to model system behavior that
should be avoided (Sindre, 2001a). A misuse case
can be defined as a completed sequence of actions
which results in loss for the organization or some
specific stakeholder. They identified several
relations between ordinary use cases and misuse
cases, such as includes, extends, prevents and
detects. Also they have proposed a general template
for misuse case description (Sindre, 2001b).
Alexander discussed a variety of applications of
misuse cases beyond security requirements
elicitation, such as eliciting general “-ility”
requirements, exceptions, and test cases (Alexander,
2003). Misuse cases are also useful for the trade-off
analysis, the goal of which is to enable stakeholders
to make an informal and correctly-based judgment in
a possibly-complex situation (Alexander, 2002).
Employing a use/misuse case representation may
make such a judgment more likely if it helps people
to visualize the structure of the situation accurately,
and in a way that emphasizes the essential points of
conflict that create the need for a trade-off.
McDermontt and Fox introduced a similar notion,
called abuse cases, for security requirements
analysis (McDermontt, 1999) complete abuse case
defines an interaction between an actor and the
system that results in harm to a resource associated
with one of the actors, one of the stakeholders, or the
system itself. A DAG structure, similar to attack tree
in penetration testing, was used to describe abuse
cases. McDermott further applied the abuse case
based approach to the construction of an assurance
argument as a collection of abuse case refutations
(McDermontt, 2001). Obviously, the above work has

ICEIS 2005 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

142

focused on the elicitation of security requirements; it
has nothing to do with the transition from
requirements and architectural design and analysis.

Determining the extent to which a proposed
software system meets desired quality criteria is
desirable for a decent software development process.
Kazman et al proposed a scenario-based analysis of
software architecture (Kazman, 1996). Scenarios are
used to express the particular instances of each
quality attribute important to the customer of a
system. The architecture under consideration was
analyzed with respect to how well or how easily it
satisfies the constraints imposed by each scenario.
The approach consisted of several steps: 1)
describing candidate architecture; 2) developing
scenarios; 3) performing scenario evaluations; 4)
revealing scenario interaction; and 5) performing
overall evaluation. Kantorowitz et al designed a
framework for use case-oriented software
architecture, which enables a “direct” manual
translation of sufficiently detailed natural language
use case specifications into code (Kantorowitz,
2003). Using this framework, the produced software
centers around use case components that implement
the different use cases of the application. While we
were motivated by the work along this line, our
focus is on dealing with security concerns at the
level of misuse case-based software architecture.

6 CONCLUSIONS

We have presented the threat-driven approach to the
design of secure software architecture, where threats
are modeled by misuse cases. The findings of the
architectural analysis can be used in detailed design
of the system and in validation of the system
implementation. Also, the architectural analysis can
be re-visited at anytime to get a better understanding
of the underlying architecture or to clear up any
confusion amongst system developers. Dealing with
security issues in the earlier phases of software
development lifecycle can make a system more
resistant to vulnerabilities.

Designing software architecture is often a
heuristic process even if the requirements
specification is available. To make our approach
rigorous, we are investigating the formalization of
use cases, misuse cases, mitigation use cases, and
architectural design. This will allow us to gain high
confidence in the system by disproving the existence
of identified threats in the architectural design.
Another aspect of future work is enhancing the
approach with the capability of tradeoff analysis for
conflicting functional and security requirements that
often exist in real-world information systems. As an

integral part of the architecture design process, the
tradeoff analysis is of importance for recommending
a software architecture for detailed design.

ACKNOWLEDGMENTS

This work was supported in part by the NSF under
grant EPS-0132289.

REFERENCES

Alexander, I. 2002. Initial industrial experience of misuse
cases. In Proc. of IEEE Joint International
Requirements Engineering Conference, pp. 61-68.

Alexander, I. 2003. Misuse cases: Use cases with hostile
intent. IEEE Software, pp. 58-66 (January/February
2003).

Bittner, K. and Spence, I. 2003. Use case modeling,
Object Technology Series, Addison-Wesley, 2003.

Firesmith, D. 2003. Security use cases. Journal of Object
Technology, Vol. 2, No. 3, 53-64. (May-June 2003).

Hoglund, G. and McGraw, G. 2004. Exploiting software:
How to break code. Addison-Wesley.

Howard, M. and LeBlanc, D. 2003. Writing secure code.
Microsoft Press. 2nd edition,

Jacobson, I., Christerson, M., Jonsson, P., and Overgaard,
G. 1994. Object-oriented software engineering: A use
case driven approach. Addison-Wesley, 1994.

Kantorowitz, E., Lyakas, A., and Myasqobsky, A. 2003.
Use case-oriented software architecture. CMC03.

Kazman, R., Abowd, G., Bass, L., and Clements, P. 1996.
Scenario-based analysis of software architecture. IEEE
Software. pp.47-55, November 1996.

McDermott, J. 2001. Abuse-case-based assurance
arguments. In Proc. of the 17th Computer Security
Applications Conference (ACSAC'O1). New Orleans
LA USA, pp. 366-374.

McDermott, J. and Fox, C. 1999. Using abuse case models
for security requirements analysis. In Proc. of the 15th
Annual Computer Security Application Conference,
pp. 55-66.

Sindre, G. and Opdahl, 2001a. A.L. Eliciting security
requirements by misuse cases. In Proc. of TOOLS
Pacific 2000, pp. 120-131.

Sindre, G. and Opdahl, A.L. 2001b. Templates for misuse
case description. In Proc. of the 7th International
Workshop on Requirements Engineering, Foundation
for Software Quality (REFSQ’2001).

Swiderski, F. and Snyder, W. 2004. Threat modeling.
Microsoft Press.

UML 2.0. http://www.uml.org/
Viega, J. and M., Gary. 2002. Building secure software:

How to avoid security problems in the right way.
Addison Wesley, 2002.

THREAT-DRIVEN ARCHITECTURAL DESIGN OF SECURE INFORMATION SYSTEMS

143

