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Abstract. Several important pattern recognition applications are based on feature 
extraction and vector clustering. Directional patterns may be represented by rota-
tion-variant directional vectors, formed from M features uniformly extracted in M 
directions. It is often required that pattern recognition algorithms are invariant under 
pattern rotation or, equivalently, invariant under circular shifts of such directional 
vectors. This paper introduces a K-means based algorithm (Circular K-means) to 
cluster vectors in a circular-shift invariant manner. Thus, the algorithm is appropri-
ate for rotation invariant pattern recognition applications. An efficient Fourier do-
main implementation of the proposed technique is presented to reduce computa-
tional complexity. An index-based approach is proposed to estimate the correct 
number of clusters in the dataset. Experiments illustrate the superiority of CK-
means for clustering directional vectors, compared to the alternative approach that 
uses the original K-means and rotation-invariant vectors transformed from rotation-
variant ones.  

1   Introduction 

Texture analysis and object recognition have attracted great interest due to their large 
number of applications, including medicine, remote sensing [13], and industry. The term 
object may either be used to describe high level structures such as a vehicles or build-
ings, or low level image components such as edges or junctions. Both texture analysis 
and object recognition may require that the image be segmented into several regions. In 
general, the first step in the segmentation process is feature extraction. More specifi-
cally, multiple features are extracted from different image regions to form vectors repre-
senting those regions. Vector clustering [1]-[7] is usually the second step in the process. 
Similar vectors may correspond to similar regions, therefore clustering results in a seg-
mented image. Generally, it is desirable that the segmentation process is invariant under 
image rotations, rotation invariant features may be needed. Such invariance is usually 
achieved by transforming rotation variant vectors into rotation invariant vectors. In this 
approach, M features, {fm, m = 0, 1,…, M – 1},  may be uniformly extracted from M 
directions defined by the angle θm = 360om/M to form a rotational variant M-
dimensional vector Fd = [f0, …, fM-1]. Traditionally, this feature vector may be trans-
formed into a rotational invariant vector [8]-[11]. The problem with transforming rota-
tion variant to rotation invariant feature vectors is that such a transformation results in 
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some loss of information. For instance, consider the Discrete Fourier Transform 
(DFT) coefficient magnitudes |DFT{Fd}| of vector Fd defined above. These coeffi-
cients are invariant under image rotation by increments of 360o/M, since such a rota-
tion causes a circular shift of vector Fd. Some preprocessing [8] may achieve invari-
ance of the DFT magnitude coefficients under any rotation. However, useful DFT 
phase information is ignored.  

An impractical solution to the problem of information loss would be to examine 
all possible circular shifts for all vectors, and determine the best vector-grouping case 
regardless of the shift. On the other hand, rotation invariance can be effectively 
achieved by clustering the original feature vectors Fd using a circular-shift invariant 
clustering algorithm that causes no information loss. This paper introduces an algo-
rithm, namely Circular K-means (CK-means), for clustering vectors with directional 
information, such as vector Fd in a circular invariant manner. Furthermore, an efficient 
Fourier domain representation of CK-means is presented to reduce computational 
complexity. An index based approach is proposed for estimating the correct number 
of clusters (CNC). The performance of CK-means has been tested on textural images.  

The paper is organized as follows: In Section 2, the CK-means clustering algo-
rithm is introduced. Section 3 presents examples to demonstrate the effectiveness of 
CK-means. Finally, Section 4 closes with some concluding remarks. 

2   Circular-Shift Invariant K-means 

First, the distance measure used by the technique and the algorithmic steps are pre-
sented. Then, the computational complexity of the algorithm is discussed. 

2.1   Development of the Distance Measure  

In the following, vectors and matrices are lowercase and uppercase, respectively. The 
vector or matrix superscripts specify its dimensions. For instance, XNM is a matrix of 
size N × M, while xN is a vector of size N. A vector is defined as a single column. 

The novel distance measure introduced here is based on Mahalanobis distance 
(MD). The commonly used Euclidean distance is a special case of MD. The square of 
the MD between a vector and a centroid  ml

N is defined as N
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where superscript T denotes transpose, index l identifies the l-th cluster, index j iden-
tifies the j-th data vector, and is the inverse of the l-th cluster’s covariance ma-
trix . In order to calculate the minimum MD between and ml

N, with respect to 

all circular shifts of vector , the following circulant matrix is constructed: 
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Operator * corresponds to circular convolution. Then, the square of the MD for N 
possible circular shifts of vector is defined as N

jx

{ } NN
l

NN
l

N
l

N
l

NN
l

NN
j

NN
j

NN
l

NN
j

N
lj diag 1)()(2)( TTT
, mKmmKXXKXd +−=               (5)  

where diag{YNN} is defined as a column vector consisting of the N diagonal elements 
of YNN, and  is an all-ones vector. Let and parameter bl be defined as N1 N
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These are constant for a given centroid and covariance matrix. Thus, can be ex-

pressed as 
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Based on the previous equation, the cross-correlation vector between vectors and 

, , is defined as 
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The cross-correlation can be calculated using the Fourier Transform (FT): N
j,lr
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where operator ° corresponds to element-wise multiplication, while ℑ(xN), ℑ-1(xN) are, 
respectively, the N-point FT and Inverse FT operators on vector xN. Furthermore, 
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where superscript H denotes Hermitian transpose, FNN is the N × N FT matrix, where 
F(i,m) = e–2πj(i-1)(m-1), while ℑh(XNN) and ℑv(XNN) are, respectively, the N-point FT 
operators applied on XNN row- and column-wise. 
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Equation (10) uses the property [8] that since is circulant the matrix products 

 and  result in a diagonal matrix representing, respectively, 

the FT and the conjugate FT coefficients of . Another property used in equation 

(10) is that if a matrix YNN is left multiplied with a diagonal matrix ΛNN, the product 
YNNΛNN is equivalent with the element-wise multiplication of the diagonal elements 
of ΛNN with each row of YNN. Similarly, the product ΛNNYNN is equivalent with the 
element-wise multiplication of the diagonal elements of ΛNN with each column of 
YNN. Therefore, the minimum distance square between and is: 
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and is circular-shift invariant. Based on the previous discussion, the j-th pattern is 
assigned to the cluster that provides the minimum distance measure: 

{ }ljlj DD ,min=                (15) 

2.2   CK-means 

Essentially, CK-means employs a circular-shift invariant distance measure to assign 
each vector to a cluster. Then, each one of the vectors associated to a particular clus-
ter is shifted by the shift that minimizes its distance from this cluster. Finally, the 
centroids and covariance matrices are updated (using the shifted vectors) as in the 
traditional K-means algorithm. Next, the steps of the CK-means are presented: 

a. INITIALIZATION (Iteration 0): Calculate (equation (11)) only once since it 
is iteration independent. Also, initialize the centroids and covariance matrices.  

NN
jΦ

b. Iteration t:  
1.  Calculate , and bl, for l = 1, …, L, once, in the beginning of each 

 iteration, since they remain unchanged in a single iteration. 
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2.  For each vector  and l-th cluster, calculate Dj,l as in equation (14).  N
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where Jl is the total number of vectors associated to the l-th cluster, and jl 
identifies vectors associated to the l-th cluster. 
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5.  Stop if the measure Dsum =∑ does not decrease more than a specified 

threshold. Otherwise, go to step b.1. 
=

J

j
jD

1

It can be shown that the proposed algorithm converges since Dsum is reduced in each 
iteration: Step b.3 minimizes equation (14) for each individual pattern with respect to 
cluster and circular shift. Furthermore, similarly to the traditional K-means, step b.4 
reduces the total distance Dsum between vectors and corresponding cluster centers.  

2.3   FFT-based Implementation and Computational Complexity 

The computational complexity of the distance defined in equation (15) can be re-
duced using a Fast Fourier Transform (FFT) approach. A Radix-2 FFT requires vec-
tor lengths N equal to a power of 2. If this condition is not satisfied, a modification 
can be applied to equation (10), so that the operation can be performed with an 

Inverse FFT. Consider the N-point FT of a vector vN: 
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be interpolated by appropriate zero-insertion in , followed by the Inverse FT. 
Zero-insertion can be defined by the column-wise operator : 
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where M = 2µ, and represents an all zeros column vector of size N. Thus, if the 
inverse FT is applied on vector

N0
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v
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which is an interpolated version of vN. Similarly to equation (18), each column of 
in equation (13) can be zero-inserted to obtain the M × N matrix: NN
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Then, the  operation in equation (10) can be implemented using an Inverse FFT. 
Matrix 

1−ℑh

{ }MN
ljh ,

1 P−ℑ  is also zero-inserted row-wise, to obtain 

{ }{ }TT
,

1
,

MN
ljh

MMM
lj PP −ℑ∆=                    (20) 

Finally, using an FFT for operator  in equation (10) is not crucial, since only the M 
diagonal elements of the resulted M × M matrix are needed. Furthermore, the autocor-
relation of equation (9) can be calculated as 
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Based on the previous discussion, equation (10) can be expressed as  

{ }{ }MM
ljv

N
lj diag ,, Pe ℑ=                (22) 

37



Considering that there is a reasonably large number of iterations, step a. of the algo-
rithmic description in Section 2.2 does not require significant additional processing 
time. Similarly, step b.1 is only performed once for every iteration.  

Step b.2. requires calculation of equations (21) and (22). Equation (21) requires N 
multiplications for the element-wise vector product and M⋅log2M operations for the 
Inverse FFT. Equation (22) requires calculation of equations (13) and (20), which 
require, respectively, 2N multiplications for the element-wise matrix products, and 
N⋅M⋅log2(M) operations. The FT in equation (22) is needed only for the diagonal 
elements of the resulted matrix, thus it requires approximately M2 operations. All 
above calculations are required for each iteration, and for all combinations of J vec-
tors and L clusters. The computational complexity for step b.4 is O{J⋅M2}. Thus, the 
complexity is O{ J⋅L⋅N⋅M⋅log2(M)}. For Euclidean distance, it can be shown that the 
complexity is O{ J⋅L⋅M⋅log2M}. The complexity of the traditional circular variant K-
means algorithm is O{J⋅L⋅N2} for Mahalanobis and O{ J⋅L⋅N} for Euclidean distance. 

2.4   Estimating the Actual Number of Clusters (ANC) 

In this paper, the technique for estimating the ANC introduced in [9] is tailored to the 
proposed CK-means algorithm. The algorithm selects the number of clusters based on a 
modified version of the Variance Ratio Criterion (VRC) index, the Circular-Invariant 
Variance Ratio Criterion (CIVRC) given by:  
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where BCDL is the “between clusters distance”, WCDL is the “within clusters dis-
tance”, J is the total number of vectors, and L is the number of clusters.  The “within” 
and “between” cluster distances considering L clusters are defined as:  

                                                                    (24) { }
1 1

for clusters
L N

NN
L l l

l j
WCD J diag L

= =

=∑ ∑ C
 

BCDL = TD – WCDL                                                 (25) 
 
where                         (26)  { }1

1
for one cluster

N
NN

j
TD J diag

=

= ∑ C

and Jl is the number of vectors associated to the l-th cluster. Considering different 
numbers of clusters L, the estimated number of clusters is the one that maximizes 
CIVRCL.  TD measures the “extent” of the vector set in N-dimensions. Since CIVRCL 
is proportional to BCDL /WCDL = TD/WCDL –1, TD acts as a normalization factor.  

3   Experimental Results  

The algorithm is evaluated on a texture clustering problem. Textural energy features 
are extracted from eight different textures of size 512 × 512. A directional exponen-
tial filter g(i,m) is chosen to extract energy features in several orientations: 
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where and are the horizontal and vertical variances of the Gaussian envelope. 
The oriented texture energy at location (i,m) is defined as: 
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where 
g

I ϕ is the image filtered by the exponential filter oriented at direction ϕ, and 

parameter WE is the window size. In order to avoid dependence on image contrast, the 
normalized energy was used: 
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is the total energy over all directions. Energy vectors are extracted from texture 
blocks of size WE × WE (here WE = 64). Each vector consists of the energy calculated 
uniformly in 32 orientations in the interval (θ, 180o+θ), where θ specifies the starting 
orientation in the interval. In order to evaluate the circular-shift invariant performance 
of the algorithm, feature vectors should be extracted from several rotated versions of 
the same texture. Equivalently, several feature vectors can be extracted from the same 
block considering different starting orientations θ.  

Fig. 1(a) shows texture samples from the textures used in the experiments. Fig. 
1(b) shows polar plots of eight feature vectors, one vector sample from each of the 
eight textures. In general, oriented energy feature vectors are periodic with period 
360o. In this particular case where the filters used are anti-symmetric, feature extrac-
tion results in feature vectors with period 180o.   

3.1   Percentage of Correct Clustering 

In this work, the clustering performance is measured using the Percentage of Correct 
Clustering (PCC) [14] defined as follows. Let l = 1, 2, …, L, be the index in a set of L 
known labels, and l’ = 1, 2, …, L’ be the index that identifies the l’-th cluster out of 
L’ clusters. A cluster l’ is labeled “l”, if the number of vectors labeled l, contained in 
l’, is larger than the number of vectors, also contained in l’, labeled with any other 
single label. Then, the PCC for cluster l’ is defined as: 

PCC1’ = 100 Jl / Jl’                (31) 

where Jl is the number of label l vectors in cluster l’, and Jl’ is the total number of 
vectors in cluster l’. The overall PCC is defined as 
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where J is the total number of vectors. For this experiment, all possible combinations 
of two, three, and four textures out of all eight textures are considered. The average 
PCC is found in each case. Moreover, clustering using all eight textures is performed.  

 

Texture 1  Texture 2  Texture 

Texture 4  Texture 5  Texture 

Texture 7  Texture 8 

Since only the PCC is examined here, the number of clusters is assumed to be 
equal to the ANC, which is equivalent to the number of textures from which feature 
vectors have been obtained. Table 1 presents comparison results for three different 
circular invariant approaches, namely the proposed CK-means algorithm, the original 
K-means using the FFT magnitudes of the feature vectors [8], and the original K-
means using the maximum orientation-differences [9]. A maximum orientation-
difference feature is defined as the maximum value considering all vector element 
differences for a given angular distance. In this example, angular distances of m⋅18o, 
m = 1, 2, …, 5 are used. Small angular distances do not add significant information, 
since they are expected to be small. Thus, a larger number of angular distances does 
not necessarily add to the clustering performance.  

Texture 1             Texture 2          Texture 3 

Texture 4              Texture 5         Texture 6 

 Texture 1 

Texture 7           Texture 8   

Texture 2 Texture 3 

 
 

 
  

Texture 4  Texture 5 Texture 6 
 
 
 
 

Textur  7 e
 
 Texture 8 

 
 
 

 
 

Fig. 1. (a) Samples from the textures used for the clustering experiment. (b) Polar plots of 
energy extracted in multiple orientations from a 64×64 block from each texture of Fig. 1(a). 

In Table 1, different Cluster Ratios (CR) are used. For instance, 4|3|1 indicates 
that the data set consists of vectors belonging to three clusters, one of which has 4 
parts, another has 3 parts and the third has 1 part. Similarly, 1|1|1 indicates that the 
number of vectors per cluster is the same for all three clusters. Table 1 illustrates that 
CK-means provides accurate clustering results. More specifically, the proposed tech-
nique provides 3-5% or 2-9% higher PCC than the original K-means, where the FFT 
magnitudes of the original vectors or the MODF - 5 features are used. 
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Table 1. Average percentage of correct clustering for three approaches. 

    Average PCC 
ANC CR Proposed  FFT-magn. MODF - 5 

2 1|1 99.6% 96.7% 96.0% 
2 2|1 99.7% 96.7% 94.3% 
3 1|1|1 99.1% 96.3% 90.6% 
3 4|3|2 99.6% 95.7% 90.1% 
4 1|1|1|1 98.4% 94.7% 86.3% 
4 4|2|1|1 98.8% 93.4% 91.6% 
8 1|1|…|1 93.8% 90.6% 84.4% 

3.2   Estimating the Actual Number of Clusters 

This experiment is performed for the same set of eight textures, and the results are 
presented in Table 2. Table 2 presents the average number of clusters, and the per-
centage of times each approach found: the correct ANC, one cluster different than the 
ANC, and more than one clusters different than the ANC. Table 2 illustrates that the 
proposed technique is mostly successful in identifying the correct number of clusters, 
while when incorrect, it is mostly off by one cluster. On the other hand, the FFT-
magnitude approach is correct for a significantly less number of times, while it is 
frequently off by more than one cluster.  

Table 2. Statistics from the “Number of Correct Clusters” experiment for the proposed CK-
means clustering technique, and the original K-means using the vectors’ FFT magnitudes. 

 Proposed Algorithm Original K-means 

ANC CR 
Average  
NC 

Correct  
NC 

NC =  
ANC±1 

NC=ANC±h 
h>1 

Average 
NC 

Correct  
NC         

NC= 
ANC±1 

NC=ANC±h 
h>1 

2 1|1 2.00 100.0% 0.0% 0.0% 3.20 46.7% 13.3% 40.0% 
2 2|1 2.00 100.0% 0.0% 0.0% 3.40 40.0% 13.3% 40.0% 
3 1|1|1 2.89 78.6% 21.5% 0.0% 4.54 32.1% 25.0% 42.9% 
3 4|3|2 2.88 57.1% 41.1% 1.8% 4.43 33.9% 23.2% 42.9% 
4 1|1|1|1 3.87 61.6% 35.7% 2.9% 4.69 60.0% 27.2% 24.3% 
4 4|2|1|1 3.61 42.9% 22.8% 14.3% 6.24 12.9% 24.3% 62.9% 

4   Conclusions 

This paper presents an algorithm based on K-means, namely CK-means, for circular 
invariant vector clustering. In general, one of the problems associated to the need for 
circular invariant clustering is that most feature vectors extracted from the images or 
objects under consideration are not circular invariant. Thus, a feature vector trans-
formation which provides the desired invariance characteristic is required. In most 
cases, such a transformation ignores some vector information. In this paper, it is 
shown that eliminating such information is crucial.  
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On the other hand, the proposed CK-means performs clustering in a circular in-
variant manner without eliminating information from the original feature vectors, 
other than the circular shift. Furthermore, CK-means is robust in terms of PCC and in 
terms of estimating the Actual Number Clusters. Furthermore, the computational 
complexity of CK-means is not significantly higher than that of K-means. 
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