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Abstract. This paper presents fast optimal algorithm for approximation of a
shape boundary with a polygon having minimum number of vertices for a given
maximum tolerable approximation error. For this purpose, the directed acyclic
graph (DAG) formulation of the polygonal approximation problem is considered.
The reduction in computational complexity is achieved by reducing the num-
ber of admissible edges in the DAG and speeding up the process of determining
whether the edge distortion is within the tolerable limit. The proposed algorithm
is compared with other optimal algorithms in terms of the execution time.

1 Introduction

Representation of shape boundaries is of great interest in a number of fields such as
object-based video coding, video content retrieval based on object descriptions, object
recognition etc. The efficient way to represent shape boundaries is the polygonal ap-
proximation. The optimality of polygonal representation with respect to number of ver-
tices is relevant in applications involving pattern analysis, recognition, matching and
search and retrieval because in these applications, the speed of algorithms is propor-
tional to the number of vertices of the polygon.

The classical method for polygonal approximation is the iterative refinement method
(IRM) [1][2] in which a shape boundary is recursively split into polygon edges until the
maximum deviation between the boundary and the polygon lies below a predefined
error threshold. However, IRM is not the optimal solution because it does not always
yield the minimal number of polygon vertices. Several methods have been proposed for
polygonal approximation that provide strictly optimal solutions according to a certain
optimization criterion. A scan-along algorithm for optimum polygon approximation
of planar curves that yields the minimal number of edges is presented in [3]. A dy-
namic programming algorithm for optimal polygon approximation is presented in [4].
Recently in [5], the rate-distortion optimized polygonal approximation is obtained by
formulating the problem as finding the shortest path in a single source weighted directed
acyclic graph (DAG). The optimal approaches are in general computationally intensive
and are not suitable for real-time applications. Therefore, reducing the computational
complexity of optimal approaches is very important.
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In the DAG formulation of the optimal polygonal approximatiproblem, the com-
putational complexity can be decreased by reducing the ruwiedges in the DAG.
In the sliding window method proposed in [6], the number ajeslin the DAG formu-
lation are reduced by considering only those edges from eaxtbx which lie within a
window of predefined size starting from that vertex. Howetleg ad-hoc window size
may yield sub-optimal results as demonstrated through wper@mental results pre-
sented in Section 6. Another method for reducing the edgd®iDAG formulation is
proposed in [7]. This method utilizes the fact that, as wexsalang a shape boundary,
there can no longer be any admissible edge beyond the bguscin-point at which
the edge distortion exceeds twice the value of the errostiule.

This paper presents an algorithm for optimal polygonal apipnation of shape
boundaries that yields significantly better speed-up perémce as compared to other
optimal algorithms. The main idea of the proposed algorithto reduce the complexity
associated with the computation of edge distortion in daldito the reduction of the
number of edges.

The paper is organized as follows. Section 2 states the gmobf optimal polygo-
nal approximation. The DAG formulation of the problem isdttuced in Section 3. In
Section 4, the reference algorithms for optimal polygompgraximation are explained.
The proposed algorithm is described in Section 5. The pedoce of the proposed al-
gorithm is compared with that of the reference algorithmSeution 6. The conclusions
are given in Section 7.

2 Problem Statement

Suppose a shape boundary is represented by a closed dmitaluc denoted by the
ordered se€ = {cg, c1,ca,...cn. }, Whereey = ey, . GivenC and an error threshold
4, we are required to obtain a polygdhwith minimal number of vertices such that
P C C and the maximal distance betweé&hand C' is less than or equal t6. We
denote such a polygon by the orderedBet {po, p1,p2, ... pn, }- At this stage, it is
assumed thaty = cg.

Let pr_1,pr be the polygon edge that approximates the partial confour=
Pk—1,Cit+1,---Ci+L = Pr} containing(L + 1) points as shown in Fig. 1. The edge
distortion ofp,_4 Py, denoted byd(pr_1 — pi), is defined as the maximum distance
betweerp;_, Py, from the partial contour which it approximates. Matheniltic

d(pr—1,pk) = mazx d (Pr—1,Pr, ), 1)

c;je{ci=pr—1,Cit1,..-Cit1=Pr}

whered’ (py_1, px, ¢;) denotes the distance of the contour peirfrom the edgey, 1 pr..

Let D(P) denote the maximal distance of the polygon P from the confhuie
can expres®(P) as the function of polygon edge distortions, as follows.

D(P) = _ . 2
(P) ke{ﬁqchp}d(Pk 1,Pk) 2
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d'(pk_11 pk’ Cj)

dap,..» p,)

Fig. 1. Computation of edge distortion.

The optimization problem can be stated as,
min Np

subject to
D(P)<d 3)

3 Formulation of the problem in the form of directed acyclic graph

Let a weighted directed acyclic graph with the set of graphices 1V and the set of
graph edges be denoted a& = (V, E). A directed graph edge is denoted by the
ordered paif(v;,v;) € E, which implies that the edge starts at the vertexand ends
at vertexv;. Let the graph edge sét consist of every possible combination of (v;)
suchthat < j. The optimal polygonal approximation problem can be foated using

a DAG such that the vertices and edges of the DAG correspopddsible vertices and
edges of the polygonal approximation, respectively. Gtersa DAG withV = C' such
that a directed graph edde;, v;) represents the polygon edgfi;. Furthermore, let
the weightw(v;, v;) of a graph edgév;, v;) depend on the edge distortidic;, ¢;) of
the polygon edge;c; as follows.

w(v- v_) _J oo, if d(CZ‘,Cj) > 9; @)
U, i d(e,ep) <.

An edge is called an admissible edge if its weight is equaln®; @therwise it is
called an inadmissible edge. The length of a path in this DAGomes infinity if that
path includes an inadmissible edge (i.e., an edge corrdsppio the polygon edge
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distortion greater than). Therefore the DAG shortest path algorithm will not select
these paths. As a result, every path that starés ahd ends aty, and has finite length
represents a valid polygonal approximation. Therefore,dfortest of all these paths
corresponds to the polygon approximation with smallest lmemof vertices, which is
the solution to the problem in (3).

4 Reference Algorithms

The conventional algorithm (CA) for the determination o thiptimal polygon approx-
imation is through exhaustive search for the single souroetast path within the DAG
[5][7]- Let R; represent the minimum number of vertices that connect titialiner-
tex vy to ith vertexwv; in the DAG. The conventional optimal algorithm [7] is gives a
follows.

Ry =0;

for (i=1,...N¢){
Ri:OO

}

for (i=0,...Nc—1){
for(j=i+1,...Nc){
calculate edge distortiod(c;, c;);
if (d(c;,¢;) > 6) continue j;
{Rj=Ri+1;8; =4}

}

After execution of the above algorithm,(&;, 5,) pair would have been stored at
each vertex position. The optimal polygéh= {py = co, p1,...pN, = cn,} IS then
obtained by tracing back the pointers starting frag, as follows.

Np = Rn,;
PNp = CNg»
k‘:NC;
for (i=Np,...0){
Pi—1 = Cpy,
k = B
}

The edge distortiod(c;, ¢;) of the edge connecting = (z;,y;) toc; = (z;,y;) IS
computed using (1) as follows. Let = (xx, yx) be a boundary point betweepand
c;. The distance of;, from the edge;c; is given by [6],

d' (pr—1,Pk, )

_ (), — Jci)(yj — i) = (Y — yi,)(l"j — ;)]
- V(@i =)+ (yi — y5)? ' ®
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The edge distortiofi(c;, ¢;) is then computed as the maximum distance of the boundary
points that lie between; andc;, from the edge;c;. If there areL boundary points
between the two end points of an edge, thetistances need to be computed using (5)
while determining the edge distortion of that edge. The eational algorithm involves
the determination o% number of edge distortions. Therefore, the conventional
algorithm is computationally intensive.

In [6], a sliding window is employed to reduce the numbersdafes in the DAG and
thereby reduce the total number of edge distortions that teebe computed. The main
idea is to restrict the number of admissible edges for eadiexevithin a window of
fixed length. The length of the window is predefined with arhad-value; the smaller
the size of the window, the higher the speed-up. Howeverlsm@ndow size may not
include all the admissible edges and therefore, it is lé&sfyito yield optimal number
of vertices. The sliding window algorithm (SWA) providespgmvement in speed at the
cost of being sub-optimal.

Another fast algorithm called Modified Schuster & Katsaggedlgorithm (MSK)
is presented in [7]. The main idea in this algorithm is to deelall the edges that lie
beyond the graph vertex at which the polygon edge distosiareeds twice the error
threshold as inadmissible edges. This is equivalent totadpthe window size as we
scan along the graph based on the edge distortion obsertleel @irrent vertex.

5 Proposed Computationally Efficient Optimal Algorithm

The reference fast algorithms described in the previousosefocus only on reducing
the number of edges in the DAG,; thus, they do not reduce theleiity associated
with the computation of edge distortion to determine if thdge is a valid edge. In
order to achieve higher speed-up performance, we emploffexatit approach called
cone intersection method to the problem of determining hdredin edge is a valid edge.
Suppose we wish to determine the set of all admissible edgeig from a vertex
¢;. Consider the point; ;. Let T;. 1 be the cone of straight lines formed by a disk of
radiusd centered at;, ;. The set of the straight lines from that lie within a distance
¢ from ¢; 1, are within the coné’;, ;. Considering the next scan-point on the boundary,
c;12, the set of the admissible straight lines fremthat lie within a distancé from
bothe¢; 11 andc; o are within the coneT; ., () T;». For a boundary point;, the cone
of admissible straight lines that lie within a distanceydfom all the boundary points
in the current scan iS; = (T;+1 (N Ti+2 - - -[) T}). At each stage, we test if the current
boundary point; lies within the cones;. If the test succeeds, then the edg€ is an
admissible edge; otherwise, it is an inadmissible edge.

Proposed Algorithm:
Ry =0;
for (i=1,...N¢){
Ri = 0
¥

for (i=0,...Ne —1){
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for(j=i+1,...N¢){
calculate the cone5; of admissible
straight lines;
if S;isempty, breakj;
if ¢;c; does not belong t6;  continue j;
if (Rl +1< RJ)
{Rj ZRi—Fl;ﬂj Zi;}

Fig. 2. lllustration of cone intersection method.

We propose the following procedure to calculate the c8nef admissible straight
lines starting frome;, and to test ifc;c; belongs toS;. The first step is to calculate
the angle of cone of straight lines shown in. Fig. 2. The angl® measured from a
reference vectog;c,, wherec, is the first point along the scan that lies at a distance
greater tham from ¢;. The edges that lie before the reference vector are all ailtas
edges.

Lete;, = (x4, v:), & = (2, yr), ande; = (x;,y;). We define(z;’,y;") = (x; —
x;,y; — ;) and(z,y.) = (zr — x4,y — y;). From Fig. 2, we have,

Y2 = arctan <6> (6)
zi? +yp” - 02

Z! y/ _ y/ z'
a = arctan (xij, T yj yf (7)
g rdj
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(@) (b)
Fig. 3. Original Boundaries: (aiKid1 and (b)Kid2.

Sincearc tan is in the principal range betweenr/2 andr/2, the appropriate value of
« under special cases is calculated as follows. Wematia to get new value ofy if
any of the following are true: (a) < 0 and(z;y; — y, ;) > 0 (this condition true ifx
is in the 2nd quadrant), () > 0 and(x.y; — y,.}) < 0 (this condition true it is in

the 3rd quadrant). The anglésandé, are calculated as follows.
O =a+ (8)

01 =a—" ()]

The algorithm for determining the cois of admissible straight lines starting froem
and testing if;c; belongs taS; is given as follows.

S; = oo;

if (7<) {
S’j:oo;
cicj € S;

else{
T = [01, 02];
S; =T 8j-1-

if (Oz E Sj)
(cicj € Sj);
else(c,e] ¢ 5,);

6 Experimental Results

The proposed and the reference algorithms are evaluated tie shape boundaries
Kidl andKid2 consisting of 486 and 609 points, respectively. The shapederies are
shown in Fig. 3. The tolerable approximation error thredlois varied in steps from
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Fig. 4. Comparison of speed-up of proposed optimal algorithm with other algosiforKid1.

0 to 10. Two separate tests are performed for MSK algorithrsdifing window size
to 5 and 20. The execution times of each algorithm is obtafr@d the profiling in-
formation generated using the Rational’'s Quantify (nowt patlBM's Purify) profiling
tool. The simulations are carried out on a desktop PC withNB& Intel Pentium 111
processor.

The execution time for CA changes by only negligibly smallreawhen the value
of § is varied. In our experiments, the execution time for CA ipragimately 2751
milliseconds foiKidl and 6086 milliseconds fd€id2. We compare the performance of
MSK, SWA and proposed algorithms for fast polygonal appration with respect to
that of CA. The performance is measured in terms of numbeolyfyonal vertices and
speed-up factor. Speed-up factor of a fast polygonal ajpmation algorithm is defined
as the ratio of the execution time of the conventional opitetgorithm (CA) to the that
of the fast algorithm.

Fig. 4 and Fig. 5 show the comparison of speed-up performahtee proposed
algorithm with that of other fast algorithms fé&tidl andKid2, respectively. Table 1
shows the number of vertices obtained with each algorithencé@mpared to CA, the
proposed algorithm is more than 350 times faste¥ at 1 and more than 200 times
faster aty = 2. In our experiments, the proposed algorithm is more tham2difaster
than the MSK for§ > 0.3. For § less than or equal to 0.3, the MSK is about 1.2
times faster than the proposed algorithm; this is becawsaumber of edge distortion
computations in the MSK is small when the valuedok very small. For SW=5, the
SWA is always faster than the proposed algorithm; but theltesf SWA are always
sub-optimal (i.e., the number of vertices are more thanetlodgained with the optimal
algorithms) as shown in Table 1. For SW=20, the SWA is slowantthe proposed
algorithm for lower values of and is faster for higher values &f again the results of
SWA are sub-optimal fod > 1.0 as shown in Table 1. Due to the fixed window size,
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Fig. 5. Comparison of speed-up of proposed optimal algorithm with other algosifor Kid2.

the speed-up of SWA remains nearly the same for all valuésWhereas, the speed-up
of proposed and MSK algorithms decreases with increasihge\a 6.

The polygon approximations of the boundaries obtained trighproposed algo-
rithm are shown in Fig. 6.

7 Conclusion

The proposed algorithm for optimal polygonal approximati® computationally very
efficient over a wide range of approximation error. On anager it is about 450 times
faster than the conventional optimal algorithm and abotungs faster than the MSK
algorithm [7]. Due to high speed-up performance, the predasdgorithm is suitable
for real-time shape representation and coding application
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Table 1. Number of vertices in the polygonal approximation.

Tolerable Number of vertices in the
error polygonal approximation
thresholg Kidl Kid2
) CA, MSK, SWA SWA CA, MSK, SWA SWA
Proposed Alga( SW=5)( SW=20)Proposed Alga( SW=5)( SW=20
0 246 257 246 308 327 308
0.3 211 222 211 254 278 254
0.5 96 133 96 138 182 138
1.0 45 96 47 57 126 59
1.5 30 94 34 42 123 47
2.0 21 94 29 34 122 40
5.0 11 94 24 17 122 31
10.0 6 94 24 10 122 31
() (b) () (d) (e) ®

Fig. 6. Polygonal approximations using proposed optimal algorithm. (a)Kig)l at§ = 0.5,
6 =1, andd = 2, respectively. (d)-(f)Kid2 atd = 0.5, = 1, andd = 2, respectively.



