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Abstract: This paper discusses how to obtain local stability results from a fuzzy system for which global ones cannot
be obtained, basically due to infeasibility of some associated LMI problems. Two different approaches are
compared: modifying the consequent modelsvs. setting up some relaxed LMI conditions if bounds on the
memberships are known. Some examples are used to illustrate the approaches.

1 INTRODUCTION

In many literature contributions, LMI stability condi-
tions (Boyd et al., 1994) are devised in order to prove
stability and performance of Takagi-Sugeno (Takagi
and Sugeno, 1985) fuzzy systems; however, such laws
are usually independent of the values of membership
functions, and fulfill for any arbitrary shapes of them
(Tanaka and Wang, 2001; Wang et al., 1996). Knowl-
edge of the shape of the membership functions may
allow to lift some conservativeness.

For instance, if the usual Jacobian linearisation in
x = 0 is stable, Lyapunov 1st theorem states that
there exists a region in which the system is locally
stable. The approach in this paper allows to explicitly
define a minimum spherical zone around the equilib-
rium point where Lyapunov stability conditions are
fulfilled, even in the case global quadratic-stability re-
lated LMIs are infeasible. Indeed, (Tanaka and Wang,
2001) shows that the basin of attraction for fuzzy sys-
tems may be membership dependent.

The structure of the paper is as follows: Next sec-
tion discusses notation and widely-known stability
theorems. Section 3 discusses a transformation of
a fuzzy model when the membership functions are
themselves a convex combination of some vertices.
Section 4 applies the results to find the largest lo-
cal quadratically stable region. Some examples are
provided in Section 5, and a conclusion section sum-
marises the main results.

2 PRELIMINARIES

Let us consider a Takagi-Sugeno (Takagi and Sugeno,
1985) (TS) fuzzy model:

ẋ =

n
∑

i=1

µi(x)(Ai · x) (1)

whereµi represents membership functions such that:
n

∑

i=1

µi(x) = 1, µi(x) > 0 ∀x i : 1 . . . n

Stability of fuzzy systems

Lyapunov stability theory proves that such a system is
stable if exist a functionV (x) such that:

V (x) > 0,
dV

dx
< 0, V (0) = 0, ∀ x 6= 0

The analysis of the Lyapunov stability of TS fuzzy
systems may be approached as a linear matrix in-
equality (LMI) optimization problem (Boyd et al.,
1994). The most popular Lyapunov Functions pro-
posed in literature are quadratic forms:V (x) =
xT Px. This type of Lyapunov functions fulfill the
srability conditions ifP is definite positive and if

V̇ =

n
∑

i=1

µix
T (AT

i P + PAi)x < 0 (2)

That holds if

AT
i P + PAi < 0, i : 1..n (3)
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The above equation is an LMI, hence widely avali-
able LMI optimization software either finds aP or
determines that the LMI is infeasible. The reader
is referred to (Tanaka and Wang, 2001) for ample
discussion.

Remark: Note that the membership functionsµ
do not appear in the LMI conditions. Hence, the same
P defines a quadratic Lyapunov function for multi-
ple nonlinear systems with the same “vertex models”
as the original one. Such generality is a too restrictive
condition that in some cases results in infeasibility be-
ing the underlying system actually stable.

When the above LMI problems are unfeasible,
other alternative conditions must be sought. Fuzzy or
piecewise Lyapunov functions are discussed in (Jo-
hansson, 1999), Fuzzy Lyapunov functions are dis-
cussed in (Oliveira et al., 1999).

A different alternative, in the authors’ opinion,
is trying to achievelocal stability results in a zone
around the equilibrium as large as possible. Such a
result is motivated on the first Lyapunov theorem for
local stability: if the linearised system inx = 0 is ex-
ponentially stable, then so it is the nonlinear one, for
initial conditions in a sufficiently small neighborhood
of x = 0.

3 LOCAL FUZZY MODELS

In order to analyze the local stability of a TS fuzzy
model (1) within a region, the original model is
modified using the information of the membership
functions.

Lemma 1 if the membership functionsµ(x) of a
fuzzy system described in(1) in a region ofΩ can
be themselves expressed as a convex sum of some
vectorsvp:

µ(x) =

nv
∑

p=1

βp(x)vp, ∀ x ∈ Ω (4)

where:

µ(x) = [µ1(x), µ2(x), . . . , µn(x)]
nv
∑

p=1

βp(x) = 1 βp(x) > 0 ∀x ∈ Ω p : 1 . . . nv

Then the system can be transformed to:

ẋ =

nv
∑

p=1

βp(x)A∗
p · x (5)

where

A∗
p =

n
∑

i

vpiAi (6)

Proof: The expression(4) can be substituted in the
system equation(1):

µ(x) =

nv
∑

p=1

βp(x)vp (7)

vp = [vp1, vp2, . . . , vpn] (8)

µi(x) =

nv
∑

p=1

βp(x)vpi (9)

ẋ =
n

∑

i=1

nv
∑

p=1

βp(x)vpiAi · x (10)

ẋ =

nv
∑

p=1

βp(x)

n
∑

i

vpiAi · x (11)

so the local representation of the system inΩ

ẋ =

nv
∑

p=1

βp(x)A∗
p · x ∀x ∈ Ω

where:
nv
∑

p=1

βp(x) = 1 βp(x) > 0 ∀x ∈ Ω p : 1 . . . nv

�

The convex-combination conditions for the mem-
bership functions required in the above lemmas are
easy to meet. Indeedµi are assumed known in fuzzy
systems. Then, the result below may be applied to
obtain a (possibly conservative) vertex set.

Note 1 Let us consider a regionΩ. If boundsµM
i

and µm
i on the extremum values of the membership

functions inΩ can be computed, in such a way that:

µM
i ≥ max

x∈Ω
µi(x) µm

i ≤ min
x∈Ω

µi(x) (12)

then there exist a set ofβp(x), p = 1, . . . , nv so that
the vector of membership functions

µ(x) = [µ1(x), µ2(x), . . . , µn(x)]

may be expressed inΩ as:

µ(x) =

nv
∑

p=1

βp(x)vp, x ∈ Ω (13)

where:
nv
∑

p=1

βp(x) = 1 βp(x) > 0 ∀x ∈ Ω p : 1 . . . nv

Indeed, the linear restrictionsµM
i ≥ µi ≥ µm

i ,
∑

i µi = 1 describe a bounded polytope with a finite
number of vertices (Luenberger, 2003).
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Well-known linear-programming-related methods
to obtain the membership vector vertices may be used
(related to the obtention of the basic feasible solutions
in an LP problem (Luenberger, 2003)). A related al-
ternative is described below.

Lemma 2 Consider the setΣi of at most2n−1 vec-
tors defined by:

Σi = {[µ̃1, ..., µ̃i−1,X, µ̃i+1, ..., µ̃n],

X = 1 −
∑

1 ≤ j ≤ n

j 6= i

µ̃j

such that̃µj ∈ {µM
j , µm

j } j 6= i, µm
i ≤ X ≤ µM

i }
(14)

Then, the vectors belonging to the set

Σ =

n
⋃

i=1

Σi (15)

satisfy(13) for someβp.

Indeed, as there is only one equality restriction in
memberships, all except one of them are “free” to
attain an extremum value; the remaining one must
fulfill the add-1 restrictionand be inside its required
bounds. The above lema produces the union of all the
“all minus one” combinations, and the sought vertices
will belong to such set.

Example. For instance, if three memberships
have minimum and maximum values given by
{0.15,0.3,0.35} and{0.6,0.5,0.4}, the setΣ1 is origi-
nated by the four combinations:

{(X1, 0.3, 0.35), (X2, 0.5, 0.35),

(X3, 0.3, 0.4), (X4, 0.5, 0.4)}

with X1 = 1 − 0.65 = 0.35, X2 = 0.15, X3 = 0.3,
X4 = 0.1. As X4 is out of the required range, the
candidate vertices kept are:

Σ1 = {(0.35, 0.3, 0.35), (0.15, 0.5, 0.35),

(0.3, 0.3, 0.4)}

The setΣ2 is generated by:

{(0.15,X1, 0.35), (0.6,X2, 0.35),

(0.15,X3, 0.4), (0.6,X4, 0.4)}

with X1 = 0.5, X2 = 0.05, X3 = 0.45 andX4 = 0.
Hence,

Σ2 = {(0.15, 0.5, 0.35), (0.15, 0.45, 0.4)}

Regarding the third membership,

{(0.15, 0.3,X1), (0.6, 0.3,X2),

(0.15, 0.5,X3), (0.6, 0.5,X4)}

results in
Σ3 = {(0.15, 0.5, 0.35)}

hence the resulting set of vertices to compute the local
models is:

Σ = {(0.35, 0.3, 0.35), (0.15, 0.5, 0.35),

(0.3, 0.3, 0.4), (0.15, 0.45, 0.4)}

4 STABILITY ANALYSIS IN A
ZONE

The knowledge of the membership functions will al-
low to obtain some local stability analysis results for
a fuzzy systems. Two alternatives may be applied:
the first one will use the above defined local models;
the second one will use some relaxations on LMI con-
ditions via additional variables and knowledge of the
minimum and maximum bounds on membership.

4.1 Local Fuzzy Models

By using the transformed models discussed in the pre-
vious section, local stability results may be obtained
by the lemmas in Section 2.

Lemma 3 The ellipsoidal regionΩ∗ ⊂ Ω

Ω∗ = {x \xT Px ≤ VM , P > 0} (16)

is a basin of attraction of the equilibrium pointx = 0
of the system(1) if

(17)

VM ≤ min{xT Px \x ∈ ∂Ω} (18)

where∂Ω denotes the boundary ofΩ andP verifies:

A∗
p
T P + PA∗

p < 0 p : 1, . . . , nv (19)

i.e., all trajectories with initial state inΩ∗ converge
assymptotically tox = 0.

Proof: As, by Lemma 1, the system can be ex-
pressed inΩ as:

ẋ =

nv
∑

p=1

βp(x)A∗
p · x

if the LMI (19) is feasible for a positive definite matrix
P , V (x) = xT Px is a decreasing function with time,
so a Lyapunov function has been obtained ensuring
thatΩ∗ is an invariant set. La Salle’s theorem (Khalil,
1996) ensures that every solution starting inΩ∗ will
approachx = 0.

As the expression of the local system(5) is not valid
outsideΩ, then the local stability can only be proved
in the largest ellipsoidΩ∗ contained inΩ, which will
be defined by a value ofVm equal to the minimum
value ofV (x) in the boundary ofΩ (∂Ω). �
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The following lemma is useful in order to set up
an LMI characterisation of the largest ellipsoid inΩ
which is a Lyapunov equipotential1.

SupposeΩ defined as a symmetric polytope that
containsx = 0:

Ω = {x\|aT
i x| ≤ 1i : 1, ..., np} (20)

Lemma 4 Θ = {x\xT Q−1x ≤ 1}, Q = QT > 0
is an ellipsoid contained inΩ which itself contains
the maximum volume sphere centered atx = 0 if the
LMI problem

minimizeλ
subject toλI > Q−1 > 0
Q > 0, aT

1 Qai ≤ 1, i = 1, ...np

is feasible. Then, no other ellipsoid inΩ contains a
larger centered sphere. �

The proof appears in (Boyd et al., 1994) chapter 3.

Theorem 1 Consider the system(1). The largest
spherical basin of attraction ofx = 0 provable by
a quadratic Lyapunov function in a symmetric poly-
topic regionΩ has a radiusλ− 1

2 given by the solution
of the following LMI problem:

minimizeλ subject to

λI > P > 0 (21)

P > 0 (22)
(

P aj

aT
j 1

)

> 0, j : 1...np (23)

A∗
p
T P + PA∗

P < 0, p : 1...nv (24)

and Ω is defined as(20). The ellipsoid Θ =
{x\xT Px ≤ 1} is, of course, also contained in the
basin of attraction ofx = 0.
Proof: Conditions 24 imply that trajectories inside
any equipotential region defined byP converge to the
pointx = 0, as shown in Lemma 3.
Applying the Schur complement, the conditions(23)
are equivalent to

aT
p P−1ap < 1, i : 1..np

Then, conditions(23) keepΘ insideΩ and the condi-
tion (21) along with the LMI objective, maximize the
radius of the quadratically invariant sphere contained
in Θ, from Lemma 4. �

1Largest is here understood as containing the largest
spherical ball aroundx = 0, i..e, guaranteeing stability for
the largest initial distance to the origin.

4.2 Relaxed LMI Conditions

Another way to approach the problem is relaxing
the LMI conditions using que information about the
membership functionsµi in the zoneΩ in which lo-
cal stability is studied. This will allow to express
some results (possibly more conservative than the pre-
vious one) using the minimum and maximum val-
ues of memberships in the zone (or some bounds on
them), without the need of calculating transformed lo-
cal models.

Assume that, in the zoneΩ, the limits ofµj are

µm
j ≤ µj ≤ µM

j (25)

Then, for any positiveτ ∈ R:

µjτ ≤ µM
j τ = µM

j

n
∑

i=1

µiτ (26)

where
∑n

i=1
µi = 1 has been used in the equality.

Then, for any positive definiteNM
j :

µjx
T NM

j x ≤ µM
j

n
∑

i=1

µix
T NM

j x (27)

Hence, the term
n

∑

i=1

µiµ
M
j xT NM

j x − µjx
T NM

j x > 0

may be added to the stability condition (3), so that if
n

∑

i=1

µix
T (AT

i P + PAi)x +
n

∑

i=1

µiµ
M
j xT NM

j x

−µjx
T NM

j x < 0 (28)

then, the equation (2) holds. Reordering the terms,
the LMI conditions below are obtained:

(AT
i P + PAi) + µM

j NM
j < 0, ∀i 6= j (29)

(AT
j P + PAj) − (1 − µM

j )NM
j < 0, NM

j > 0 (30)

and adding the conditionµm
j ≤ µj , for any positive

symmetric matrixNm
j , the expression

µjx
T Nm

j x −

n
∑

i=1

µiµ
m
j xT Nm

j x > 0 (31)

can be proved analogously to the maximumNM
j case.

Then (2) is positive if

(AT
i P + PAi) + µM

j NM
j

−µm
j Nm

j < 0 ∀i 6= j (32)

(AT
j P + PAj) − (1 − µM

j )NM
j

+(1 − µm
j )Nm

j < 0, NM
j , Nm

j > 0 (33)

Note that, in the above expressions,j is a fixed
number. If a bound ofµj is known for allj, the theo-
rem below can be proved.
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Theorem 2 Consider the system(1). The largest
spherical basin of attraction ofx = 0 provable by
a quadratic Lyapunov function in a symmetric poly-
topic regionΩ has a radiusλ− 1

2 given by the solution
of the following LMI problem in the variablesP , Nm

i ,
NM

i :

minimizeλ subject to

λI > P > 0 (34)

P > 0 (35)
(

P aj

aT
j 1

)

> 0, j : 1...np (36)

Ai
T P + PAi − (1 − µM

i )NM
i + (1 − µm

i )Nm
i

+
∑

j 6=i

(µM
j NM

j − µm
j Nm

j ) < 0, i : 1...n (37)

and Ω is defined as(20). The ellipsoid Θ =
{x\xT Px ≤ 1} is, of course, also contained in the
basin of attraction ofx = 0. �

4.3 Algorithm

The results in previous sections may be combined in
order to obtain an algorithm to compute the largest
ball aroundx = 0 for which attraction is ensured.

Basically, the procedure will first check the extreme
cases: (1) checking for feasibility of LMI problems
as stated in Section 2 (2) checking for stability of the
linearised model aroundx = 0.

If the first one is unfeasible but the second one
is feasible, selecting a polytopic region on the state
space and a scaling factorρ allows to set up a bisec-
tion procedure in order to determine the largest feasi-
bleρ.

5 EXAMPLES

Example 1. Let us have a fuzzy system given by:

ẋ =

2
∑

i=1

µi(x)Aix (38)

A1 =

[

−0.5 −1
−1 −0.5

]

(39)

A2 =

[

−0.5 1
1 −0.5

]

(40)

Figure 1 shows the membership functionsµ1 andµ2

which, for simplicity, depend only onx2. The value
of a = 1 will be assumed.

µ1 µ2

x2

1

a−a0 0

Figure 1: Membership functionsµ1(x2), µ2(x2).

DefineΩk as a rectangle bounded inx2, unbounded
in x1:

Ωk = {x\ |(0 1/ρk)x| ≤ 1}

wherek is the iteration number.
Note that the maximum and minimum values ofµi

in Ω are easily obtained, and the Lemma 4 can be
applied.

In the proposed procedure, the LMIs forρ = 1 are
unfeasible. However, the linearised model is:

ẋ = (0.5A1 + 0.5A2)x =

[

−0.5 0
0 −0.5

]

(41)

which is stable. Hence, there exists a zone around
x = 0 (possibly small) where local stability holds.
The procedures in this paper allow to determine the
largest sphere aroundx = 0 for which local quadratic
stability holds.

Let us consider for the fist iterationρ1 = 0.1. The
maximum and minimum values ofµ are, in that case:
µM

1 = 0.55, µm
1 = 0.45, µM

2 = 0.55, µm
2 = 0.45

Then the vertices obtained in the regionΩ1 are:

v1 = [ 0.45 0.55 ]

v2 = [ 0.55 0.45 ]

The local fuzzy model from Lemma 1 is described by:

A∗
1 =

[

−0.5 0.1
0.1 −0.5

]

A∗
2 =

[

−0.5 −0.1
−0.1 −0.5

]

And, solving the LMIs:

A∗
1

T P + PA∗
1 < 0

A∗
2

T P + PA∗
2 < 0

X > 0

local stability in a certain ellipsoidal region insideΩ1

is proved.
When the same procedure is applied toρ = 0.5 the

LMIs are unfeasible. The LMIs are, however, feasible
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x1

x
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Figure 2: The Basin of attraction ofx = 0 provable by
quadratic stability (Example 1).

for anyρ < 0.5. for instance,ρn = 0.499 results in
the following LMI conditions:

A∗
1

T
P + PA∗

1 < 0

A∗
2

T
P + PA∗

2 < 00� P
0

1/ρn

0 1/ρn 1

1A > 0

P > 0

λI > P

which are feasible for the above value ofρn and, the
matrixP obtained for the minimumλ defines an ellip-
soidal basin of atractionΘ = {x\xT Px ≤ 1} with

P =

�
3.8274 0

0 4.016

�
Figure 2 depicts the obtained basin of attraction,

and some examples of trajectories from a set of start-
ing points. The maximum circle found by the LMI
toolbox has a radius of 0.499.

Trajectories with starting points inside the ellipsoid
Θ are guaranteed to converge to the origin. Note that
the ellipsoid obtained by the LMIs is not a circle.
Points outside the ellipsoid may lead to either con-
vergent or non-convergent trajectories.

Example 2. Let us considerer the same fuzzy
model as in Example 1. Then applying the theorem
2,

minimizeλ subject to

(AT
1 P + PA1) − (1 − µM

1 )NM
j + (1 − µm

1 )Nm
1

+µM
2 NM

2 − µm
2 Nm

2 < 0 ∀i 6= j

(AT
2 P + PA2) − (1 − µM

2 )NM
j + (1 − µm

2 )Nm
2

+µM
1 NM

1 − µm
1 Nm

1 < 00� P
0

1/ρn

0 1/ρn 1

1A > 0

P, NM
1 , Nm

1 , NM
2 , Nm

2 > 0

λI > P

Conveniently, we take the same region shapeΩ that
in Example 1, the limitsµm

i and µM
j are the mini-

mum and maximum value ofµi in the regionΩ. The
maximumρ obtained is 0.26,i.e. 0.24 units less than
the obtained in the previous example. From this ex-
ample, the conditions discussed in Section 4.2 seem
more conservative than those in Section 4.1.

6 CONCLUSIONS

This paper shows howlocal stability results (the
largest sphere aroundx = 0 for which a quadratic
Lyapunov function can be proven via LMI) may
be obtained in fuzzy systems via the knowledge of
the membership functions, even when no feasible
quadratic Lyapunov function can be found to prove
global stability. The found sphere is part of a larger
ellipsoidal guaranteed basin of attraction.

In this way, if the linearised system around the
equilibrium is stable, a precise characterisation of the
local stability region stated in Lyapunov 1st theorem
is achieved.

The approach based on relaxed LMI conditions
from membership bounds yields more conservative
results but it is simpler, without the need of changing
the Takagi-Sugeno consequents.
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