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Abstract: Many applications require simultaneous display of multiple datasets, representing multiple samples, or 
multiple conditions, or multiple simulation times, in the same visualization. Such multiple dataset 
visualization (MDV) has to handle and render massive amounts of data concurrently. We analyze the 
performance of two widely used techniques, namely, isosurface extraction and texture-based rendering for 
visualization of multiple sets of the scalar volume data. Preliminary tests performed using up to 25 sets of 
moderate-size (2563) data show that the calculated times for the generation and rendering of polygons 
representing isosurface, and for the mapping of a series of textured slices increase non-uniformly with 
increasing the number of individual datasets.  Both techniques are found to no longer be interactive with the 
frame-rates dropping below one for six or more datasets.  To improve the MDV frame-rate, we propose a 
scheme based on the combination of hardware-assisted texture mapping and general clipping.  In essence, it 
exploits the 3D surface texture mapping by rendering only the externally visible surfaces of all volume 
datasets at a given instant, with dynamic clipping enabled to explore the interior of the data. The calculated 
frame-rates remain above one and are substantially higher than those with the other two techniques. 

1 INTRODUCTION 

Visualization of three-dimensional scalar data has 
been studied extensively over last two decades. 
Tremendous challenge is often imposed by the size 
of the volume data: Either the dataset is too massive 
to exhaustively visualize or there are multiple 
datasets to be visualized simultaneously.  In this 
paper, we have focused on the latter case, that is, 
multiple datasets visualization (MDV) by which we 
mean that more than one datasets of a given type are 
concurrently rendered in the same visualization. 
Although multiple datasets have previously been 
visualized/analyzed in many occasions (Schulze and 
Forberg, 2004; Crutcher et al., 1996; Abrams and 
Shaffer, 1996), there exists a little work, if not at all, 
towards addressing MDV in a systematic way.   

We believe that there is no need to over 
emphasize on the importance of MDV.  It is not 
always possible to make an inference based on 
single dataset so one needs to compare several 
datasets in some effective way. So visualization 
should be able to handle, multiple datasets at the 
same time, representing multiple cases of interest so 

that important relationships and differences among 
these cases can be better understood. 

Examples of multiple datasets, which require 
simultaneous visual analysis, are abundant.  Here, 
we consider 3D charge density distributions in real 
material systems, which are investigated on routine 
basis by parallel quantum mechanical simulations 
(Codes, 2005). The resulting multiple charge density 
datasets of interest may represent different samples, 
or different temperatures or different pressures or 
different simulation times.  One might be interested 
in comparing the charge distribution for different 
(say four) types of vacancy defects in a given 
crystal, say, Mg-, Si-, O1- and O2-defects in an 
important Earth forming mineral MgSiO3 perovskite.  
Or the interest might be in investigating the effect of 
pressure by displaying multiple datasets 
corresponding to different pressure conditions (say 
Mg-defect at eight different pressures) at the same 
time. Or one might need to visualize together ten 
different datasets as a function of temperature. Or, if 
one is interested to look at outputs taken at different 
times of simulation together, the number of datasets 
can be arbitrarily large.  
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Two natural approaches to the multiple dataset 
visualization appear to be a) an extension of the 
standard visualization methods to handle multiple 
datasets and b) a parallel processing (using multiple 
CPUs and/or multiple display screens) of 
visualization to permit real-time navigation through 
multiple datasets. In this paper, we adopt the first 
approach because it enables one to perform MDV 
with easily available resources such as PC desktops. 
A large number of 3D scalar visualization 
techniques currently exist, and their performance is 
often justified for single dataset visualization (SDV) 
(Meibner et al. 2000). Common examples include 
the isosurface extraction (Lorenson and Cline, 
1987), raycasting (Levoy 1990), splatting 
(Westover, 1990), shear-warp (Lacroute and Levoy, 
1994) and texture mapping (Cabral et al, 1994). 
Some of these approaches are considered here in the 
context of the simultaneous visualization of multiple 
datasets. 

It is natural for one to expect that all standard 
volume visualization techniques are equally 
applicable to the case of visualization of multiple 
datasets.  However, this expectation is true to a great 
extent but not entirely. MDV involves simultaneous 
processing of more than one datasets. This means 
that the visualization process should become slower 
by a factor of N or higher for N number of datasets 
in comparison with single dataset, due mainly to the 
increased amount of data. The need for larger 
memory space (which may eventually result in a 
substantial swapping) and bigger display area 
(which involves the processing of more pixels) can 
further slow down the process. One other major 
issue is that MDV is no longer guaranteed to be 
interactive. Our preliminary performance tests show 
that the SDV techniques studied here become 
increasingly slow as the number of datasets 
increases. Even for the data size of 2563, the frame-
rate is less than 1 for six or higher sets thereby 
indicating the loss of interactivity in MDV. 

Interactivity plays a crucial role in any volume 
visualization and even more so in MDV because it 
gives the user with immediate visual feedback. The 
user often needs to repeat visualization process 
several times, in part or full, to explore a given 
dataset from various prospects. For instance, the user 
might need to extract a series of isosurfaces 
corresponding to different reference (or threshold) 
scalar values. In the case of clipping, one might need 
to examine many clipped views at different 
locations, orientations and sizes. Even the direct 
volume rendering, although no information is 
thrown away, posses the difficulty of interpreting the 
cloudy representation of the volume data. So the 
extraction of a more complete information requires 
several of interaction modes like navigation, changes 

of transfer functions, region of interest mode, 
rotation, scaling, and some more sophisticated 
classification modes be supported in a given 
visualization.   

In this paper, we analyze the performance of two 
standard volume visualization techniques, namely, 
isosurface extraction and texture-based volume 
rendering in the case of multiple datasets. Doing so 
requires handling of massive amounts of data, which 
introduces several issues related to memory, 
resolution and interactivity. Our current focus is to 
deal with the interactivity issue (by calculating the 
frame-rate), which arises even in the case of multiple 
datasets of moderate sizes, e.g., 2563.  This size of 
data is very common for today’s many scientific and 
engineering applications. Also, this size can be 
handled by the texture mapping support of the 
today’s general-purpose graphics hardware. As an 
effective solution to improving the interactivity, we 
have adopted a MDV scheme based on 3D surface 
texture mapping and general clipping.  We limit the 
maximum number of individual datasets to be 
visualized together to 25 in this study. 

2 RELATED WORK 

Several visualization methods are available for 
volumetric scalar datasets. Indirect methods extract 
an intermediate geometric representation of the 
surfaces from the volume data and render those 
surfaces via conventional surface rendering 
methods, e.g., isosurfaces (Lorenson and Cline, 
1987). On the other hand, direct methods render the 
data without generating an intermediate 
representation and as such, they are more general 
and flexible, e.g., texture-based rendering (Cabral et 
al. 1994, Wilson et al. 1994). In addition to 
supporting direct volume rendering, texture mapping 
has also been used in conjunction with clipping 
(Weiskopf et al. 2003). Both the strengths and 
weaknesses of all these techniques have been 
assessed in a wide variety of single dataset (Meibner 
et al. 2000). 

To the best of our knowledge, no systematic 
analysis and practical evaluation of the current 
volume visualization methods have yet been 
reported in the case of multiple datasets.  We choose 
to examine the isosurface- and texture-based 
visualization methods for MDV for several reasons:  
First, the former is an indirect method whereas the 
latter is a direct method. Second, the former is 
software-based approach whereas the latter is the 
hardware-assisted approach. Third, isosurface is so 
widely used whereas texture mapping is faster than 
the most volume visualization techniques. 
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Figure 1: Isosurfaces for eight sets of the electronic charge 
density data for MgO at different compressions 
(compression increasing from the lower left to the upper 
right). The structures represent the charge distribution 
around O ion sites. 

 
Due to recent advances of commodity graphics 

hardware, texture-based rendering is able to achieve 
acceptable frame-rates with high image quality 
(Wilson et al. 1994; 2002; Weiler et al.2000; Cullip 
and Newman, 2003). Clipping combined with 
texture-based rendering can exploit advanced 
fragment operations supported by graphics 
hardware. For example, Van Gelder and Kim (1996) 
have used clip planes. Techniques for volume 
clipping with complex geometries, which are based 
on the depth structure and voxelization of the clip 
geometry and also involve subsequent shading of the 
clipped surfaces, have been proposed (Weiskopf et 
al. 2002; 2003). In the volume clipping based on 
stencil tests, stencil buffer entries are set at only 
those positions where the clip plane is covered by an 
inside part of the clip geometry (Westermann and 
Ertl, 1998). There are also techniques, which have 
exploited isosurface clipping (Forguson, 1992) and 
interactive clipping combined with dual-resolution 
texture-based volume rendering (Khanduja and 
Karki, 2005). 

3 MDV WITH ISOSURFACE 

An isosurface is the 3D surface representing the 
locations of a constant scalar value within a volume. 
Common approaches for generating isosurfaces 
include the Marching Cubes algorithm for 
generating isosurface polygons on a voxel-by-voxel 
basis (Lorenson and Cline, 1987), the Dividing 
Cubes approach of subdividing threshold voxels into 
smaller cubes at the resolution of pixels (Cline et al, 
1988), and raytracing with an analytic isosurface 
intersection computation (Parker et al. 1998). We 
use the Marching Cubes algorithm to extract 
isosurfaces corresponding to a given threshold value 
from multiple sets of data at the same time. The 
essence of the algorithm remains the same for MDV: 
It examines all voxels of each volume data (one by 
one), and determines, from the arrangement of 

vertex values above or below a threshold value, if 
and how an isosurface would pass through these 
elements. The algorithm thus processes one voxel at 
a time, and generates its isosurface geometry 
immediately before moving to the next voxel.  Once 
all the voxels of one volume data are processed and 
the corresponding isosurface is extracted, the same 
algorithm is repeated for each other volume data in a 
given multiple set. We have visualized up to twenty-
five sets of 2563 data using Marching Cubes 
algorithm. Figure 1 shows MDV for the eight sets of 
the simulated charge density of MgO as a function 
of pressure. 

4 MDV WITH 3D TEXTURE 
RENDERING 

The texture mapping approach uses 2D or 3D 
textured data slices, combined with an appropriate 
blending factor (Cabral et al. 1994; Wilson et al, 
1994). In the case of 2D textures, three stacks of 
slices, one for each major viewing axis, are stored 
and one most parallel to the current viewing 
direction is chosen. Hardware does bilinear 
interpolation in a 2D texture only and opacity 
changes with rotation. As such, image quality is best  

Figure 2: Texture-based MDV of four sets of electronic 
charge density distributions of MgO. The color and 
opacity values for each pixel are based on the density 
value associated with that pixel: A multiscale RGB color 
mapping is used: B represents values from 0 to 0.05, G is 
added to represent values up to 0.4 and then R is increased 
and both B and G are decreased for higher values. 
 
only when the slices are parallel to the view plane. 
On the other hand, the 3D texture approach can 
sample the data in all directions freely so the slices 
can always be oriented perpendicular to the viewer's 
line of sight. Image quality is independent of the 
viewing direction. The intrinsic trilinear hardware 
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interpolation allows us to perform supersampling, 
i.e., to use an arbitrary number of slices with an 
appropriate resampling on the slices. Only one 
single 3D texture needs to be loaded thus requiring 
one third of the memory, compared to the case of 2D 
textures. 

We apply the 3D texture-mapping hardware to 
support MDV.  The first step is to load the volume 
data into a 3D texture; it involves simply reading a 
set of images or shading data points. All datasets are 
loaded one by one to generate multiple 3D textures. 
The second step involves choosing the number of 
slices perpendicular to the viewing direction for each 
texture. The number of slices is often chosen to be 
equal to the volume’s dimensions, measured in 
texels. For instance, each dataset of 2563 needs 256 
slices. The third step is to use texture coordinate 
generation to texture the slice properly with respect 
to each 3D texture data. Finally, the textured slices 
are rendered from back to front, towards the viewing 
position, with appropriate blending performed at 
each slice. In this study, OpenGL supported “over” 
blending function is used. As the viewpoint and 
direction of view change, one needs to recompute 
the data slice positions and update the texture 
transformation matrix as necessary. 

5 INTERACTIVE MDV 
APPROACH 

We now adopt an approach by exploiting the 
texture-mapping hardware and general clipping to 
support a fast visualization of multiple sets of 
volumetric scalar data.  Similar approaches were 
previously used to visualize a single dataset with  

Figure 3: A 2563 charge density data with the external 
surfaces of the volume rendered using texture mapping. 
Electrons are depleted from the bluish regions and 
deposited in the reddish regions due to a vacancy defect in 
MgO crystal. 
 

interactive planar clipping and volume clipping via 
per-fragment operations supported by graphics 
hardware (van Gelder and Kim, 1996; Weiskopf et 
al. 2003, 2003; Khanduja and Karki, 2005). They 
involve rendering of all texels of the 3D textures 
passing a given clip test, for instance, on average the 
half of the total number of 2563 texels are rendered. 
Thus, the texture-based volume rendering with/out 
clipping uses a large number of textured slices, 
which becomes critical as the number of datasets to 
be rendered concurrently increases. 

5.1 External 3D Surface Rendering 

Our texture-based MDV approach improves 
interactivity by reducing the amount of texture 
mapping. The basic idea is to restrict the rendering 
of data to the external (visible) surfaces of the 
volume instead of performing complete or nearly 
complete 3D volume texture mapping.  One place 
where such surface rendering makes sense is the 
visualization of the volume data by clipping.  In the 
case of clipping whether it uses a simple clip plane 
or a more complex 3D clip geometry, one is always 
interested to view the new surfaces that are exposed 
(and hence are visible) to the user. For instance, one 
can view scalar data on a cross-section of the 
volume with a cutting plane.  One defines a regular 
grid on the clip plane and calculates data values on 
this grid by interpolation of the original data and  

Figure 4: Planar (upper two) and box (bottom two) 
clipping. In the later case, inner (left) and outer (right) 
portions of the volume are removed. 
 
uses an appropriate color-map to make the data 
visible. If this is the case and we are using 3D 
texture-based rendering, then there is no need to 
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have texture mapped on all slices to cover the 
complete volume. 

Texture mapping is thus performed on only 
external surfaces of the volume at a given instant 
thereby restricting the rendering of the data only to 
those visible surfaces. For instance, the simulated 
charge density that considered here is confined to a 
cubic volume. The 3D surface rendering of the 
original volume can be done by simply extracting 
and mapping textures on the six surfaces of the cube 
front and back, left and right, and top and bottom 
square faces), as shown in Figure 3. In effect, the 
problem of 3D volume texture mapping is reduced 
to the problem of 3D surface texture mapping, which 
renders textured data on only those six surfaces. 
Each square surface can be represented by two edge-
sharing triangles so that a total of 12 triangles thus 
needed are used to implement the clipping operation, 

which is described in the next Section. The 3D 
surface rendering approach works only with the 3D 
texture because it allows us to extract an arbitrary 
textured-slice without requiring re-sampling of the 
volume data. The polygon on which we want to map 
a texture can intersect the volume at any location 
and orientation. Texture mapping only requires the 
vertices of this polygon, which are passed as texture 
coordinates. 

5.2 Clipping 

Here we describe how clipping is combined with 3D 
surface texture mapping. The purpose of clipping is 
to find single or multiples surfaces cutting the 
volume and then bound the intersecting surfaces in  

Figure 5: MDV of 25 sets of electronic charge density of liquid MgO (at different simulation times) using 3D surface 
texture mapping combined with a planar clipping. One can see, for instance, how the positions of high density regions 
(shown by green + red colors) change with time. A multiscale color map described in Figure 2 caption is used.  
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the form of simple polygons.  These polygons 
determine the new set of externally visible surfaces 
of the volume and the textured data is mapped only 
on these polygons.  Thus, only the surfaces defined 
by a set of visible clipping polygons (single or 
multiple) are rendered. Each clipping polygon is 
tessellated in terms of triangles. During initial 
rendering, the six planar surfaces of simulation box, 
each represented in terms of two adjacent triangles 
are rendered. During subsequent clipping process, 
intersections of these 12 triangles with a given 
object are calculated. If a triangle is intersected, it is 
divided into two polygons that lie on either side of 
the clip plane; and one of them is discarded.  
Intersection points are used to define new polygons 
to map textures.  Every time the clip plane is 
adjusted in 3D space, intersections of the original 12 
triangles are determined to define polygons 
(Stephenson and Christiansen, 1995), which bound 
new visible surfaces  
 A planner clipping is demonstrated in Figure 4. 
Every time a clip plane changes (rotates or translates 
in space), new surfaces for texture mapping are 
generated. We have also implemented a box-
clipping object, which is represented as a set of six 
clipping planes. Visible surfaces are obtained by 
repeating the same process, which is used in the case 
of a single plane. The clip box can be rotated, 
translated and resized. Figure 4 also shows the outer 
and inner box clipping. Outer box clipping means 
removing portion of 3D object that lie outside the 
clipping box while the inner box clipping is just the 
reverse of outer box clipping where the portion 
outside the box is retained and portion inside the box 
is removed.Figure 5 illustrates the simultaneous 
visualization of 25 datasets. 

Figure 6: The calculated time as a function of the number 
of datasets used in MDV.  Squares represent the time for 
generation of multiple lists for polygons representing 
isosurfaces and circles represent the time for subsequent 
rendering of polygons.  

6 RESULTS AND DISCUSSION 

We now present the performance measurements of 
three MDV techniques described in the Sections 3, 4 
and 5. The results are based on the 3D charge 
density dataset, which was produced by parallel 
quantum mechanical simulations for different 
samples, conditions and time points.  The size of 
each dataset used is 2563, which represents today’s 
common moderate-sized scalar volume data. The 
rendering timings are calculated for single dataset 
visualization (SDV) using the viewport of size 5122 
and for multiple dataset visualization (MDV) using 
the viewport of size 10242. A bigger viewport in 
MDV provides bigger space for simultaneous 
display of multiple datasets. Thus, the differences in 
rendering speeds between SDV and MDV should 
reflect the differences in the amounts of data to be 
processed as well as the number of the pixels to be 
displayed. The performance measurements have 
been conducted on a Windows XP PC with 3.2 GHz 
Pentium IV processor and 1 GB RAM.  It uses an 
NVidia GeForce FX 5200 graphics board with 128 
MB graphics memory and 110 MB texture memory.  
The implementation is based on C/C++, OpenGL 
and GLUT. 

Our analysis in the case of isosurface extraction 
involves the calculation of the time for conversion of 
the data into a set of polygons representing 
isosurface and the time for subsequent rendering 
with polygon rendering hardware (Figure 6). For 
operations like rotation, translation and scaling, only 
the rendering time is relevant. The calculated 
rendering time is 0.16 seconds for SDV, and remains 
below 3 seconds for MDV with up to 13 datasets.  A 
rapid increase starts when the number of datasets 
increases reaches 14. This can be associated with the  

Figure 7: The calculated rendering time as a function of 
the number of datasets used in MDV. Squares represent 
the time for the texture-based volume rendering and 
circles represent the time for 3D surface texture mapping 
combined with clipping. 
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limited memory so that more than 14 sets of 
polygons representing isosurfaces cannot be stored 
in the memory concurrently thereby involving 
substantial memory swapping.  The time for 
multiple execution of Marching Cubes’ algorithm to 
produce multiple sets of polygons increases more 
rapidly with the increasing number of independent 
datasets after 14 (Figure 6).  
 For the texture-based MDV, the calculated time 
represents the time to map the textured data on a 
series of slices (polygons) with an appropriate 
blending enabled, i.e., to perform texture-based 3D 
rendering (Figure 7).  All 3D textures are assumed to 
be already loaded/generated. The SDV rendering 
time is 0.013 seconds whereas the MDV time is 1.12 
and 2.81 seconds, respectively, for 9 and 25 datasets. 
Note that the total number of slices to be rendered is 
6400 for 25 datasets, compared to 256 slices for 
single dataset. The number of independent texture 
mappings becomes critical for texture-based MDV 
as the number of datasets increases. Moreover, when 
multiple sets of data are loaded as multiple textures, 
all or most of the textures needed for generating 
current view cannot be resident in the texture 
memory at same time due to its limited size. So 
swapping of the texture objects takes place between 
the main memory and texture memory and the bus 
bandwidth becomes a bottleneck. In our study, we 
notice that up to five 3D textures can be concurrent 
resident of the texture memory. This explains the 
presence of a small abrupt increase in the calculated 
time when the number of 3D textures (or 
equivalently, 3D datasets) increases from 5 to 6. 

Based on our preliminary tests discussed above, 
the texture-based MDV shows a better performance 
than the isosurface-based MDV (Table I).   
However, the frame-rates are low for the both 
approaches in the context of interactivity.  Even for 
the moderate datasize of 2563 considered here, the 
frame-rate drops below 1 for six or higher number of 
datasets. In the case of isosurface, if one is interested 
to change the threshold isovalue to get a new set of 
isosurfaces during MDV process, the processing 
time becomes much longer. 

We have also calculated the rendering time for 
the proposed MDV approach, which uses 3D surface 
texture mapping combined with a planar or box 
clipping. The MDV time is very small for datasets 
up to 5 and then it increases suddenly for 6 sets and 
thereafter increases gradually as the number of 
datasets increases (Figure 7). The rapid increase can 
again be associated with the limited memory as 
discussed earlier. The results show that the proposed 
MDV improves the frame-rate substantially (Table 
I).  First of all, the frame-rate remains above one.  
Second, it is larger by a factor of 3 than that of the 

3D volume texture rendering for MDV with 6 to 25 
sets of data. This is consistent with the fact that the 
number of the slices or polygons rendered is 
dramatically reduced in the texture-based surface 
rendering, compared to that in the corresponding 
volume rendering. For simultaneous visualization of 
25 datasets, each of size 2563, the 3D surface texture 
mapping needs a couple of hundreds of polygons, 
compared to 6,000 slices (or more polygons) 
required by the 3D volume texture mapping. Third, 
the differences with respect to the isosurface-based 
MDV are even bigger (Table I). 

7 CONCLUSIONS 

In this paper, we have presented a systematic 
analysis of the multiple dataset visualization (MDV). 
Many applications require datasets to be grouped 
and analyzed together based on certain criteria such 
as samples, conditions, and time-points. In 
particular, we have performed MDV using two well-
known techniques, which are based on isosurface-
extraction and hardware-assisted texture mapping. 
Our results have shown that the both techniques 
yield low frame-rates when six or more sets of 
moderate-sized (2563) data are visualized 
concurrently. Besides the issues related to the larger 
memory requirements and limited display sizes, one 
important challenge is to make MDV interactive. 
We have proposed an interactive MDV approach in 
which the 3D surface texture mapping and clipping 
are exploited. The basic idea is to avoid the 
rendering of all the textured slices to cover complete 
or nearly complete volume data by restricting texture 
mapping onto the only externally visible surfaces of 
each volume data.  The interior of the volume is then 
explored by exposing (and subsequently rendering) 
new surfaces with dynamic manipulation of some 
form of clipping such as a planar or box clipping 
enabled. For as many as 25 sets of 2563 data 
visualized concurrently, our approach yields more 
than one frame per second, compared to much less 
than one frame per second with isosurfacing and 3D 
volume texture mapping. Our scheme is expected to 
be an effective MDV tool since it exploits the 
essence of general clipping to uncover important, 
otherwise hidden details of volume data sets to the 
extent which is often not feasible with other 
techniques. At the same time, it also benefits from 
the increasing processing power and flexibility of 
graphics processing unit. 
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Table 1: Comparison of the calculated frame-rates (number of frames per second, fps) between three different methods for 
single dataset visualization (SDV), and multiple dataset visualization (MDV) with different number of datasets.
 

 
 We plan to implement more complex clip 
geometries and extend the performance analyses to 
multiple sets of 5123 or larger data.  
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