
PROTOCOL INDEPENDENT LIGHTWEIGHT SECURE
COMMUNICATION

M. Amaç Güvensan, A. Gökhan Yavuz
Computer Engineering Department, Yıldız Technical University, Yıldız, İstanbul, Turkey

Keywords: Protocol-independent, easily configurable structure, kernel-level implementation, fast secure
communication.

Abstract: This paper introduces a new protocol independent security mechanism, called PILSC (Protocol
Independent Lightweight Secure Communication). PILSC utilizes the security feature of IPv4, defined but
not used yet, in order to have standardization in secure communication. We aim to increase the efficiency
of the secure data transfer by means of examining the shortages of different security protocols. Although
IPSec is the only protocol independent protocol, the redundant overhead and its hardly configurable
structure encourages us to design a more fast and easy configurable mechanism, whose architecture is
presented in detail in this paper. The implementation of PILSC on the kernel-level brings %75-%90
performance enhancement on cryptographic process time in comparison to the implementation of
cryptographic processes in the user-space. Moreover, secure data transfer rate of PILSC is %20-25 faster
than IPSec and SSL.

1 INTRODUCTION

Nowadays, by the agency of Internet, information
sharing is very much to happen in an easy and rapid
way. Every day, important and secure information is
travelling through LAN’s and WAN’s from one
computer to another around the world. The rapid
growth of data transfer increases the importance of
secure communication.

There are many researches to achieve secure data
transfer mainly to protect against the attacks, which
are growing rapidly. A malicious person can have
three intentions on data : monitor, interception and
construction whereas the goal of network security is
to provide confidentiality, integrity and authenticity
(Alshamsi and Saito, 2005)(Schneier,1996). In
recent years, many security protocols and
mechanisms have been proposed to accomplish this
goal.

Researchers developed many different

applications communicating securily. However,
these application-dependent architectures did not
have any standard. Therefore, new mechanisms
(SSL, TLS) were needed to be designed which
would work at the lower layers. After construction
of such transport layer mechanisms, secure

communications can be handled for any application
that runs over TCP. However, these tools can not
encrypt TCP header of transmitted packets.
Moreover, they do not support other protocols like
UDP. As a consequence of these shortages, new
approaches were taken out. The most famous, secure
and widely deployed IPSec framework is designed
to work at the Network Layer(Alshamsi and Saito,
2005).

In this paper we provide a new security

mechanism that aims protocol independent, fast and
configurable secure data transfer to increase the
efficiency of the communication. This mechanism
mainly focuses on the confidentiality. It does not
directly address the authenticity and the integrity,
although it can be extended this way very easily.

2 COMMONLY USED SECURE
COMMUNICATION METHODS

There are different types of protocols for secure
communication, each of them running at one of the
layers listed below.

• Application Layer
• Transport Layer
• Network Layer

211
Amaç Güvensan M. and Gökhan Yavuz A. (2006).
PROTOCOL INDEPENDENT LIGHTWEIGHT SECURE COMMUNICATION.
In Proceedings of the International Conference on Security and Cryptography, pages 211-218
DOI: 10.5220/0002101002110218
Copyright c© SciTePress

In the next subsections we will examine them
briefly.

2.1 Application Layer Protocols

Many different protocols, such as SSH, Secure FTP,
were developed to accomplish secure data transfer.
As an example SSH, the Secure Shell(Saito, et.al.,
2002), is widely used as a secure remote terminal
software. The SSH can make one login to a remote
computer over insecure networks, execute
commands, and transfer files between a remote
computer and a local computer(Saito, et.al., 2002). It
is very clear that SSH can only satisfy remote login
procedures securily, likewise SecureFTP can only
handle secure transmission of FTP protocol
commands and data. Other secure applications can
command only for secure data created by them. All
these applications have individual solutions for
secure communication that prevents standardization
and centric management.

Secure Socket Layer (SSL) is another application
layer protocol and compatible with applications
running only over TCP, but some modifications are
required for the applications to run over SSL. It can
not handle UDP, ICMP, etc. packets. SSL protocol
needs some negotiation data to be exchanged
between client/server applications. Although it
ensures message integrity and packet authentication,
the created overhead and hash algorithms (MD5,
SHA1) slow down the data transfer(Alshamsi and
Saito, 2005) (see Table 1).

Table 1: SSL Handshake Time (Alshamsi and Saito,
2005).

Mode Establishing
Servet Authentication 41.7 msec
Client Authentication 74.8 msec

2.2 Transport Layer Protocols

Internet Engineering Task Force (IETF) has
standardized SSL under the name Transport Layer
Security (TLS)(Yasinsac and Childs, 2001). Any
application that runs over TCP can also run over
TLS. There are many examples of applications such
as TELNET and FTP running transparently over
TLS. However, TLS is most widely used secure
transport layer below
HTTP(http://searchsecurity.techtarget.com)(RFC
2402). TLS is still insufficient to solve problems of
SSL.

TLS uses a handshake mechanism to exchange
public keys. However, data items exchanged during
TLS handshake increase the latency of HTTP
transactions(Apostoloupos, et.al., 1999).

2.3 Network Layer Protocols

IPSec (Internet Protocol Security) is a framework for
a set of protocols for security at the network or
packet processing layer of network
communication(http://searchsecurity.techtarget.com)
. IPSec provides security at network layer between
two applications independent of the protocol being
used. We can say that it is the only protocol
independent solution for secure communication.

IPsec provides two choices of security service:
AH (Authentication Header), which essentially
allows authentication of the sender of data, and ESP
(Encapsulating Security Payload), which supports
both authentication of the sender and encryption of
data as well. The specific information associated
with each of these services is inserted into the packet
in a header that follows the IP packet header
(http://searchsecurity.techtarget.com)(RFC2402)(RF
C 2406).

IPSec uses extra header information during the

secure data transfer. Its goal is to support
authenticity. However, extra data causes extra time
for the transmitted secure information as in
SSL/TLS. IPSec protocols must cope with reliability
and fragmentation issues, adding their complexity
and processing overhead. SSL/TLS, in contrast, rely
on a higher level layer TCP (OSI Layer 4) to
manage reliability and fragmentation
(http://en.wikipedia.org).

A main disadvantage of IPSec is its hardly

configurable structure. Although IPSec supports
encryption for all IP protocols, its handshake
mechanism is slower than SSL handshake
mechanism (see Table 1, 2). In most cases IPSec
does not interoperate well, so both sides of
connection are required to have the same vendor’s
devices(Alshamsi and Saito, 2005).

Table 2: IPSec Handshake Time.

Mode Establishing
Main Mode (PSK) 97 msec

Aggresive Mode (PSK) 56 msec
Main Mode (RSA) 170 msec

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

212

2.4 Comparison of the Security
Features of three Different
Layer Protocols

In the above sections we discussed frequently used
security protocols. Table 3 illustrates main features
of these protocols comparatively.

Table 3: Different Layer Protocols.

Features SSH/SecureFTP SSL/TLS IPSec
Application
Dependent Yes No No

Protocol
Dependent Yes Yes No

Handshake
Time Fast Fast Slow

Full TCP
Support No Partial

All

UDP Support No No Yes

Configurability Easy Easy Hard

3 WHY PILSC?

Cryptographic processes are time consuming.
Therefore, the balance between secure data transfer
and fast data transfer needs to be adjusted according
to the importance of data. From time to time,
security can be discarded if there is nothing to hide.
Some data, like anonymous pictures, mails etc. do
not need to be secured. On the other hand, many
other data transfers have to be done securily.

Security is not the only criteria for some data
transfers. For an example, if an application using
protocols like FTP, HTTP etc, needs fast
communication, IPSec does not completely satisfy
this necessity. IPSec, using hash algorithms
(MD5,SHA1), is designed to accomplish the
confidentiality, integrity and authenticity. However,
due to the hash algorithms and handshake
mechanisms time penalty is inevitable when
transfering secure data.

An increasing number of applications –

especially in real-time and multicast
communications – are based on the connectionless
User Datagram Protocol (UDP) that is generally
hard to secure at the transport layer. However, the
main disadvantage of security at the Internet Layer

is that IP stacks must either be changed or
extended(Oppliger,1998). PILSC (Protocol
Independent Lightweight Secure Communication)
proposes a faster mechanism than IPSec to decrease
the effects of this disadvantage.

PILSC uses security option field of IPv4. The

value “130” which is set in the option field
represents the security(Tanenbaum, 1999)
(http://www.networksorcery.com). IPv6 has a
standart feature, which can be set by a user, to
accomplish secure data transfer. PILSC implements
this built-in security feature of IPv6 for IPv4.

PILSC is an assertive mechanism to be

configured very easily. IP addresses, protocols, port
numbers and encryption algorithm can be configured
to determine an effective communication scheme for
all protocols and applications. Thus, we can talk
about a protocol and application independent, user
transparent mechanism.

A new approach of PILSC is that a user can

choose different encryption algorithms for each
protocol. Users will decide only about the level of
security for each application-level communication.
According to this decision, the system determines
the type of encryption algorithm. PILSC main goal
is to achieve computationally secure data transfer.

PILSC main characteristics are summarized in

Table 4.

Table 4: PILSC Characteristics.

1 Application Independence
2 Protocol Independence
3 Easy Configuration
4 User Transparency
5 Deterministic Approach
6 Support of various Encryption Algorithms
7 Use of Security Option of IPv4

(Tanenbaum, 1999)
8 Computationally Secure Data Transfer

4 DESIGN OF PILSC

PILSC works at the Network Layer as shown in
Figure 1. It can handle all IP datagrams including
TCP, UDP, ICMP, etc. protocols. This mechanism
fullfills its function within the Network Layer
managing the secure IP traffic.

PROTOCOL INDEPENDENT LIGHTWEIGHT SECURE COMMUNICATION

213

Figure 1: The place of PILSC on TCP Layer.

4.1 PILSC Rule Database

The rule database is the key of the PILSC
architecture. It is assumed that packet traffic flows
normally unsecure. With the help of this database
system manages secure data transfer. It is a flat file
which can be edited easily. The information;
including rule number, security option, IP adresses,
protocol type, port number, encryption type,
application mode and key, saved in this file has to be
protected against security attacks. The operating
system, where PILSC is running on, is in charge of
the protection of the rule database. The rule database
contains special tags to be interpreted quickly as
shown in Figure 2. As an example, Figure 3 shows
one real record written in the rule database. The
design of the rule database allows to establish many
different individual secure connections. It is loaded
into the memory during run-time to fasten the search
and matching process.

Figure 2: Tag specification of the Rule Database.

Figure 3: Example Record from Rule Database.

4.2 PILSC Main Steps

PILSC mechanism has four main steps (see Figure
2). The first step, called initialization, is processed
only once to create necessary data structures in
memory. All IP packets go through the second step.
However, depending to the result of the third step
only some IP packets are processed by the
cryptographic step.

Figure 4: PILSC Main Steps.

4.2.1 Initialization

Initialization constructs data structures, which are
used in the further steps. In this step the records of
the rule database are processed and loaded into the
memory to fasten the search and matching process,
after checking for user errors, sorting records and
eliminating duplicate rules defined by user.

4.2.2 Classification

In this step all IP packets are classified according to
their types, i.e. IP_BROADCAST,
IP_MULTICAST, IP_OTHERHOST... . Only
incoming/outgoing IP packets are selected to be
forwarded to the matching process. Other IP packets
are left for normal processing.

4.2.3 Matching

Matching step involves two basic steps, checking
and setting the value of security option field and
matching the records of rule database structures
created in the initialization step. Incoming and
outgoing packets follow two different paths.

CLASSIFICATION

MATCHING

CRYPTOGRAPHIC PROCESS

INITIALIZATION

Application Layer

Transport Layer (TCP,UDP)

Network Layer (IP)

Data Link Layer

 PILSC

Rule <1..n>
Security <true|false>
IP <00:00:00:00 .. ff:ff:ff:ff>
Protocol <TCP|UDP|ICMP>
Port <0.. ffff>
Encryption <0.. n>
Applmode <Server|Client>
Key <0..n>
Comment

Rule = 1;
Security = true;
IP = 193.140.1.1
Protocol = TCP;
Port = 20 – 21;
Encryption = 1;
Applmode = Server;
Key = 0xcda8;
Secure Data Transfer with the
computer having above mentioned
information. Encryption algoritm is AES

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

214

IPv4 packets have a security option field which
we use to classify encrypted packets. For outgoing
packets this field is set to “130” to indicate that the
packet is encrypted whereas incoming packets are
searched for a security option field with the value
“130” to determine their encryption status.

Outgoing packets are checked against the rule

database. If the packet matches a rule in the
database, the security option field of the packet is
set. Afterwards, the packet is handed in the
cryptographic process.

The security option field of incoming packets

indicates whether the packet needs to be checked
against the rule database or stays in the packet
queue. If the packet with the value “130” in its
security option field matches a rule in the rule
database, the packet is sent to the cryptographic
process.

In order to fasten matching process we use

“binary search” algorithm, which allows us to search
the entire database in just log2n steps in the worst
case.

4.2.4 Cryptograhic Process

This step is the last step for any exactly matched
incoming/outgoing packets captured by the
matching process. Outgoing packets are processed
by encryption function whereas incoming packets
visit the decryption function. Encryption/decryption
algorithms are determined by the rule database of
PILSC. PILSC supports different encryption
algorithms including AES, 3DES, RC5, Blowfish,
etc.

After cryptographic process is completed,
outgoing encrypted packets are delivered to the Data
Link Layer whereas incoming decrypted packets are
transferred to the Transport Layer. The block
diagram of the whole mechanism is shown in Figure
3.

Figure 5: Block Diagram of PILSC.

5 PILSC PERFORMANCE

The experiments were conducted on two machines
with the following configuration.

• Fedora Core 4 (Kernel-2.6.11)
• Intel Centrino, 1.6 GHz
• RAM 512 MB
• NIC 1000 Mbps
• Ethereal as time measuring tool

5.1 Overhead of PILSC

In order to compare the performance of PILSC and
Linux Original Packet Handler we measured transfer

Classification

Incoming
Packet

Outgoing
Packet

Matching Process

Security
Option

Set Option
Field

No
Process

Config
File

No
Process

Config
File

No
Process

Cryptographic Process

ENCRYPTION
DECRYPTION

PROTOCOL INDEPENDENT LIGHTWEIGHT SECURE COMMUNICATION

215

duration of files with different sizes transferred
using FTP protocol. Table 5 shows the results of
PILSC and Linux Packet Handler.

Table 5 : Transfer times (ms) of different size of files with
Linux and PILSC.

Transfer

 Times (ms)

File Size

LINUX PILSC

1KB 0,171 0,172

10KB 0,326 0,330

1MB 87 87,1

10MB 870,6 871

Table 6 illustrates that the overhead of PILSC is

practically negligible. PILSC has an very low
latency that this architecture can replace Linux
Packet Handler with its new and powerful features.

Table 6 : PILSC Performance.

 Delay Percentage

File Size

PILSC

1KB %0,005

10KB %1,3

1MB %0,002

10MB %0,0001

5.2 Effects of Rule Database Size on
PILSC Performance

Incoming/Outgoing packets are matched with the
records of the rule database. Hundreds of rules can
be defined so we tested PILSC system how it reacts
to an increase to the number of the rules in the rule
database. The reaction is evaluated by measuring
the transfer time of 1MB files. Table 7 shows how
the number of rules affects the performance of
PILSC. Even if with 1600 rules, transfer time
increases only by % 6 - %7. Normally it is most
unlikely to have even 1000 records in the rule
database. Due to the design of PILSC and use of
“binary search” algorithm we achieved a similar
performance like the original Linux Packet Handler.

Table 7 : Measured transfer durations of 1 MB file with
different number of files.

Transfer Duration

 (ms)

Number of Rules

PILSC

10 87,5

20 87,7

40 87,8

80 87,9

160 88

1600 93,3

5.3 Advantage of Kernel-Level
Architecture

One of our design intentions was to fasten the secure
data transfer as much as possible. Therefore, we
designed the PILSC system to be run on the kernel-
level. To see the results of running on the kernel-
level , we tested two different encryption algorithms
(RC5 and AES) both in the user-space and on the
kernel-level. In this test scenario we measured the
sum of encryption and decryption time of 1MB
random data. Figure 6 shows the implementation of
the same task between kernel-level and user-space.
Here, PILSC shows great performance enhancement
because of its implementation on the kernel-level.

5.4 Comparison of SSL, IPSec and
PILSC

To compare the performances of SSL, IPSec and
PILSC, we setup a test case where we used 1MB
random files with 128-bits and 256-bits AES
encryption, with the similar test platform used by
Alshamsi and Saito. The obtained values are
compared with the results of the test made by
Alshamsi and Saito(2005). Figure 7 shows that
PILSC is performing better than other security
mechanisms except SSL with compression using
AES-128 algorithm. In all other cases PILSC is not
only %24-%26 faster than SSL but also %18-%22
faster than IPSec.

Besides, PILSC overcomes the encapsulation
related overhead problem of IPSec. As we have
mentioned in the above sections, PILSC uses the
security feature of IPv4. Normally IPSec adds extra
header, which varies from 32 to 48 bytes, to each
transmitted datagram(Alshamsi and Saito, 2005)

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

216

(see Table 8). PILSC, on the contrary, uses the
security option field of IPv4, which adds only 12
bytes. It means that each IPSec packets carries 3-4
times more extra data than packets of PILSC.
Moreover, PILSC does not change the size of the
encrypted IP payload so PILSC has a minimum
overhead for each datagram which further fastens
secure data transfer and does not waste network
bandwidth.

Table 8: Overhead Size.

Protocol Mode Byte
Size

IPSec Tunnel Mode ESP 32
IPSec Tunnel Mode ESP and AH 44

IPSec Transport Mode ESP 36
IPSec Transport Mode ESP and AH 48

PILSC - 12

0

0,5

1

1,5

2

2,5

Time (s)

RC5-USER-LEVEL RC5-KERNEL-
LEVEL

AES-USER-
LEVEL

AES-KERNEL-
LEVEL

Series1

Figure 6: Performance Comparison of kernel-space and
user-space.

0

10

20

30

40

50

60

70

80

AES-128 AES-256

D
el

ay
 P

er
ce

nt
ag

e
(%

)

SSL
SSL+COMPRESSION
IPSEC
PILSC

Figure 7: Performance Comparison of SSL, IPSec and
PILSC.

6 CONCLUSION

The PILSC system offers an alternative secure
communication model with great advantages. This

system uses security option field in the IP header to
achieve standardization and centric management for
secure in communication in IPv4. The easily
configurable structure of PILSC allows users to
define various security rules with different
parameters including IP address, protocol, port,
encryption algorithm and encryption key.

Our main success is that PILSC performs %20-
%25 faster than SSL and IPSec. One of the main
reasons of this performance enhancement is that the
design is completely implemented on the kernel-
level instead of in the user-space. The kernel-level
implementation brings %75-%90 performance gain
on cryptographic process time in comparison to the
implementation of cryptographic processes in the
user-space.

PILSC is encryption algorithm transparent, thus,

one can use any encryption algorithm, like AES,
RC5, DES, Blowfish, etc.,. In conclusion, we
constructed a new application and protocol
independent, user transparent security model, which
can be used provide appropriate security level to any
application without a rewrite or compilation.
Moreover, this model can be implemented in many
different operating systems easily.

REFERENCES

Alshamsi, A. Saito, T.,“A technical comparison of IPSec
and SSL”, AINA 2005

Apostolopoulos, G. Peris, V. Saha, D. ,“Transport layer
security:how much does it really cost?”, INFOCOM
1999

Oppliger, R.,“Security at the Internet Layer”, Computer
1998

Saito, T.;Kito, T.; Umesawa, K.; Mizoguchi, F.;
“Architectural Defects of the Secure Shell“,DEXA
2002

Schneier, B., “Applied Cryptography Protocols,
Algorithms and Source Code in C”, Second Edition,
John Wiley & Sons, 1996

Tanenbaum, A., “Computer Networks”, Third Edition
1999

Yasinsac, A.; Childs J., (2001), “Analyzing Internet
Security Protocols”, HASE 2001

 “TLS Protocol Version 1.0” ,RFC 2246
“IP Authentication Header(AH)”, RFC 2402
 “IP Encapsulating Security Payload (ESP)”, RFC 2406
http://searchsecurity.techtarget.com, [24 Dec 2005]
http://en.wikipedia.org, [26 Dec 2005]
http://www.networksorcery.com, [10 Jan 2006]

PROTOCOL INDEPENDENT LIGHTWEIGHT SECURE COMMUNICATION

217

