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Abstract. Business process analysts prefer to build business process models
(BPM) using graphical languages like BPMN or UML Activity Diagrams. Sev-
eral researchers have presented validation methologies for such BPMs. In order
to use these verification techniques for BPMs written in graphical languages, the
models must be translated into the input language of a model checker or simu-
lation tool. By analyzing 285 BPMs (modelled as Event driven Process Chains
(EPC)), we found that checking restrictions for ”good modeling style” before
starting the translation process has three positive effects: It can make the transla-
tion algorithm much easier, can improve the quality of the BPM by substituting
”bad constructs” automatically and can help to identify erroneous models.

1 Introduction and Related Work

The correctness of a BPM is critical for the automation of business processes. It should
be possible to eliminate errors in a BPM at specification time. Simulation and model
checking are two possible techniques that can be used to identify errors. In order to
apply these techniques, it is necessary to translate the BPM into the input language of a
model checker or simulation tool.

Several authors have published algorithms for translating high-level descriptions of
BPMs into something that can be understood by model-checkers or simulation tools
(usually Petri nets or finite-state automata).

For example, the Petri-net based tool Woflan[1] can interface with several workflow
management systems and check important properties of workflow models. Matousek[2]
translates business process models defined in the XPDL language into the input lan-
guage of the SPIN model checker. UML activity diagrams are analyzed by Eshuis[3]
who uses the model checker NuSMV to verify properties and by Barjis et al.[4] who
transform them into a simulation model. Van Dongen et al. [5, 6] use reduction rules
and Petri-Net analysis for verifying event driven process chain-models. (Note that this
list of papers on formal verification of BPM is by far not complete.)

All these authors use algorithms for translating BPMs into Petri nets or finite-state
automata. These algorithms are intended to translate every BPM that is syntactically
correct. In contrast to this, we suggest to check restrictions for ”good modeling style”
before starting the translation and disallow models which failed the tests.
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In the following chapters, we will introduce a set of style rules and see that the
models which follow them are not just easier to understand, the suggested approach can
also help to identify common errors in the model.

In Sect. 2, we briefly introduce the modeling language EPC that is used in this
paper. Semantical problems that arise from the so-called non-locality of OR-joins are
discussed in Sect. 2.2. In Sect. 3, we formulate style rules.There are rules for checking
good modeling style and also transformation rules for correcting common errors au-
tomatically, as discussed in Sect. 4. Sect. 5 gives some quantitative information about
how well our approach works with ”real-life models” we have collected from several
sources.

2 Event Driven Process Chains

2.1 Informal Semantics

Event driven Process Chains (EPC) are a popular technique for business process mod-
eling. Unfortunately, their initial authors did not define their precise semantics. Instead,
the informal semantics is given roughly as follows:

EPCs consist of three kinds of elements: functions (activities which need to be ex-
ecuted, depicted as rounded boxes), events (pre- and postconditions before / after a
function is executed, depicted as hexagons) and connectors(which can split or join the
flow of control between the elements). Arcs between these elements represent the con-
trol flow. Each EPC has one or more start events which carry a token (called process
folder) when the EPC becomes enabled and ”starts to run”. These tokens are propagated
through an EPC. Events and functions have at most one incoming and at most one out-
going arc, and the tokens are simply propagated from the incoming arc to the outgoing
arc.

Connectors are used to model parallel and alternative executions. There are six types
of connectors:

AND-connectors (depicted as∧©) are used to model parallel execution. The and-
split connector propagates a token from its incoming arc to all its outgoing arcs. The
corresponding AND-join connector waits until a token has arrived on all of its incoming
arc before sending a token to the outgoing arc.

XOR-connectors (depicted as×©) can be used to model alternative execution:
A XOR-split has multiple outgoing arcs, but an incoming token will be propagated to
exactly one of them. The corresponding XOR-join waits for anincoming token on one
of its incoming arcs and propagates it to the outgoing arc.

Finally, OR-connectors (depicted as∨©) are used to model parallel execution of
one or more flows. An OR-split propagates an incoming token toone or more of its
outgoing arcs. The corresponding OR-join waits until a token arrives on each of those
incoming arcs that can deliver a token and propagates it to the outgoing arc.

Of course, the above informal description is insufficient and imprecise. However,
the informal description is sufficient to interpret the meaning of the majority of EPC
diagrams.
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Fig. 1.Example EPC with OR-join.

There are several proposals for a formalization of the semantics of EPCs: [7] gives
a mapping from EPCs without OR-connectors onto Petri nets. [8] translates EPCs for
which certain well-formedness rules must hold onto Petri nets as well. Other papers on
defining formal semantics include [9], [10] and [5].

2.2 Problems with OR-Joins

While the informal semantics discussed in 2.1 lead to a straightforward mapping of
functions, events, split connectors and XOR- and AND-join connectors to Petri nets or
other semantically well-founded models[7], there are serious problems with OR-join
connectors.

The easiest (and most common) usage for this connector is depicted in Fig. 1 which
shows a part of the process of recruiting and selecting academic staff. One, two or all
branches after the OR-split may be processed (by sending tokens). The corresponding
OR-join must wait until all tokens have arrived.

However, the decision whether more tokens can arrive on one of the incoming arcs
cannot be made locally at the OR-join. As the OR-split can send tokens to one, two
or all three outgoing arcs it is not even known whether the OR-join has to wait for
one, two or three incoming tokens. As the ”firing condition” cannot be checked locally
at the OR-join, the semantics of this connector is callednon-local. This non-locality
leads to serious problems when the formal semantics of the OR-join has to be defined.
A detailed discussion of these problems is beyond the scope of this paper. We refer the
reader who is interested in this topic to [7, 8, 11, 12, 9, 13].The non-locality of OR-joins
can even raise problems to the effect that it isimpossibleto define a formal semantics
of EPCs that is fully compliant with the informal semantics.[14] gives a nasty example
(called the vicious circle), an EPC with two OR-joins in a feedback loop, each of them
waits for the other to complete first. For this EPC, it is not possible to define a formal
semantics in a satisfying way.1

1 Some authors, for example Kindler[14, 9, 13], interpret the meaning of an XOR-join with non-
local semantics as well. We follow the approach suggested by van der Aalst[7] instead and
assume that an XOR-join has local semantics and forwards every tokenthat arrives.
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From a theoretical point of view, these problems have been solved: Kindler[9] uses
techniques from fixed point theory in order to define a semantics for EPCs (taking into
account that there are EPCs for which no suitable semantics exist.[14]). [12] and [13]
use backward marking and state space exploration techniques for calculating the en-
abledness of an OR-join. Both approaches calculate the semantics of moderately sized
models in a reasonable time. They aim to find the semantics forevery EPC where a
suitable semantics exists. Obviously this is the best possible solution from a theoretical
point of view. We argue, however, that in practice, it is not really desirable to compute
the semantics ofeveryEPC model. If a BPM is modelled in a hard-to-read style, it is
very unlikely that domain experts who use this model as a basis for communication will
find it useful.

For this reason, we askedfor which kind of modelsit is difficult to define the seman-
tics of the OR-join. As we will show in section 3, the answer was that these problems
occur for such models that have been modeled in what we call ”bad modeling style”.
Unfortunately, such models are not uncommon. One reason forthis is that EPC (and
other business process modeling languages as well) do not require proper nesting, i.e.
splits and joins does not have to occur pairwise. This is comparable with programming
languages that do not only allow structured loops (likerepeat...until etc.) but
also arbitraryGOTO-jumps. Not without a reason, [15] writes that ”the current unstruc-
tured style of business process modeling, which we can call spaghetti business process
modeling, leads to similar problems as spaghetti coding”.

Motivated by these observations, we wondered whether it would be possible to find
a small number of rules for ”good modeling style” that. . .

1. do not ”forbid” existing EPCs for which domain experts would agree on their cor-
rectness and agree on their semantics.

2. do not seem to be ”artifical” or ”surprising”. (In contrast, good modelers should
already follow these rules intuitively.)

3. can easily be checked.
4. and (as a result of their ”structuredness”) ensure that models that follow the rules

can be translated into Petri-nets using an easy-to-implement algorithm (in particular
this means that these modelshavea well-defined semantics).

The next section describes a set of rules meeting these requirements.

3 Style Rules

By analyzing EPCs from several sources (see section 5), we identified a set of ”style
rules” for OR-constructs. OR-constructs that follow theserules can be translated into
formally founded languages (like Petri nets), and our rulesdo not unnecessarily reject
too many EPCs as being not well-formed.

These style rules can be summarized in the following recursive definition for well-
structured OR-constructs. (In this definition, we abstracted away from functions and
events in the EPC, because the critical part is in the connectors):

Definition 1 (well-structured OR-constructs):
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Fig. 2.Workflow Constructs.

1. The workflow constructs shown in Fig. 2 are well-structured. While Fig. 2 a)-c)
shows only connectors with exactly 2 outgoing/incoming arcs, it is also allowed
that there are more than 2 arcs between the split connector and the join connector.

2. If a well-formed construct is ”inserted into an arc” of a well-structured construct
(see Fig. 3), the resulting construct is well-structured.

3. If an additional split is ”inserted into an arc” of a well-structured construct (see
Fig. 4, but note that the split does not have to be a XOR-split), the resulting con-
struct is well-structured.

4. If an arc of a well-structured construct is replaced by an event (to model termina-
tion of the flow of control at this point, see Fig. 5), the resulting construct is well-
structured if the graph made by the arcs, functions and events is still a connected
graph.

a well-structured
construct:

Inserting another
well-structured construct

into one of its arcs
results in a well-

structured construct again:

Fig. 3. Definition, part 2.

Roughly speaking, rules 1 and 2 make sure that each join-nodecorresponds to a
split-node. Rule 3 allows to ”jump out of a split-join construct”, but it is not allowed
to ”jump into a split-join construct”. Please note that it follows from the definition that
every join node has a corresponding split node of the same type, in particular every
OR-join must have a preceeding OR-split.

It is important to mention that the well-structuredness criterion must hold for every
construct between an OR-split and the corresponding OR-join, but not for the complete
EPC. For a given EPC, the validity of the above rules can be checked statically (i.e. no
simulation is needed).
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Fig. 5. Definition, part 4.

4 Correcting Common Errors Automatically

If a model fails the test of the style rules, often we can use the results of its analysis in
order to fix it automatically. In our analysis of existing EPCs, we found a surprisingly
large number of models with common errors that can (and should) be improved auto-
matically based on the results of a static analysis. Fig. 6 shows these common errors
and their correction.

is corrected to:

a) b) c)

something
happens

is corrected to:

something
happens

is corrected to: is corrected to:

d)

Fig. 6. Common errors and their corrections.

In particular, we found that often modelers used OR-joins when a XOR-join or an
AND-join should be used. (See Fig. 6a)-c), where we have omitted functions and events,
because the error lies in the use of connectors only). Another common error was to use
OR-split/joins instead of XOR-constructs in order to modeloptional execution (Fig. 6
d)).

While the ”bad” constructs would be allowed according to the informal semantics,
they should be changed into models with an AND / XOR-join anyway. Note that these
corrections can change a construct that is not well-structured into a well-structured one
without changing its (yet informal) semantics. However, even if thesemantics of the
model remains the same, the corrected one is more explicit and less likely to become
the source of misunderstandings and wrongful implementation.

Static analysis can also detect other errors that cannot be automatically fixed. While
in this paper, we restrict our focus to errors that are related to OR-joins, we note that
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similar style rules can be defined for finding other classes oferrors (for example con-
structs that start with an XOR-split but end with an AND-joinwhich will result in a
deadlock).

5 Case Study

We have collected 285 EPCs from different sources (23 Masters thesises, 2 term papers,
4 PhD thesises, 5 textbooks, 30 scientific papers, lecture notes from a university course,
the SAP reference model and one of our own projects – the full list of sources can be
found on the web[16]). We tolerated EPCs with small syntactical errors, but 9 graphics
called an EPC in our sources had such significant syntacticalproblems that we would
not regard them as being an EPC, we ignored them in the furtheranalysis.

For the 276 remaining EPCs, we found that:

– 190 EPCs did not use OR-joins at all.
– The remaining 86 EPCs with OR-joins contained 151 OR-join connectors. 94 of

these connectors were either used in the trivial way (with a corresponding OR-split
and without any other connectors between the OR-split and the OR-join) or in a
well-structured way according Def. 1.

The most interesting result was the analysis of the remaining 57 OR-joins from not
well-structured constructs: 45 of them fell into one of the cases depicted in Fig. 6, i.e.
they should be replaced by another join node. For 10 other notwell-structured models
with OR-joins, a closer inspection revealed that the model was faulty2, and the error
cannot be corrected automatically. This means that syntactically correct models that do
not pass our modeling style rules are most likely erroneous,and applying the style rules
can help to identify the errors almost immediately when the model has been drawn.

2 ”Faulty” means here that either the model has structural defects like deadlocks or it has an
error in the business logic. In the latter case, the problem can only be identified manually,
because understanding the business process is necessary.

Fig. 7.Results of the case study.
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There were only 2 EPCs which could be regarded as being correct (i.e. the busi-
ness process would come to the desired result), but failed tocomply with the well-
structuredness rules. However, these EPCs were also modelled in a unsatisfactory way,
in particular the soundness property as defined in [17] was violated for these models.
Both models would profit from a re-design.

Fig. 7 shows the results of our case study in a diagram.

6 Conclusion

From the above figures we conclude that almost allcorrect EPCs we have collected
followed the style rules. Moreover, if the analysis found that an EPC did not comply
with the style rules, in the vast majority of cases, this meant that in fact this model was
erroneous. Interestingly, the most of these errors could becorrected automatically as
the result of the static analysis.

We would like to stress that the fact that there were only 2 models that were correct
but failed the style check anyway is a result of our approach:We studied existing models
from various sourcesbeforeformulating the style rules. For this reasons, the coverageof
our rules for well-structuredness is much better than in existing approaches, in particular
[8]. The problem with the restrictions posed on EPCs in [8] isthat they exclude too
much existing EPCs from being regarded as well-formed. Too many models that are
well-modelled and can be used successfully in practice would be regarded as being
invalid. It seems to us that the well-formedness restrictions in [8] have been introduced
to fit the theorists’ requirements for defining an elegant algorithm for translating the
EPC into a Petri net, while they do not fit the desires of those persons who actually use
EPC diagrams.

While our style rules are less restrictive than the ones published in [8], we can still
use the idea from [8] to translate EPC models that follow the style rules into a Boolean
net, a Petri net variant (or formally spoken: to define the semantics of the EPC). The
translation into a Boolean net is a generalization from the algorithm published in [8],
details can be found in [18].

We found that requiring and checking additional restrictions for ”good modeling”
as described in Sect. 3 has three positive effects:

1. The algorithm for the translation of the model into another (formally founded)
model that can be used in model-checkers or simulation toolsbecomes easier (com-
pared with algorithms like the ones from [19] or [13]).

2. The model can be improved automatically by correcting common errors (see Sect.
4).

3. Failing the style checks most likely means that the model is erroneous. This fact
helps us to detect errors immediately after the model has been drawn (and correct
them manually).

The usage of style rules for detecting possible errors in a BPM is somewhat heuris-
tic compared with other formal methods. However, this heuristic approach allows us
to identify problems that are not detected by other methods.In particular, this was the
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case for the models that did not comply with the style rules but could not be fixed auto-
matically. Most of them had an error in the business logic. Anexample in an EPC from
one of our own projects was an electric meter that was modelled as being working and
being out of order at the same time. Finding such flaws requires the understanding the
underlying business process. Existing tools that check technical properties of a model
(like absence of deadlocks etc.) are unable to find such errors. While human action is
required to find the errors in the business logic, checking the style rules can guide us
whichmodels should be inspected manually because they most likely contain an error.

We emphasize that the proposed approach of applying additional well-formedness
checks to business process models is not restricted to EPCs.For example, some ideas
from Sect. 3 can be directly applied to YAWL[20] models. Otherlanguages will re-
quire other style checking rules. For example, the syntax for UML Activity Diagrams
allows syntactically correct but absolutely useless constructions[21]. Performing a style
check on such UML diagrams before using them will help to detect errors and sources
for misunderstandings in an early stage of a project. Such style checks can be inte-
grated into a BPM editor and used in a similar way as style checkers for software
like Splint (www.splint.org), JLint (jlint.sourceforge.net) or FindBugs
(findbugs.sourceforge.net) which are known for enhancing the code quality
of software.
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2005, Gescḧaftsprozessmanagement mit Ereignisgesteuerten Prozessketten. (2005) 176–189
19. Cuntz, N., Kindler, E.: On the semantics of EPCs: Efficient calculation and simulation. In:
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