How Style Checking Can Improve
Business Process Models

\Volker Gruhn and Ralf Laue

Chair of Applied Telematics / e-Businéss
Computer Science Faculty, University of Leipzig, Germany

Abstract. Business process analysts prefer to build business process models
(BPM) using graphical languages like BPMN or UML Activity Diagrams. Sev-
eral researchers have presented validation methologies for such BPMs. In order
to use these verification techniques for BPMs written in graphical languages, the
models must be translated into the input language of a model checker or simu-
lation tool. By analyzing 285 BPMs (modelled as Event driven Process Chains
(EPC)), we found that checking restrictions for "good modeling style” before
starting the translation process has three positive effects: It can make the transla-
tion algorithm much easier, can improve the quality of the BPM by substituting
"bad constructs” automatically and can help to identify erroneous models.

1 Introduction and Related Work

The correctness of a BPM is critical for the automation of business processes. It should
be possible to eliminate errors in a BPM at specification time. Simulation and model
checking are two possible techniques that can be used to identify errors. In order to
apply these techniques, it is necessary to translate the BPM into the input language of a
model checker or simulation tool.

Several authors have published algorithms for translating high-level descriptions of
BPMs into something that can be understood by model-checkers or simulation tools
(usually Petri nets or finite-state automata).

For example, the Petri-net based tool Woflan[1] can interface with several workflow
management systems and check important properties of workflow models. Matousek[2]
translates business process models defined in the XPDL language into the input lan-
guage of the SPIN model checker. UML activity diagrams are analyzed by Eshuis[3]
who uses the model checker NuSMV to verify properties and by Barjis et al.[4] who
transform them into a simulation model. Van Dongen et al. [5, 6] use reduction rules
and Petri-Net analysis for verifying event driven process chain-models. (Note that this
list of papers on formal verification of BPM is by far not complete.)

All these authors use algorithms for translating BPMs into Petri nets or finite-state
automata. These algorithms are intended to translate every BPM that is syntactically
correct. In contrast to this, we suggest to check restrictions for "good modeling style”
before starting the translation and disallow models which failed the tests.

* The Chair of Applied Telematics / e-Business is endowed by Deutsche Telekom AG

Gruhn V. and Laue R. (2006).

How Style Checking Can Improve Business Process Models.

In Proceedings of the 4th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 47-56
DOI: 10.5220/0002474200470056

Copyright © SciTePress

48

In the following chapters, we will introduce a set of styldesiand see that the
models which follow them are not just easier to understarastiggested approach can
also help to identify common errors in the model.

In Sect. 2, we briefly introduce the modeling language EP ithased in this
paper. Semantical problems that arise from the so-calledoaality of OR-joins are
discussed in Sect. 2.2. In Sect. 3, we formulate style rilleste are rules for checking
good modeling style and also transformation rules for atimg common errors au-
tomatically, as discussed in Sect. 4. Sect. 5 gives someitptare information about
how well our approach works with "real-life models” we havalected from several
sources.

2 Event Driven Process Chains

2.1 Informal Semantics

Event driven Process Chains (EPC) are a popular technigurifiness process mod-
eling. Unfortunately, their initial authors did not defiteir precise semantics. Instead,
the informal semantics is given roughly as follows:

EPCs consist of three kinds of elements: functions (a@wivhich need to be ex-
ecuted, depicted as rounded boxes), events (pre- and pdgtoas before / after a
function is executed, depicted as hexagons) and conndetbish can split or join the
flow of control between the elements). Arcs between theseeies represent the con-
trol flow. Each EPC has one or more start events which carrkent¢called process
folder) when the EPC becomes enabled and "starts to run’s&tokens are propagated
through an EPC. Events and functions have at most one incpanid at most one out-
going arc, and the tokens are simply propagated from thenimgparc to the outgoing
arc.

Connectors are used to model parallel and alternative &éresuThere are six types
of connectors:

AND-connectors (depicted a@) are used to model parallel execution. The and-
split connector propagates a token from its incoming ardltiisaoutgoing arcs. The
corresponding AND-join connector waits until a token hasvad on all of its incoming
arc before sending a token to the outgoing arc.

XOR-connectors (depicted a@) can be used to model alternative execution:
A XOR-split has multiple outgoing arcs, but an incoming tokeill be propagated to
exactly one of them. The corresponding XOR-join waits foiramoming token on one
of its incoming arcs and propagates it to the outgoing arc.

Finally, OR-connectors (depicted @) are used to model parallel execution of
one or more flows. An OR-split propagates an incoming tokean® or more of its
outgoing arcs. The corresponding OR-join waits until a toleives on each of those
incoming arcs that can deliver a token and propagates igtotitgoing arc.

Of course, the above informal description is insufficiend @mprecise. However,
the informal description is sufficient to interpret the miegnof the majority of EPC
diagrams.

49

check read
‘ eadiCy ‘ ‘ references ‘ ‘ publications ‘
references publications
CViread checked read

Fig. 1. Example EPC with OR-join.

There are several proposals for a formalization of the séosof EPCs: [7] gives
a mapping from EPCs without OR-connectors onto Petri n8idrdgnslates EPCs for
which certain well-formedness rules must hold onto Petts as well. Other papers on
defining formal semantics include [9], [10] and [5].

2.2 Problems with OR-Joins

While the informal semantics discussed in 2.1 lead to a sttfmgvard mapping of
functions, events, split connectors and XOR- and AND-jainreectors to Petri nets or
other semantically well-founded models[7], there areaeriproblems with OR-join
connectors.

The easiest (and most common) usage for this connectoriistdén Fig. 1 which
shows a part of the process of recruiting and selecting aczdstaff. One, two or all
branches after the OR-split may be processed (by sendireg$dkThe corresponding
OR-join must wait until all tokens have arrived.

However, the decision whether more tokens can arrive on btieedncoming arcs
cannot be made locally at the OR-join. As the OR-split cardgekens to one, two
or all three outgoing arcs it is not even known whether the j@R-has to wait for
one, two or three incoming tokens. As the "firing conditio@haot be checked locally
at the OR-join, the semantics of this connector is calied-local This non-locality
leads to serious problems when the formal semantics of thgodRhas to be defined.
A detailed discussion of these problems is beyond the schimsgaper. We refer the
reader who is interested in this topic to [7, 8, 11, 12, 9, TBE non-locality of OR-joins
can even raise problems to the effect that imgossibleto define a formal semantics
of EPCs that is fully compliant with the informal semantidst] gives a nasty example
(called the vicious circle), an EPC with two OR-joins in adback loop, each of them
waits for the other to complete first. For this EPC, it is no$gible to define a formal
semantics in a satisfying way.

! Some authors, for example Kindler[14, 9, 13], interpret the mearfing XOR-join with non-
local semantics as well. We follow the approach suggested by van def7Aatstead and
assume that an XOR-join has local semantics and forwards every ttokiearrives.

50

From a theoretical point of view, these problems have bekedoKindler[9] uses
techniques from fixed point theory in order to define a semarfitir EPCs (taking into
account that there are EPCs for which no suitable semantiss[&4]). [12] and [13]
use backward marking and state space exploration tectmiguealculating the en-
abledness of an OR-join. Both approaches calculate thergeEmaf moderately sized
models in a reasonable time. They aim to find the semanticeviery EPC where a
suitable semantics exists. Obviously this is the best ptessolution from a theoretical
point of view. We argue, however, that in practice, it is reslly desirable to compute
the semantics ofveryEPC model. If a BPM is modelled in a hard-to-read style, it is
very unlikely that domain experts who use this model as ssiascommunication will
find it useful.

For this reason, we askéalr which kind of model& is difficult to define the seman-
tics of the OR-join. As we will show in section 3, the answerswaat these problems
occur for such models that have been modeled in what we catl thodeling style”.
Unfortunately, such models are not uncommon. One reasothifois that EPC (and
other business process modeling languages as well) do quaiteeproper nesting, i.e.
splits and joins does not have to occur pairwise. This is @matge with programming
languages that do not only allow structured loops (lilkepeat . . . unti | etc.) but
also arbitraryGOTOjumps. Not without a reason, [15] writes that "the currenstiuc-
tured style of business process modeling, which we can pafjlsetti business process
modeling, leads to similar problems as spaghetti coding”.

Motivated by these observations, we wondered whether itdMo® possible to find
a small number of rules for "good modeling style” that. . .

1. do not "forbid” existing EPCs for which domain experts Wwbagree on their cor-
rectness and agree on their semantics.

2. do not seem to be "artifical” or "surprising”. (In contragbod modelers should
already follow these rules intuitively.)

3. can easily be checked.

4. and (as a result of their "structuredness”) ensure thatatsahat follow the rules
can be translated into Petri-nets using an easy-to-impieaigorithm (in particular
this means that these modélsvea well-defined semantics).

The next section describes a set of rules meeting thesereeugits.

3 Style Rules

By analyzing EPCs from several sources (see section 5), edifetd a set of "style
rules” for OR-constructs. OR-constructs that follow thesles can be translated into
formally founded languages (like Petri nets), and our rdiesiot unnecessarily reject
too many EPCs as being not well-formed.

These style rules can be summarized in the following reeadéfinition for well-
structured OR-constructs. (In this definition, we abstdaway from functions and
events in the EPC, because the critical part is in the conr&ct

Definition 1 (well-structured OR-constructs):

51

.

a) b) c) d)
OR-construct AND-construct ~ XOR-construct Iteration
(parallel flow) (alternative threads)

Fig. 2. Workflow Constructs.

1. The workflow constructs shown in Fig. 2 are well-struaturé/hile Fig. 2 a)-c)
shows only connectors with exactly 2 outgoing/incoming aitcis also allowed
that there are more than 2 arcs between the split connectdrtla join connector.

2. If a well-formed construct is "inserted into an arc” of a Wsstructured construct
(see Fig. 3), the resulting construct is well-structured.

3. If an additional split is "inserted into an arc” of a wellteuctured construct (see
Fig. 4, but note that the split does not have to be a XOR-sjii€ resulting con-
struct is well-structured.

4. If an arc of a well-structured construct is replaced by aemt (to model termina-
tion of the flow of control at this point, see Fig. 5), the reisig construct is well-
structured if the graph made by the arcs, functions and evisrtill a connected
graph.

a well-structured
construct:
Inserting another
well-structured construct @

into one of its arcs

results in a well-
structured construct again:

Fig. 3. Definition, part 2.

Roughly speaking, rules 1 and 2 make sure that each join-oodesponds to a
split-node. Rule 3 allows to "jump out of a split-join consgtt”, but it is not allowed
to "jump into a split-join construct”. Please note that itidavs from the definition that
every join node has a corresponding split node of the sane tppparticular every
OR-join must have a preceeding OR-split.

It is important to mention that the well-structurednestecion must hold for every
construct between an OR-split and the corresponding OR4poit not for the complete
EPC. For a given EPC, the validity of the above rules can belatkstatically (i.e. no
simulation is needed).

52

Fig. 4. Definition, part 3.

Fig. 5. Definition, part 4.

4 Correcting Common Errors Automatically

If a model fails the test of the style rules, often we can userdsults of its analysis in
order to fix it automatically. In our analysis of existing ER@ve found a surprisingly

large number of models with common errors that can (and sihdad improved auto-

matically based on the results of a static analysis. Fig.ddvsithese common errors
and their correction.

c) d)

something
happens

X

is corrected to: is correctedto: is corrected to: is corrected to:

something
happens

X
X

Fig. 6. Common errors and their corrections.

In particular, we found that often modelers used OR-joingmvh XOR-join or an
AND-join should be used. (See Fig. 6a)-c), where we havetethitinctions and events,
because the error lies in the use of connectors only). Anatramon error was to use
OR-split/joins instead of XOR-constructs in order to modjglional execution (Fig. 6
d)).

While the "bad” constructs would be allowed according to tifeimal semantics,
they should be changed into models with an AND / XOR-join aaywNote that these
corrections can change a construct that is not well-stradtinto a well-structured one
without changing its (yet informal) semantics. However, even if $eenantics of the
model remains the same, the corrected one is more expliditesms likely to become
the source of misunderstandings and wrongful implemeantati

Static analysis can also detect other errors that cannaitbenatically fixed. While
in this paper, we restrict our focus to errors that are rdlédeOR-joins, we note that

53

similar style rules can be defined for finding other classesrafrs (for example con-
structs that start with an XOR-split but end with an AND-jaithich will result in a
deadlock).

5 Case Study

We have collected 285 EPCs from different sources (23 Mafitesises, 2 term papers,
4 PhD thesises, 5 textbooks, 30 scientific papers, lectussrimm a university course,
the SAP reference model and one of our own projects — theistilbf sources can be
found on the web[16]). We tolerated EPCs with small syntat®rrors, but 9 graphics
called an EPC in our sources had such significant syntagiichlems that we would
not regard them as being an EPC, we ignored them in the fuathedysis.

For the 276 remaining EPCs, we found that:

— 190 EPCs did not use OR-joins at all.

— The remaining 86 EPCs with OR-joins contained 151 OR-joinnextors. 94 of
these connectors were either used in the trivial way (witbreesponding OR-split
and without any other connectors between the OR-split aadiR-join) or in a
well-structured way according Def. 1.

The most interesting result was the analysis of the remgisiihOR-joins from not
well-structured constructs: 45 of them fell into one of tlases depicted in Fig. 6, i.e.
they should be replaced by another join node. For 10 othewnlhtstructured models
with OR-joins, a closer inspection revealed that the mod&s vaulty, and the error
cannot be corrected automatically. This means that syo#digtcorrect models that do
not pass our modeling style rules are most likely erronemus applying the style rules
can help to identify the errors almost immediately when tlveleh has been drawn.

2 "Faulty” means here that either the model has structural defects likélatde or it has an
error in the business logic. In the latter case, the problem can only be iddmitnually,
because understanding the business process is necessary.

302 of the models did not follow
the style rules and have had
errors that can be corrected
automatically

7% of the models did not follow
the style rules and have had
other errors

62% of the 38% of the models 126 of the models did not follow

models Toved g ot compywih e g, bt coul o
the style rules the style rules g g

Fig. 7. Results of the case study.

54

There were only 2 EPCs which could be regarded as being ¢directhe busi-
ness process would come to the desired result), but failewiaply with the well-
structuredness rules. However, these EPCs were also raddekh unsatisfactory way,
in particular the soundness property as defined in [17] walstdd for these models.
Both models would profit from a re-design.

Fig. 7 shows the results of our case study in a diagram.

6 Conclusion

From the above figures we conclude that almostaitect EPCs we have collected
followedthe style rules. Moreover, if the analysis found that an ERCndt comply
with the style rules, in the vast majority of cases, this niéfaa in fact this model was
erroneous. Interestingly, the most of these errors coulddoeected automatically as
the result of the static analysis.

We would like to stress that the fact that there were only 2eigthat were correct
but failed the style check anyway is a result of our approddhstudied existing models
from various sourcelseforeformulating the style rules. For this reasons, the coveofige
our rules for well-structuredness is much better than istaag approaches, in particular
[8]. The problem with the restrictions posed on EPCs in [8fhiat they exclude too
much existing EPCs from being regarded as well-formed. Taaynmodels that are
well-modelled and can be used successfully in practice avbel regarded as being
invalid. It seems to us that the well-formedness restnitim [8] have been introduced
to fit the theorists’ requirements for defining an eleganbathm for translating the
EPC into a Petri net, while they do not fit the desires of thassgns who actually use
EPC diagrams.

While our style rules are less restrictive than the ones plaedl in [8], we can still
use the idea from [8] to translate EPC models that follow tiike sules into a Boolean
net, a Petri net variant (or formally spoken: to define theains of the EPC). The
translation into a Boolean net is a generalization from tger&éhm published in [8],
details can be found in [18].

We found that requiring and checking additional restrigsidor "good modeling”
as described in Sect. 3 has three positive effects:

1. The algorithm for the translation of the model into anotffermally founded)
model that can be used in model-checkers or simulation b#temes easier (com-
pared with algorithms like the ones from [19] or [13]).

2. The model can be improved automatically by correctingroom errors (see Sect.
4).

3. Failing the style checks most likely means that the mosierioneous. This fact
helps us to detect errors immediately after the model has tesvn (and correct
them manually).

The usage of style rules for detecting possible errors inldl BFsomewhat heuris-
tic compared with other formal methods. However, this hatigriapproach allows us
to identify problems that are not detected by other methiwdgarticular, this was the

55

case for the models that did not comply with the style rulgscbuld not be fixed auto-
matically. Most of them had an error in the business logice&le in an EPC from
one of our own projects was an electric meter that was matlakebeing working and
being out of order at the same time. Finding such flaws regive understanding the
underlying business process. Existing tools that chedhnieal properties of a model
(like absence of deadlocks etc.) are unable to find suchse¥dhile human action is
required to find the errors in the business logic, checkimgstiyle rules can guide us
whichmodels should be inspected manually because they most tiketain an error.

We emphasize that the proposed approach of applying additiell-formedness
checks to business process models is not restricted to EF®Csxample, some ideas
from Sect. 3 can be directly applied to YAWL[20] models. Otteamguages will re-
quire other style checking rules. For example, the synta¥JML Activity Diagrams
allows syntactically correct but absolutely useless qotibns[21]. Performing a style
check on such UML diagrams before using them will help to cleterors and sources
for misunderstandings in an early stage of a project. Suglk shecks can be inte-
grated into a BPM editor and used in a similar way as style kdrscfor software
like Splint (wwv. spl i nt. org),JLint(| i nt. sourceforge. net) or FindBugs
(fi ndbugs. sour cef or ge. net) which are known for enhancing the code quality
of software.

References

1. Aalst, W.: Woflan: a Petri-net-based workflow analyzer. Syst. Aviatlel. Simul.35(1999)
345-357
2. Matousek, P.: Verification of Business Process Models. PhD tH2&08)
3. Eshuis, R.: Semantics and Verification of UML Activity Diagrams forriftow Modelling.
PhD thesis, University of Twente, Enschede (2002)
4. Barjis, J., Shishkov, B., Dietz, J.L.: Validation of business coreptsvia simulation. In:
proceedings of the 4th International Eurosim 2001 Congress. (2001)
5. van Dongen, B.F., Aalst, W., Verbeek, H.M.W.: Verification of &P Using reduction rules
and Petri nets. In: CAISE. (2005) 372—-386
6. van Dongen, B.F., Jansen-Vullers, M.H.: EPC verification in théSARr MySAP refer-
ence model database. In: BETA Working Paper Series, WP 142, &mdhJniversity of
Technology, Eindhoven. (2005)
7. Aalst, W.: Formalization and verification of event-driven processnsh Information &
Software Technolog$1 (1999) 639—-650
8. Langner, P., Schneider, C., Wehler, J.: Relating event-drikeregs chains to boolean petri
nets. Report (1997)
9. Kindler, E.: On the Semantics of EPCs: A Framework for Resolving/ttieus Circle. In:
Business Process Management. (2004) 82-97
10. Dehnert, J., Aalst, W.: Bridging The Gap Between Business Modads\Workflow Specifi-
cations. Int. J. Cooperative Inf. Sy4B (2004) 289-332
11. Rittgen, P.: Quo vadis EPK in ARIS? Wirtschaftsinformati(2000) 27—-35
12. Wynn, M.T., Edmond, D., Aalst, W., ter Hofstede, A.H.M.: Achigy a General, Formal
and Decidable Approach to the OR-Join in Workflow Using Reset Net$CHEPN. (2005)
423-443

56

13

14.

15.

16.
17.

18.

19.

20.

21.

. Cuntz, N., Freiheit, J., Kindler, E.: On the Semantics of EPCs: fFealeulation for EPCs

with small state spaces. In: EPK 2005, Geaftéprozessmanagement mit Ereignisges-

teuerten Prozessketten. (2005) 7-23

Aalst, W., Desel, J., Kindler, E.: On the semantics of EPCs: A viaigate. In: EPK 2004,
Gesclaftsprozessmanagement mit Ereignisgesteuerten Prozesskedi). 12—79

Holl, A., Valentin, G.: Structured business process modeling (SBRMInformation Sys-
tems Research in Scandinavia (IRIS 27) (CD-ROM). (2004)

Laue, R.: ebus.informatik.uni-leipzig.ddaue (2005)

Aalst, W.: The Application of Petri Nets to Workflow Management. Tdwedal of Circuits,
Systems and Compute841998) 21-66

Gruhn, V., Laue, R.: Einfache EPK-Semantik durch praxistaoglistilregeln. In: EPK
2005, Geschftsprozessmanagement mit Ereignisgesteuerten Prozesskedtd#). 126—189
Cuntz, N., Kindler, E.: On the semantics of EPCs: Efficient calcuiaimd simulation. In:
EPK 2004: Gesciiftsprozessmanagement mit Ereignisgesteuerten ProzessketiegedPr
ings. (2004) 7-26

Aalst, W., Hofstede, A.: YAWL.: Yet another workflow languagechnical Report FIT-TR-
2002-06, Queensland University of Technology, Brisbane (2002)

Stirrle, H.: Semantics of UML 2.0 Activities. In: Symposium on Visual gaages - Human
Centric Computing (VL/HCC'04, Proceedings), IEEE (2004) 235-242

