PiXL: Applying XML Standards to Support the
Integration of Analysis Tools for Protocols

Maria del Mar Gallardd, Jesis MarineZ, Pedro Merind, Pablo NiieZ and
Ernesto Pimentél

! Departamento de Lenguajes y Ciencias de la Compariaci
University of Malaga, Spain

2 NibiSoft S.L., Malaga, Spain

Abstract. This paper presents our experiences on usimg [1] technologies

and standards for the integration of analysis tools for protocols. The core pro-
posal consists in the design of a newL -based language nam@&iXL (Proto-

col Interchange usingML Languages), responsible for interchanging the whole
specification of the protocol (data and control) among different existing tools. The
structure and flexibility okmL has proven to be very useful when implementing
new tools such as abstract model checkers. In addition, the suitability of the pro-
posal has been applied to achieve a new kind of analysis, Whi&teand new

MDA [2] methodologies have been proposed to build integrated environments for
reliability and performance analysis of Active Network protocdls.

1 Introduction

Protocols are of critical importance for the reliability of Distributed Enterprise Infor-
mation Systems. The application of formal methods during the Protocol Engineering
process is well-known and has proven to be very useful because the elevated cost and
consequences of failures among these concurrent and distributed systems are usually
unacceptable. However, there is no common standard methodology to apply formal
methods in the design and implementation of protocols, in contrast to those usually
applied in other engineering fields.

One of the most important drawbacks when using formal methods for the analy-
sis of protocols is the management of different system descriptions (models) for each
tool employed: one specification for reliability analysis, another one for performance
analysis, templates for code generation or documentation profiles, among others.

In this sense, the use of a single common formal description having all the features
required by different analysis tools would maintain all the aspects to be analyzed in
a consistent way. Unfortunately, this approach presents two main difficulties. First of
all, it would be quite expensive to adapt the existing algorithms and tools to that new
common notation and, on the other, non-expert users would have to learn how to manage
it.

3 Work partially supported by projects TIN2004-7943-C04 and TIN2005-09405-C0201

del Mar Gallardo M., Martinez J., Merino P., Nufiez P. and Pimentel E. (2006).

PiXL: Applying XM L Standards to Support the Integration of Analysis Tools for Protocols.

In Proceedings of the 4th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 57-66
DOI: 10.5220/0002479300570066

Copyright © SciTePress

58

An alternative approach to avoid the construction of nevoiilgms or the intro-
duction of new (and complex) language features consiste-ch#iedtool integration,
which has been developed mainly in two directions: one ahthalies on the construc-
tion of integrated environments to manage a group of passibalysis, using internal
translators between two tools (source and destinatiord. HRA [3] platform follows
this scheme. In ETI, the coordination among tools is obththeough the definition of
functionality taxonomies that each tool exports when iniggrated into the platform.
Thus, the environment is able to recognize common or colwlgdtinctionalities.

The second direction consists of the definitionimtermediate languages, which
usually constitute new formal methods grouping commorufestused by the tools to
be integrated. This kind of intermediate format allows titeichange of models among
usual code generators and verification or static analysls.to

Some of these languages are not user-oriented, and arédydosented to parsers
and algorithms of tools like CADP [4] or Bandera [5]. By caadt, IF [6] and Veritech
[7] approaches have created their own formal descriptiohriigue for users, which
also acts as an intermediate language.

Traditionally, one of the main disadvantages of the secqmtaach has been the
difficulty of extending the intermediate formats, becausedxpressivity of these lan-
guages is clearly coupled with the features of the tools iotegrated originally. There-
fore, it is not trivial to incorporate a new tool in order tdésadvantage of its comple-
mentary new features. This paper deals with this problemfdtes on the design of
a new intermediate format for analysis tools that is flexéeugh to allow its manip-
ulation and extension, so that the integration of tools camderstood as a seamless
process. That s, initially there will be no limits for fea#s to be incorporated, allowing
future extensions for new tools.

In order to achieve these objectives, we have used stanolaldto define the new
language. Our previous experiences in integrating toasan. [8—10] have motivated
the definition and implementation of an intermediate iftarge language calldd XL
(Protocol Interchange usinguL Languages), which is designed to represent protocols
considering the extended communicating finite-state nmec(ECFSM) modelPiXL
constitutes a new language based on a previous format used to perform abstract
model checking withsPIN [11]. We have also incorporated some guidelines of recent
Model Driven Engineering, such a®A [2], to manage the integration of complemen-
tary analysis tools [10]. WitlPiXL we benefit from a common set afvL elements
representing the usual ECFSM features, which can be eadiy@ed and automati-
cally parsed with existingmL technologies. These extensions allow the representation
of formalisms such aBROMELA for SPIN, StateCharts osDL.

The paper is organized as follows. Section 2 introduce®iKe language, describ-
ing its main features and extension capabilities. The laggiconstitutes the basis for
the implementation and integration of the tools descrilpe8dction 3. Finally, Section
4 presents our conclusions and lines of future workPofL.

59

FDTs | SDL | | STATECHARTS ‘ | PROMELA ‘

FREEERRERRRRERERRERRRRE Y
Data % | | "
Abstract Syntax Tree .
Structs, Memery Y = dsk DOM tree 5
| Accessing APT E XSL / XPath

Manipulation Transformaation APT Trandormation
XSLT file APT

traditional way . with XML .

Fig. 1. Traditional APIs for extensions vs. amL -based approach.

2 ThePiXL Language

2.1 Justification

XML is been widely used as a language to interchange data. Neless, its features
have not been exploited within the domain of analysis to®tansition-based for-
malisms likesDL, PROMELA, or variants of ECFSMs are commonly used to describe
and analyze critical systems and communication protoddisse formalisms focus on
describing the behavior of such systems, including coeaay, non-determinism, com-
munication channels or dynamic creation of different @gjtamong others. Modelling
languages share common characteristics; however, it isasyt to integrate tools that
use such notations. This section describes the usevofto represent all functional
aspects of a complex system from the analysis point of viearder to facilitate its
combined use by different (and complementary) analysistoo

Fig. 1 presents the layered architecture of a typical arsatgsl. Basically, the fig-
ure depicts the different stages through which data passdbéting processed by al-
gorithms. The upper layer consists of the graphical edhat helps users to define
analysis models using some formal notation (for instasmoe or PROMELA). The in-
termediate layer (“data structs” in the figure) represemesnost particular feature for
each tool, because it defines the way in which model data aredstNote that from
this intermediate level to the bottom, fig. 1 has been dividéaltwo columns. The left
one shows the classical way of manipulating data using progring libraries (APISs).
With this strategy, it is necessary to translate model ddtaan internal structure, like
an Abstract Syntax Tree (AST). In the best case, the desiriie tool provides an
open API with some limited extension capabilities. Usinig #P1 (and some technical
assistance), it would be possible to access the AST to upidatmol with new capa-
bilities. However, even considering this method as suéaksgsis not clear whether
extensions developed in this way could be partially reusid @ther existing or new
emerging analysis tools.

60

PROMELA v4

C (SUBSET) ‘ RELIABILITY H PERFORMANCE ‘

PiX] CORE

‘ TYPES | ‘ EXPRESSIONS ‘ ‘ ACTIONS ‘

Fig. 2. Layered architecture d#iXL XML -Schemas.

Alternatively, we propose the usexfiL to represent the original description of the
model, which additionally allows us to use powerful ass@ddools and APIs, such as
XPath andxsLT (to navigate and transformvL documents, respectively) s,mx and
DOM APIs (for parsing). With this approach (shown in the rightéi@olumn of fig. 1),
the AST is now represented as amL document which can be managed by external
developers in a more flexible way. The rest of the section sarzes thexmL and
PiXL features, along with extension capabilities of the languagd associated tools
for processindPiXL.

2.2 xML Technologies to DesigiiPiXL

The first version ofPiXL [12] was developed to descriFROMELA models inxmL
using abTD (document type definition). AlthougbTDs are not as expressive as they
should be to describe the complexity of a modelling languageapplied some strict
semantic rules that were embedded intoxut translator tPROMELA. We also found
some problems in dealing with extensions or modificationgrefiously declareatmL
elements. Alternatively, themL Schema recommendation improves the way in which
XML structures are created. It constitutes a fwiL language, allowing direckmL
tool support. The current version BfXL is based orxML Schema layers, a feature
which allows modularization and extensions, being moreresgive to describe not
only PROMELA models but also other transition-based formalisms.

Extension mechanisms provided witivL Schemas make it simple to redefine or
add new contents to existing language elements. Fig. 2 stimvarchitecture of dif-
ferent Schemas that are part of our proposal. Fiké. core is composed of three basic
XML Schemas (defining types, expressions and actiorsiaglements). Creating new
modelling components is done by reusing those provideddrctine. The figure shows
how upper Schemas rely on functionality previously defimedther Schemas. For in-
stance, the C language subset Schema defines elements fdeOaddch reuse other
elements existing in thiXL core, by including its Schemas. We also provide Schemas
describing common reliability or performance featureduider analysis tools. Dotted
boxes constitute work in progress at the moment, orientéditding a new version of
the abstract model checkesPIN, introduced in Section 3.1, to be compatible with the
new version oPROMELA [11].

Each of ouPiXL Schemas benefits from usingiL namespaces to differentiate el-
ements; that is, iPiXL it is possible to define twamML elements with the same name,

61

Fig. 3. Some elements of RiXL model: structural elements (left) and actions (right).

if they are used within a different context (its namespachjs feature is specially in-
teresting to build parsers that will manage only these elements that are interesting
for a specific tool. Théi XL core also defines complex types which constitute the base
of everyxMmL element of the same type, as commented below.

2.3 Language Deatures

A PiXL model is composed of global resources and modules (fig. t3, @fobal re-
sources describe variables, arrays, user defined typesmmagnication channels avail-
able for all the modules in the protocol model. As shown in 3gPiXL provides the
<moduleType> type to define parameterized modules. Fig. 3 makes use afdhiplex
type to create the abstraanoduleDecl> element. This is the base type to derive the
concretePiXL modules<functionDecl> (function declaration) andprocessDecl>
(process declaration), it being possible to include anyhef ¢concrete elements in-
side a<modules> element. Models may also contain requirements in the form of
<specifications> . Currently,PiXL provides thecnever> elementto model ahi
automaton. This kind of automaton is used by model checkiggrithms [13] to de-
scribe and analyze functional properties of protocols.

PiXL language includes support for expressions, statementdatadypes. For ex-
ample, binary and unary operations are available expmessaiong with data chan-
nel queries, function calls, constants or references tabi@s.PiXL statements rep-
resent actions, as shown in fig. 3 (right). The base tygatement> is redefined
to create typical actions to be included in theody> part of thePiXL modules: as-
signments, assertions or flow control structures. Reggrflow control, PiXL pro-
vides the<randomChoice> element to define non-deterministic choices. The optional

62

<model>

<configuration>

<systemlnit>
<declaration name="myChannel">
<channel size="1"><integer/><byte/></channel>
</declaration>

<codeBlock executionMode="strict-atomic">
<stmtExpr>

<run name="myProcess">

<refAsExpr>

<varReference name="myChannel"/>

</refAsExpr>

</run>
</stmtExpr>

</codeBlock>
<send mode="fifo">
<varReference name="myChannel"/>
<args><const value="1"/><const value="0"/></args>
</send>

</systemlnit>

</configuration>

</model>

Fig. 4. Some excerpts of RiXL model.

<otherwise> element shown as a dotted box in fig. 3 (right), allows exeguthis
branch only when the other options cannot be selected &histermined by checking
the guard element). Finally, data typesRiXL follow a similar hierarchy of prede-
fined types available ixML Schemas, allowing extensions. TReXL core provides
the primitive and complex types available in theRoMELA language.

A PiXL model optionally contains a system configuration to iniialglobal re-
sources, to determine which processes are started at thmlveg or to define schedul-
ing parameters such as priority semantics for process athgdFig. 4 shows part of
an example for &iXL model that defines a system configuration: the declaratidn an
use of themyChannel channel variable and the start of a process instangerpcess)
havingmyChannel as a parameter. For a complete reference of all the elememits a
able in thePiXL language along with some examples, see [14].

2.4 Extension Capabilities

Regarding structuring capabilities fiL Schemas, they allow the introduction of up-
per layers to reuse previol®XL core elements, creating new ones or redefining other
existing ones. Therefore, the introduction of new elementne without interfering
with the way in which existing tools work, sincemL technologies help to deal with

63

unknown syntax elements for a given model. At the momentPibé& core elements
allow the description of transition-based notations lik&MELA, or StateCharts di-
agrams, along with a subset 8bL. Some extensions to create suitable elements for
usual imperative languages like C and Tcl are now in progress

2.5 ProcessingPiXL

PiXL models benefit from using standard tools to manage theictstiet Therefore,
it is possible to parse such a structure in order to perfoaticsanalysis, usinggmL
parsers and query languages likeL. Another interesting feature of theuL parsing
tools is the support to build code generators, which can heidered as one of the most
important tasks in the tool integration approach.

Static analysis PiXL models may be analyzed with static analysis techniquestevhe
algorithms can be coded using typical programming langsiédgva, C++)XSLT tem-
plates or a combination of both of them. Abstract intergiretafor model checking
(described in the next section), constitutes a clear exaof@tatic analysis. Due to the
complexity of the methodxmL DOM is used to manipulate the representation of the
PiXL model as a tree in Java.

Code generators Although the use oiksL to generate code frommL documents

is frequent, there are cases in which the complexity of tls®a@atedxmL Schema
requires another kind of strategy. WiliXL we follow the Java architecture fomL
binding (JAXB) [15], a specification that associates. Schema components with their
equivalents in form of Java objects. Therefore, using a JAdwe can automatically
obtain Java source code (an API) corresponding to everyagiedefined irPiXL. This
API allows us to manage arBiXL model. Furthermore, it has been extended with our
code in order to generate input formats for different arialymls.

3 Applications of PiXL

This section summarizes our previous experiences uBiXg to integrate analysis
tools. The first experience was the development of an alvstradel checker named
aSPIN, and more recently we have been working on an integratedammient to ana-
lyze active network protocols.

3.1 Abstraction and Model Checking

Model checking is effective when dealing with a useful vengja model) of the protocol

to be verified. Byuseful we mean that the model should contain only those aspects
necessary to analyze the critical properties of the protddistract interpretation [16]

is one of the most successful techniques utilized to redueesize of models [17, 18]
and, therefore, to avoid the so-called state explosionlgnob

64

-) AbstractionTemplat Abstraction
AbstractionEngine SURLHAN R MIANG Targethanager Target

%analyzeModel] 0.7 %reference
SperformAbstraction() - ‘inseﬁContents?O tH
:getAbstract!unTemp\ateo ‘abstractContentsO <j b
setAbstractionTemplate() @updatehodel]

EventTarget | WarTarget |
|

T T S =

UMLEvents Pixlvars : AbstractOperation
Template Termplate Operationanager | g « BOnrerencs +parent
\ ﬁ b +children
urg.omg.ugﬂ org.dorhtij StateMachine Pix|Expression

UmlPackage Document Operation

Fig. 5. A framework to perform abstraction xmL models.

For the effective application of this new technique, a catelsupport for the
automatic abstraction of models and properties is neede{B]lwe presented the
aSPINtool, a distribution that integrates the functionality yideed in thespiN model
checker with abstraction capabilitiesspPIN performs a source-to-source transforma-
tion of PROMELA models and.TL properties. This approach benefits from completely
reusing thespiN algorithms to verify the resulting abstract model.

In order to perform the syntactic transformation of the miada flexible way, the
abstraction module (a Java application) is independetttesgiN tool [12]. Both tools
interchange models usirg XL as the integration language which has full support to
represenPROMELA. From the implementation point of viewspPINis the first abstrac-
tion tool based oxML standards able to perform automatic abstractiorsROMELA.

The abstraction GUI consecutively selects variables tds&racted from a list sup-
plied by the user. For each variable, the (concrete) omersiin which it appears are
analyzed and substituted by their corresponding absteastons extracted from a pre-
defined library. The abstraction engine makes use of a standa. API to parse a
PiXL model, transform it and generate its corresponding akisteasion to be veri-
fied with SPIN. The abstraction engine is composed of specialized datetstes (Java
objects) to manage suitable reference$i{L variables and expressions. It has also
containers to deal with an abstraction library; that is, llection of abstract operations
to replace the original ones after the abstraction proddssabstraction library is also
stored inxmL format, according to an extension of tReXL grammar. All the syntac-
tic transformations are made within tReXL document tree in memory, using XPath
queries.

In order to manage not only data abstractions but also evsttations, the ab-
straction API ofaspiNwas completely redefined in [9]. The new objective was toappl
the same concepts to abstrastL StateCharts behavior diagrams [19], since currently
commercial tools likeSTATEMATE are also offering model checking capabilities. The
final version of the current abstraction API is partially tégd in fig. 5, wherePiXL
elements may be embedded into existing representations of amL StateChart.

65

3.2 Reliability and Performance Analysis

In [10] we proposed the use ofbA andXxML as a way to integrate existing tools for
the analysis of new emerging telecommunication servicethd paper we presented a
methodology to obtain suitable input for the tools to bedné¢ed, avoiding the need
for several hand-made specifications. We suggested thef ugemnediate representa-
tion languages wittxmL support for the development of parsers and code generators.
In order to test the viability of our approach, we chose thedio of telecommunica-
tion services, particularly the Active Network paradign@]2which offers flexibility

to develop new telecommunication services without the stamdardization process
usually required by international institutions (ITU, IETEEE or ANSI).

Following our proposal in [10] we are now usifJXL models to represent ac-
tive code and consideringbA guidelines to build platform-independent models and
platform-specific ones [2]. The former models are generAL models that represent
the expected behavior of active code. The latter are modHiZtl models which in-
corporate those features needed by specific destinatitionphes (analysis tools). We
are working on generating inputs for reliability and penfiance tools (as described in
[10]).

4 Conclusions and Future Work

Intermediate languages are usually employed to integeatis tvithin the context of

protocol analysis. However, such formats (formal methads)prepared to deal exclu-
sively with specific tools. Thus, it is difficult to integratenew one without making

significant modifications of the language and associated API

This paper has introduce@iXL, a domain-specific language to connect analysis
tools for protocolsPiXL is anxML language that exploits all the benefits of this ma-
ture technology: open tools and widely accepted standdius.main features of the
language allow the extension of new expressions, statenfactions) and types, using
the characteristics and possibilities available withxive Schema. Up to nowRiXL
has been applied to the development of abstract model ctseaikd integrated environ-
ments to perform different analysis of communication pcots. The novelty in using
xML andMDA within the Protocol Engineering domain greatly faciligatbhe evolution
of tools and the development of new extensions. It is alsdglwooting that the use of
XML (andPiXL) technologies may support the introduction of formal téghas within
the Software Engineering community.

Our future work is focused on introducing more flexible wagslefine and em-
bed properties iPiXL models. Currently, we have support to defingcBi automata
but having other logical formalisms xmL would be of great interest. Moreover, the
right combination of models, properties and analysis resdoside a singlexmL docu-
ment will ensure consistency among tools and a way of keegiadysis as unified as
possible.

66

References

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

. W3Consortium: Extensible Markup Language (XML) 1.0 (Secontidy. Available at

http://www.w3.org/XML/ (2000)

. Object Management Group: MDA guide version 1.0.1. omg/2@®8D(2003)
. ETI: The ETI Platform. Available at http://eti.cs.uni-dormund.de @00
. Fernandez, J., Garavel, H., Kerbrat, A., Mateescu, R., MounieSighireanu, M.: CADP:

A Protocol Validation and Verification Toolbox. In Springer, ed.: Pextiags of the 8th
Conference on Computer-Aided Verification. Volume 1102. (1996430

. Hatcliff, J., Dwyer, M., Pasareanu, C., Robby: Foundations@b#mdera abstraction tools.

In: The Essence of Compution. Number 2566, Springer Verlag (2003-203

. Bozga, M., Fernandez, J., Ghirvu, L., Graf, S., Krimm, J.ulier, L.: IF: A Validation

Environment for Timed Asynchronous Systems. In Springer-Veraly: Proceedings of
CAV'00. Volume 1855 of Lecture Notes in Computer Science. (2003)-547

. Katz, S.: Faithful Translations among Models and Specification®rbt. of Formal Meth-

ods Europe. (2001)

. Gallardo, M., Martinez, J., Merino, P., Pimentel, E.: A Tool for &bstion in Model Check-

ing. Software Tools for Technology Transte(2004) 165-184

. Gallardo, M., Martinez, J., Merino, P., Pimentel, E.: Abstracting Ubébavioral diagrams

for verification. Chapter in In Hongji Yang. In Publishing, |.G., edbft®are Evolution with
UML and XML. (2004)

Gallardo, M.M., Maiinez, J., Merino, P., Rodriguez, G.: Integration of Reliability and Per-
formance Analyses for Active Network Services. Volume 133 of Etegtr Notes in Theo-
retical Computer Science. (2005) 217-236

Holzmann, G.: The SPIN Model Checker. Primer and Referbtameual. Addison Wesley
(2003)

Gallardo, M., Martinez, J., Merino, P., Rosales, E.: Using XML tplement Abstraction for
Model Checking. In: Proc. of ACM Symposium on Applied Computind(2) 1021-1025
Clarke, E., Grumberg, O., Peled, D.: Model Checking. MITsB(2000)

University of Malaga: The PiXL Project Web Page. Available at
http://www.lcc.uma.es/"gisum/fmse/pixI| (2006)
Sun-MicroSystems: Java Architecture for XML Binding (JAXB). alable at

http://java.sun.com/webservices/jaxb/ (2006)

Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice hfodstatic analysis of
programs by construction or approximation of fixpoints. In: ACM Symp.Principles of
Programming Languages. (1977) 238252

Havelund, K., Visser, W.: Program model checking as a nevdtrém Software Tools for
Technology Transfer (STTT). Volume 2. (2002) 8—20

Dams, D., ed.: Abstraction in Software Model Checking: Principles Practice. Num-
ber 2318 in Lecture Notes in Computer Science, 9th Int. SPIN Workd¥lodel Checking
Software (2002)

Harel, D., Pnueli, A., Schmidt, J., Sherman, R.: On the forntabsg¢ics of statecharts. In:
Proccedings of the 2nd IEEE Symposium on Logic in Computer Sciers, York, IEEE
Press (1987) 54-64

Calvert, K.L., Bhattacharjee, S., Zegura, E., Sterbenz, J.eciiins in Active Network
Research. IEEE Communications MagazZa®£1998) 72—78

