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Abstract. Self-similarity can successfully characterize and forecast intricate, 
non-periodic and chaos time series avoiding the limitation of traditional 
methods on LRD (Long-Range Dependence). The potential principals will be 
found and the future unknown time series will be forecasted through foregoing 
training. Therefore it is important to mine the LRD by self-similarity analysis. 
In this paper, mining self-similarity of time series is introduced. And the 
practical value can be found from two cases study respectively for season-
variable trend forecast and network traffic. 

1 Introduction 

The time series is a series of observation data according to time-based sequence 
whose value changes with time. The time result is recorded by fixed time interval 
which is an important characteristic of time series. It is widely applied in real life for 
time series such as the price fluctuation in specified period for stock market, the 
arrival time of network service, the birth-rate number for population every year etc. 

Time series analysis is that random data series variable with time is analyzed 
through probability and statistic methods [1]. Following the continuity principle of all 
objects, the future development trend is speculated by statistic analysis based on 
history data. This means the following two things. One is that no sudden or jump 
movement occurred but progressing with relative short steps. The other is the past and 
current phenomena potentially imply the evolution tendency for the future. Therefore 
in normal circumstance, the valid result will be achieved for short-term forecast from 
time series analysis. To extend into further future there is great limitation for long-
term forecast. 

In order to analyze data of time series, the visual inspection tools are used to 
record data value and distinguish the characteristics and behaviours of certain 
phenomena. For example, to study the increase or decrease direction of the data, the 
specific pattern changed with seasons, the related progress should be generated from 
proper mathematics model and the forecast analysis is made based on the produced 
data. 

There are many traditional model for time series analysis, such as ARMA (Auto-
Regression Moving Average) and ARIMA (Auto-Regression Integrated with Moving 
Averages). ARMA is a linear model for stationary time series analysis and ARIMA is 
widely used for non-stationary series. The common characteristics of the two models 
are that the LRD between the values for large time intervals can’t be represented. 
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However the LRD characteristics can’t be neglected. Because the time series 
attributes will be changed with cumulative effects[2]. 

 Self-similarity can successfully characterize and forecast intricate, non-periodic 
and chaos time series avoiding the limitation of traditional time series analysis on 
LRD. The potential principals will be found and the future unknown time series will 
be forecasted through foregoing training. Therefore it is important for us to mine the 
LRD by self-similarity analysis.  

2 Self-similarity in Time Series [3] 

If one time series meets the following equation (1), then it is self-similar.  

( ) ( )
d ty t a y

a
α≡  (1) 

 

Here 
d
≡  suggests that both sides of this equation from the statistical sense are 

completely identical. That is to say, after the following transformation， 

1）on the X axis, t→t/a   

2）on the Y axis, 
the distribution function of a self-similar process named y(t) which carried 

parameter α still remains unchanged. In this equation the exponent α is called self-

yay α→

Fig. 1. Self-similarity of a time series. 

132



 

similarity parameter. 
However, in fact it is almost impossible to judge whether the two processes 

mentioned above are completely identical or not. Because the strict standard requests 
that the two processes  possess the completely same distribution function, which 
means not only the arithmetic mean and variance, but also all the higher order 
moments are identical. Thus a relative weakened standard is usually adopted to make 
an approximately approached judgment to above equality. That is just checking 
whether the average mean and variance, such as first moment and second moment, of 
the equation (1) are equal or not.  

 Fig.1 shows the self-similarity of time series. 
(a) A time series with self-similar is shown on the two windows with different 

time-scale n1 and n2. 
(b) Amplify the smaller window with time-scale n2 according to time-scales n1. 

Let’s pay an attention to the two figures in (a) and (b).When the different amplified 
multiple Mx and My are adopted respectively in X axis and Y axis, the fluctuation 
curves are so close. 

(c) In the possible distribution function P(y) for the two variables y 
respectively from windows in (a). Here s1 and s2 shows the standard deviation of the 
two distribution functions respectively. 

(d) The log-log relationship between s and n which is the window size. 
The parameter α in equation (1) needs to be abstracted from a given time series. 

And the following is the calculation formula. 
α=lnMy/ln Mx                                                                                                   (2) 

The following equation (3) will be created when put the two parameters Mx=n2/n1，
My =s2/s1 into the corresponding position in the equation (2) 

 
                       (3) 

 
In order to analyze the self-similarity characteristic of given time series, the 

following steps should be done. 
1) Divide any given observation window into many same size and independent 

subsets. To achieve the more reliable value, the average of s in the all subsets 
should be calculated. 

2) Repeat the above process continually. Then draw these s-n couples on the log-
log plot to estimate the self-similarity parameter α. 
The method described above can be no more than applied to certain non-

stationary time series, especially to these with slow movement trend. This means not 
all non-stable time series can be well handled with this method. Concerning the self-
similarity parameter, which is also named the Hurst parameter, of most of non- 
stationary time series can be precisely estimated through Whittle Estimator method, 
which is the practical application of maximal possibility method[4][5]. Whittle 
Estimator can provide the confidence interval of the Hurst parameter. 

Take the FGN (fractional Gaussian Noise) for example to show the application 
of Whittle Estimator in the Hurst parameter estimation. If the data derive from the 
FGN procession, the estimated value of Hurst can be gained through minimizing the 
value of function Q (H). In the following equation (4), the H is equal to α 
mentioned above. 
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              (4) 

Therein )(ωNI is the estimated value of a spectral density got out through 
Fourier series transformation on time period N, which is defined in the discrete time { 
Xt, t=0,1,2,3……}by a random process X(t). 

 
                           (5) 

 
 

),( HS ω in (6) is the spectral density. 

S(ω,H)≈ Cf|ω|1-2H, ω → 0         (6) 
                                                                            

The estimated value of Cf is shown in (7).  
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So for the discrete state, equation (8) comes into existence. 
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An equation (9) will be built by putting the value of function (7) into the right 
location in function (8). 
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Therein the value of ωj can be 2π/N,4π/N,…, 2π. 
In this way, the value of Hurst parameter can be estimated through minimizing 

the value of equation (9). 

3 Self-similarity Applied in Data Mining 

The data mining of time series, specifically, implies that the useful information can be 
got in the database composed of time-based sequence or event whose value changes 
with time. It includes trend analysis, similarity query, mining of sequential patterns 
and periodic-mode mining [6]. 

3.1 Self-similarity Applied in Trend Analysis 

The long-term trend change of time-based sequence reflects a kind of trend curve 
during a relative longer time interval. Given a group of fixed data{xt, t=0,1,2,…}, the 
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normal methods deciding sequence trend can be used to calculate n-order moving 
average according to the following arithmetic mean equation sequence. 

 
 

             (10) 
 
 
Smoothness of time series by moving average can decrease the abnormal 

fluctuation, which deviates from the original sequence. After that, in equation (10), 
the right n-order weighted average made by adopting weighted average can reduce the 
influence of the extreme data on sequential trend of the whole time series. The trend 
curve can also be got though curve fitting by least square method. 

Both methods mentioned above can not find the LRD characteristic. The time 
series, whose value changes with seasons, is the typical ones with long-range 
dependency. The season-variable time series indicates that there is an identical or 
almost identical mode which appears repeatedly in the special months of the several 
consecutive years. For example, dramatic traffic increasing during Spring Festival is 
an almost identical mode for statistical data based on every year. Long-range 
dependency is an inherent attribute for self-similarity. In order to analyze the long-
range dependency trend, self-similarity method should be introduced. In general, the 
season-variable time series forecast methods can be described as followings. 
3) Based on the self-similarity analysis on time series from the previous years, the 

Hurst parameter will be created. And consequently the principal trend for the 
whole time series can be built. 

4) Combined with the traffic increasing of current recorded year, let’s just make the 
corresponding amplitude shift. Then the rough trend curve will be presented with 
season change.  

Thus traffic forecast analysis will be made for long-term traffic. 

3.2 Self-similarity Applied in Mining Network Traffic  

Self-similarity is an important character of web traffic [7]. That means it is always 
possible for the larger peak period occurs. In order to mine the behaviour pattern on 
different time scales, traditional methods can’t capture the most distinct 
characteristics of the web traffic. Therefore self-similarity analysis must be made to 
mine the recorded time series on different time scales. 

Figure 2 is the collected data from China Mobile, which represent the number of 
packets outputting from VPN (Virtual Private Networks) gateway every 5 minutes 
during work-hours. A tool for self-similarity and LRD analysis is designed in [8] and 
the Hurst parameter is 0.937 with 95% confidence intervals, which is shown in Figure 
3. 

From Figure 3, we can observe that the VPN gateway is provided with self-
similarity arrival. So no classical queuing theory can be applied to evaluation the 
system performance. For they all suppose the Poisson arrival. This will avoid the 
optimal performance estimation of the studied systems. 
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4 Conclusions and the Future Works 

The traditional methods can get the valid results for short-term forecast from time 
series analysis. To extend into further future there is great limitation for long-term 
forecast. In this paper, how to do self-similarity analysis on time series is introduced. 
Suggestions on applying self-similarity into data mining are put forward. From the 
mentioned two cases, both how to forecast time series changed with seasons and how 
to mine the behaviour patterns on different time scales are discussed. The detailed 
implementation will be studied in the further research. 
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Fig. 2. Packet Number of the VPN Gateway  

Fig. 3. Hurst Parameter  
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