
Simulator for Real-Time Abstract State Machines

P. Vasilyev1,2⋆

1 Laboratory of Algorithmics, Complexity and Logic, Department of Informatics, University
Paris-12, France

2 Computer Science Department, University of Saint Petersburg, Russia

Abstract. We describe a concept and design of a simulator of Real-Time Ab-
stract State Machines. Time can be continuous or discrete. Time constraints are
defined by linear inequalities. Two semantics are considered: with and without
non-deterministic bounded delays between actions. Simulation tasks can begen-
erated according to descriptions in a special language. The simulator will be used
for on-the-fly verification of formulas in an expressible timed predicate logic.
Several features facilitating the simulation are described: external functions defi-
nition, delays settings, constraints specification, and others.

1 Introduction

Usually the process of software development consists of several main steps: analysis,
design, specification, implementation, and testing. The steps can be iterated several
times and accompanied by this or that validation. We are interested in the validation by
simulation of program specifications with respect to the given requirements. We con-
sider real-time reactive systems with continuous or discrete time. Time constraints are
expressed by linear inequalities and programs are specifiedas Abstract State Machines
(ASM) [1]. The requirements are expressed in a First Order Timed Logic (FOTL) [2, 3].
The specification languages we consider are very powerful. Even rather simple, “basic”
ASMs [4] are sufficient to represent any algorithmic state machine with exact isomor-
phic modeling of runs. This formalism bridges human understanding, programming and
logic. The ASM method has a number of successful practical applications, e.g., SDL
semantics, UPnP protocol specification, semantics of VHDL,C, C++, Java, Prolog (see
[5, 6]).

To express properties of real-time ASMs we use FOTL. This logic is clearly unde-
cidable. There exist practical decidable classes [2, 3]. Weknow from practice that most
errors in software can be revealed on rather simple inputs ; for reactive systems this
means that finite models of small complexity are usually sufficient to find very serious
errors.

Thus, we design our simulator as some kind of partial, bounded, on-the-fly model-
checker. We consider two semantics, both with instantaneous actions, one without de-
lays between actions, another one, more realistic, with bounded non deterministic de-
lays between actions (by action here we mean an update of the current state, we make
it more precise below). The simulator checks the existence of a run for a given input,

⋆ Partially supported by ECO-NET project No 08112WJ.

Vasilyev P. (2006).
Simulator for Real-Time Abstract State Machines.
In Proceedings of the 4th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
202-205
DOI: 10.5220/0002501002020205
Copyright c© SciTePress



outputs details of the run that can be specified in a special language, and checks the re-
quirements formula for this run. There are several implementations of ASM interpreter
or compiler, such as the Microsoft AsmL [7], Distributed ASML [8], Michigan inter-
preter, Gem-Mex. These systems do not deal with real-time ASMs or predicate logic
requirements.

2 Timed ASM

In this paper by an ASM we meantimed basic Gurevich abstract state machine. A
timed ASM is a tuple(V, IS, Prog), whereV is a vocabulary,IS is a description of
the initial state, andProg is a program. The vocabulary consists of a set of sorts, a
set of function symbols, and a set of predicate symbols. The following pre-interpreted
sorts are included:R is the set of reals;Z is the set of integers;N is the set of natural
numbers;Bool is the set of Boolean values:true andfalse; T = R+ special time sort;
Undef = {undef} is a special sort used to represent theundefinedvalues.

All functions of an ASM are divided into two categories:internalandexternal func-
tions. Internal functions can be modified by the ASM. External functions cannot be
changed by the ASM. On the other hand, the functions can also be divided intostatic
anddynamic functions. Dynamic external functions represent the input of the ASM.A
static function has a constant interpretation during any run of the ASM. Among the sta-
tic pre-interpreted functions of the vocabulary are arithmetical operations, relations, and
boolean operations. The equality relation “=” is assumed tobe defined for all types. The
timed ASMs use a special time sortT and a nullary functionCT : → T which returns
the current “physical” time. Only addition, subtraction, multiplication and division by
a rational constant, standard equality and inequality relations are supported.

The program of the timed ASM is defined in a usual way as a sequence of instruc-
tions of several types. The main constructions are:while-do and repeat-until loops,
forall andchoosestatements, etc.: a singleupdate rulein the form of an assignment
A = {f(x1, . . . , xk) := θ}; a parallel blockof update rules[A1; . . . ;Am] which are
executed simultaneously (this block is called anupdate block); a sequential blockof
update rules{A1; . . . ;Am} which are executed in the order they are written; aguarded
rule, whereGuardi, i ∈ 1, . . . , n are guard conditions andAi, i ∈ 1, . . . , n + 1 are
statements:
if Guard1 then A1 elseif Guard2 then A2 . . . else An+1

3 Simulator Configuration

An external function definition looks as follows:f : X → Y, wheref is its name,
X is an abstract sort,T is the pre-interpreted time sort,Y is an abstract sort or pre-
interpreted sortR. The sortX can be enumerated as a sequence of natural numbers.
Thus, we can define a function as follows:f(i) := (ti1, f

i
12; t

i
2, f

i
23; . . . ; t

i
k, f i

kk+1
; . . .)

wherei ∈ 1, . . . , n, n is the cardinality of the sortX , t1, t2, . . . , tk, . . . are start time
points of intervals,f i

12, f
i
23, . . . , f

i
kk+1

, . . . are function values defined on the time left-
closed right-open intervals. Each function can be also defined by an expression.

203



All updates in ASM [1] are instantaneous. In reality, it may take some time to per-
form an action. We model this by non-deterministic bounded delays between actions
that remain instantaneous. Some ideas of managing the process of time propagation al-
ready appeared, for example in [9, 10]. We define a function oftime delayδ : S → T
on the set of all statements and expressions which is denotedby S. For the sequential
composition the delay is calculated as a sum of delays of eachfunction. For the parallel
composition the delay is the maximum of the delays of all functions. The delays can
be used in different ways. For example, we can have only two different time delays for
slow and fast operations making difference between operations with internal andshared
variableswhich are usually slower than operations with internal variables of a process.
Another way is to specify delays manually for each function or operation.

We consider a nondeterministic situation as a tuple of all possible choices with sev-
eral ways of element selection. The method should be defined in the configuration file
of the simulator by one assignment (the abbreviationndr stands for non-determinisms
resolution). It can be the first (last), minimal (maximal) element of the tuple.

To express requirements for ASMs one needs a powerful logic.In this work we con-
sider a First Order Timed Logic (FOTL) [2, 3] for representing the requirements. For
the Lamport’s Bakery [11] the following properties are required:Safety: ∀pq ∀t(p 6=
q → ¬(CS◦

p(t) ∧ CS◦

q (t))

Liveness:∃c1c2 ∀pt(n◦

p(t) > 0 → ∃t′(t < t′ < t + c1 · δint + c2 · δext ∧ CS◦

p(t′)))
whereδint > 0, δext > 0 (in the degenerated case we should use another formula).

4 Timed Abstract State Machine Semantics

In brief the process of simulating a system defined by an ASML specification in our
approach consists of the following steps: 1. Calculation ofthe next time point in which
at least one guard is true. 2. State update, which is represented by one or more statement
blocks. 3. Evaluation of constraints before and after the state update.

In the sequential mode of execution the next operation is taken, all required calcula-
tions are made and the state of the machine is changed. The current time value is simply
incremented by the value of current instruction time delay.

We consider a block of parallel instructions as a block ofsub-machinesrunning in
the same way as the top-level ASM but in its own space of states. Each sub-machine
has its own state change. The total change of state will be calculated as a union of state
changes of all sub-machines. If all pairwise intersectionsof state changes are empty
then they are consistent. If a parallel block is looped it canhappen that there are no
instructions for the current time moment to be executed. To avoid infinite looping we
have to wait for the closest time moment at which at least one of the guards turns to
true and some instructions can be executed. If such a time point exists it is calculated
and if it is not the time to exit the loop, the instructions concerning this time point are
executed. A case when all the delays are set to zero is detected by the simulator and a
warning message can be sent to the user.

204



5 Conclusion

In this paper several new important features concerning thesemantics of the ASM based
language were described. These features will help us to build and verify specifications
of real-time systems via a customizable simulation of the models. The most impor-
tant parameters of simulation can be configured, i.e. external functions, time delays
for language operations and constructs, non-determinism resolving. The whole project
is aimed at development of a simulator for the described version of ASM language
extension where the results of the current work are used. At the moment a simulator
prototype is ready, which implements most of the specified features: lexical and syn-
tactical analysis, building a parse tree containing full information, loading definitions
of external functions from a file, loading the simulation parameters, simulation of most
constructs and operations of Timed ASML, output the resultsof simulation.

References

1. Gurevich, Y.: Evolving algebras 1993: Lipari Guide. In Egon, B.,ed.: Specification and
Validation Methods. Oxford University Press (1995) 9–36

2. Beauquier, D., Slissenko, A.: A first order logic for specification of timed algorithms: Basic
properties and a decidable class. Annals of Pure and Applied Logic113(2002) 13–52

3. Beauquier, D., Slissenko, A.: Periodicity based decidable classes ina first order timed logic.
(Annals of Pure and Applied Logic) 38 pages. To appear.

4. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms. ACM Trans-
actions on Computational Logic1 (2000) 77–111

5. Huggins, J.: (University of Michigan, ASM homepage) http://www.eecs.umich.edu/gasm/.
6. Börger, E. Sẗark, R.: Abstract State Machines: A Method for High-Level System Design and

Analysis. (2003)
7. Foundations of Software Engineering — Microsoft Research, Microsoft Corporation: AsmL:

The Abstract State Machine Language. (2002) http://research.microsoft.com/fse/asml/.
8. Soloviev, I. Usov, A.: The language of interpreter of distributed abstract state machines.

Tools for Mathematical Modeling. Mathematical Research.10 (2003) 161–170
9. Börger, E. Gurevich, Y., Rosenzweig, D.: The bakery algorithm: yetanother specification

and verification. In B̈orger, E., ed.: Specification and Validation Methods. Oxford University
Press (1995) 231–243

10. Cohen, J., Slissenko, A.: On verification of refinements of timed distributed algorithms. In
Gurevich, Y., Kutter, P., Odersky, M., Thiele, L., eds.: Proc. of the Intern. Workshop on Ab-
stract State Machines (ASM’2000), March 20–24, 2000, Switzerland,Monte Verita, Ticino.
Lect. Notes in Comput. Sci., vol. 1912, Springer-Verlag (2000) 34–49

11. Lamport, L.: A new solution of Dijkstra’s concurrent programmingproblem. In: Communi-
cations of ACM, 17(8). (1974) 453–455

205


