Simulator for Real-Time Abstract State Machines

P. Vasilyev:2*

1 Laboratory of Algorithmics, Complexity and Logic, Department of Imf@tics, University
Paris-12, France
2 Computer Science Department, University of Saint Petersburg, Russia

Abstract. We describe a concept and design of a simulator of Real-Time Ab-
stract State Machines. Time can be continuous or discrete. Time cotsaen
defined by linear inequalities. Two semantics are considered: with anduwitho
non-deterministic bounded delays between actions. Simulation tasks gam-be
erated according to descriptions in a special language. The simulatoewitidzl

for on-the-fly verification of formulas in an expressible timed predicatgclo
Several features facilitating the simulation are described: externaidasaefi-
nition, delays settings, constraints specification, and others.

1 Introduction

Usually the process of software development consists @raéwmain steps: analysis,
design, specification, implementation, and testing. Tlepssttan be iterated several
times and accompanied by this or that validation. We areésted in the validation by
simulation of program specifications with respect to theegivequirements. We con-
sider real-time reactive systems with continuous or disciiene. Time constraints are
expressed by linear inequalities and programs are speasiédstract State Machines
(ASM) [1]. The requirements are expressed in a First Ordeeti Logic (FOTL) [2, 3].
The specification languages we consider are very powerdgin Eather simple, “basic”
ASMs [4] are sufficient to represent any algorithmic statelnige with exact isomor-
phic modeling of runs. This formalism bridges human underding, programming and
logic. The ASM method has a number of successful practicalicgions, e.g., SDL
semantics, UPnP protocol specification, semantics of VHDIC++, Java, Prolog (see
[5. 6]).

To express properties of real-time ASMs we use FOTL. Thiglagclearly unde-
cidable. There exist practical decidable classes [2, 3]kkWdsv from practice that most
errors in software can be revealed on rather simple inputstefactive systems this
means that finite models of small complexity are usually ciegffit to find very serious
errors.

Thus, we design our simulator as some kind of partial, bodnde-the-fly model-
checker. We consider two semantics, both with instantameactions, one without de-
lays between actions, another one, more realistic, witmted non deterministic de-
lays between actions (by action here we mean an update ofithent state, we make
it more precise below). The simulator checks the existefigeran for a given input,

* Partially supported by ECO-NET project No 08112WJ.

Vasilyev P. (2006).

Simulator for Real-Time Abstract State Machines.

In Proceedings of the 4th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
202-205

DOI: 10.5220/0002501002020205

Copyright © SciTePress

203

outputs details of the run that can be specified in a specigliage, and checks the re-
quirements formula for this run. There are several impldaatéans of ASM interpreter
or compiler, such as the Microsoft AsmL [7], Distributed AEN8], Michigan inter-
preter, Gem-Mex. These systems do not deal with real-timsI$\8r predicate logic
requirements.

2 Timed ASM

In this paper by an ASM we meaimed basic Gurevich abstract state machire
timed ASM is a tuplgV, IS, Prog), whereV is a vocabulary/S is a description of
the initial state, and’rog is a program. The vocabulary consists of a set of sorts, a
set of function symbols, and a set of predicate symbols. dhewing pre-interpreted
sorts are includedR is the set of realsZ is the set of integersy is the set of natural
numbers;Bool is the set of Boolean valueBue andfalse 7 = R special time sort;
Undef = {undef} is a special sort used to representtinelefined/alues.

All functions of an ASM are divided into two categoriésternalandexternal func-
tions Internal functions can be modified by the ASM. External tionwts cannot be
changed by the ASM. On the other hand, the functions can astiMided intostatic
anddynamic functionsDynamic external functions represent the input of the A3M.
static function has a constant interpretation during anyafithe ASM. Among the sta-
tic pre-interpreted functions of the vocabulary are aritinal operations, relations, and
boolean operations. The equality relation “=" is assumdaktdefined for all types. The
timed ASMs use a special time sd@ftand a nullary functiol®7" : — 7 which returns
the current “physical” time. Only addition, subtractionyhtiplication and division by
a rational constant, standard equality and inequalitytioela are supported.

The program of the timed ASM is defined in a usual way as a seguehinstruc-
tions of several types. The main constructions arkile-do and repeat-until loops,
forall andchoosestatements, etc.: a singlgdate rulein the form of an assignment
A = {f(z1,...,zr) := 0}; aparallel blockof update rulegA;;...; A,,] which are
executed simultaneously (this block is calledupdate block a sequential bloclof

update rule§ A4;; . ..; A,, } which are executed in the order they are writteguarded
rule, whereGuard;,i € 1,...,n are guard conditions and;,i € 1,...,n + 1 are
statements:

if Guard; then A; elseif Guards then A, ... else A, 14

3 Simulator Configuration

An external function definition looks as followg: : X —), where f is its name,
X is an abstract sorf] is the pre-interpreted time sog, is an abstract sort or pre-
interpreted sorfR. The sortX’ can be enumerated as a sequence of natural numbers.

Thus, we can define a function as follow&:) := (1, fia; th, fosi-- -5 th, fhppri---)
wherei € 1,...,n, nis the cardinality of the sott’, ¢,,t,, ..., tx,... are start time
points of intervalsf{,, f3s,. .., fi,.1.- .. are function values defined on the time left-

closed right-open intervals. Each function can be also ddfbby an expression.

204

All updates in ASM [1] are instantaneous. In reality, it make some time to per-
form an action. We model this by non-deterministic boundeldygs between actions
that remain instantaneous. Some ideas of managing thegsro€éme propagation al-
ready appeared, for example in [9, 10]. We define a functidimad delays : S — 7T
on the set of all statements and expressions which is deigté&d For the sequential
composition the delay is calculated as a sum of delays of eextion. For the parallel
composition the delay is the maximum of the delays of all fioms. The delays can
be used in different ways. For example, we can have only tfferdint time delays for
slow and fast operations making difference between opersitivith internal anghared
variableswhich are usually slower than operations with internalalles of a process.
Another way is to specify delays manually for each functioogeration.

We consider a nondeterministic situation as a tuple of alkfime choices with sev-
eral ways of element selection. The method should be defi#utkiconfiguration file
of the simulator by one assignment (the abbreviatidn stands for non-determinisms
resolution). It can be the first (last), minimal (maxima@mlent of the tuple.

To express requirements for ASMs one needs a powerful lbgthis work we con-
sider a First Order Timed Logic (FOTL) [2, 3] for representithe requirements. For
the Lamport’s Bakery [11] the following properties are reqd: Safety: Vpg Vt(p #
q— ~(CSy(t) NCS; (1))

Liveness3cyco Vpt(ng(t) > 0 — Jt'(t <t < t+c1 - dint + 2 - Sext N CSH(L)))
whered;,,; > 0,d.,; > 0 (in the degenerated case we should use another formula).

4 Timed Abstract State Machine Semantics

In brief the process of simulating a system defined by an ASkkcHication in our
approach consists of the following steps: 1. Calculatiothefnext time point in which
at least one guard is true. 2. State update, which is repegbby one or more statement
blocks. 3. Evaluation of constraints before and after thtesipdate.

In the sequential mode of execution the next operation ertall required calcula-
tions are made and the state of the machine is changed. Tiemttime value is simply
incremented by the value of current instruction time delay.

We consider a block of parallel instructions as a blockuf-machinesunning in
the same way as the top-level ASM but in its own space of stétgsh sub-machine
has its own state change. The total change of state will lnelleééd as a union of state
changes of all sub-machines. If all pairwise intersectiohstate changes are empty
then they are consistent. If a parallel block is looped it bappen that there are no
instructions for the current time moment to be executed.vidainfinite looping we
have to wait for the closest time moment at which at least drtheoguards turns to
true and some instructions can be executed. If such a tim# pgists it is calculated
and if it is not the time to exit the loop, the instructions ceming this time point are
executed. A case when all the delays are set to zero is detegtihe simulator and a
warning message can be sent to the user.

205
5 Conclusion

In this paper several new important features concerningeheantics of the ASM based
language were described. These features will help us td buill verify specifications
of real-time systems via a customizable simulation of theletl® The most impor-

tant parameters of simulation can be configured, i.e. eatdtmctions, time delays
for language operations and constructs, non-determirgswlving. The whole project
is aimed at development of a simulator for the describediamersf ASM language

extension where the results of the current work are usedhétrioment a simulator
prototype is ready, which implements most of the specifiedui@s: lexical and syn-
tactical analysis, building a parse tree containing fulbimation, loading definitions
of external functions from a file, loading the simulationgraeters, simulation of most
constructs and operations of Timed ASML, output the resaflmulation.

References

1. Gurevich, Y.: Evolving algebras 1993: Lipari Guide. In Egon, &l,: Specification and
Validation Methods. Oxford University Press (1995) 9-36
2. Beauquier, D., Slissenko, A.: A first order logic for specificatibtirned algorithms: Basic
properties and a decidable class. Annals of Pure and Applied 1d§i¢2002) 13-52
3. Beauquier, D., Slissenko, A.: Periodicity based decidable classe#rat order timed logic.
(Annals of Pure and Applied Logic) 38 pages. To appear.
4. Gurevich, Y.: Sequential abstract-state machines capture sedjatgaidghms. ACM Trans-
actions on Computational Logic(2000) 77-111
5. Huggins, J.: (University of Michigan, ASM homepage) http://wwwseemich.edu/gasm/.
6. Borger, E. Sirk, R.: Abstract State Machines: A Method for High-Level Systemidveand
Analysis. (2003)
7. Foundations of Software Engineering — Microsoft Research, Maft&Corporation: AsmL:
The Abstract State Machine Language. (2002) http://research.micoaso/fse/asml/.
8. Soloviev, I. Usov, A.: The language of interpreter of distributedralbs state machines.
Tools for Mathematical Modeling. Mathematical Reseafdh(2003) 161-170
9. Borger, E. Gurevich, Y., Rosenzweig, D.: The bakery algorithm:ayetther specification
and verification. In Brger, E., ed.: Specification and Validation Methods. Oxford Unitsers
Press (1995) 231-243
10. Cohen, J., Slissenko, A.: On verification of refinements of timetilalised algorithms. In
Gurevich, Y., Kutter, P., Odersky, M., Thiele, L., eds.: Proc. &flittern. Workshop on Ab-
stract State Machines (ASM’2000), March 20-24, 2000, Switzerlstwhte Verita, Ticino.
Lect. Notes in Comput. Sci., vol. 1912, Springer-Verlag (2000) 34-49
11. Lamport, L.: A new solution of Dijkstra’s concurrent programmgngblem. In: Communi-
cations of ACM, 17(8). (1974) 453-455

