
TRAP/BPEL
A Framework for Dynamic Adaptation of Composite Services

Onyeka Ezenwoye, S. Masoud Sadjadi
School of Computing and Information Sciences, Florida International University, 11200 SW 8th Street, Miami, Florida, USA

Keywords: TRAP/BPEL, generic proxy, self-management, dynamic service discovery.

Abstract: TRAP/BPEL is a framework that adds autonomic behavior into existing BPEL processesautomaticallyand
transparently. We define anautonomicBPEL process as a composite Web service that is capable of responding
to changes in its execution environment (e.g.,a failure in a partner Web service). Unlike other approaches,
TRAP/BPEL does not require any manual modifications to the original code of the BPEL processes and there
is no need to extend the BPEL language nor its BPEL engine. In this paper, we describe the details of the
TRAP/BPEL framework and use a case study to demonstrate the feasibility and effectiveness of our approach.

1 INTRODUCTION

Service Oriented Computing (SOC) allows for
reusable components to be dynamically discovered
and integrated to create new applications. Web ser-
vices play a vital role in facilitating the realization of
the SOC paradigm. With Web services, autonomous,
self-contained and remotely accessible components
can be integrated to create composite services. The
characteristics of Web services that make them so
suitable for SOC also present big challenges to their
reliability. The autonomy of the services in any in-
teraction gives rise to concerns about their continued
availability and trust (i.e.,those service will actually
do what they are expected to do). The best-effort de-
livery method of the communication channels (i.e.,
the Internet) through which these service interact is
known to be unreliable. Also, the availability of the
numerous of new services that are being developed
often makes composite services quickly obsolete and
leads to frequent redevelopment.

As an example, nodes on computational Grids
are currently being exposed as services to ensure
openness. Grid programming environments (e.g.,
Globus) allow for the creation of applications that in-
tegrate Grid services for coordinated problem solving
(e.g., for Bioinformatics and Computational Chem-
istry). For such applications, when a Grid service

partner fails, the whole application fails and has
to be restarted even though there are other nodes
on the Grid that can substitute for the failed ser-
vice(Slominski, 2004). This problem is made more
sever by the fact that such applications are often long
running. This concern is a major characteristic of
composite services, but it is often not addressed in
the specification of composition languages. There is
therefore, a need to make composite services adapt-
able to the changes in their execution environment.
Our work focuses on adapting composite services de-
fined in the Business Process Execution Language
(BPEL), a common XML-based language for com-
posing aggregate Web services. Specifically, we fo-
cus on how totransparentlyadapt existing composite
services to encapsulateautonomicbehavior (Kephart
and Chess, 2003).

The rest of this paper is is structured as follows.
Section 2 provides some background information.
Section 3 motivates the need for generic proxies in
more detail. Section 4 describes the TRAP/BPEL
framework. In section 5, we use a case study to
demonstrate the feasibility and effectiveness of our
approach. Section 6 compares TRAP/BPEL to some
related work. Finally, some concluding remarks and a
discussion on further research directions are provided
in Section 7.

216
Ezenwoye O. and Masoud Sadjadi S. (2007).
TRAP/BPEL - A Framework for Dynamic Adaptation of Composite Services.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 216-221
DOI: 10.5220/0001277002160221
Copyright c© SciTePress

2 BACKGROUND

In this section, we provide some background informa-
tion that is necessary for understanding the rest of the
material.

2.1 Bpel, Autonomic Computing, and
Transparent Shaping

BPEL is an XML-based workflow language that can
be used to create composite services that comprise
other Web services An XML grammer that defines a
BPEL process is interpreted and executed by a vir-
tual machine called a BPEL engine. Although the
BPEL specification provides constructs for fault and
event handling, such language constructs are not suf-
ficient to make a BPEL process deal with the failure
of its partner services. Although this is a major prob-
lem for composed services, the management of such
non-functional issues is assumed to be outside the lan-
guage specification.

Autonomic computing(Kephart and Chess, 2003)
promises to solve the management problem by em-
bedding the management of complex systems inside
the systems themselves, freeing the users from po-
tentially overwhelming details. The ultimate goal
of autonomic computing is to createself-managing
systems that are able to function with very lit-
tle direct human intervention. A Web service is
said to be autonomic if it encapsulates some auto-
nomic attributes (Gurguis and Zeid, 2005). Auto-
nomic attributes include (1):Self-Configuration, for
the automatic configuration of components; (2)Self-
Optimization, for automatic monitoring and control;
(3) Self-Healing, for automatic discovery, and man-
agement of faults; and (4)Self-Protection, for auto-
matic identification and protection from attacks.

As BPEL’s programming model does not suf-
ficiently allow for the encapsulation of self-
management behavior, we use Transparent Shap-
ing (Sadjadi and McKinley, 2005) to augment BPEL
processes with such behavior.Transparent Shapingis
a programming model that provides dynamic adap-
tation in applications. Its goal is to adaptexisting
applications in order to better respond to changes in
their non-functional requirements or execution envi-
ronment. In transparent shaping, an application is
augmented withhooksthat intercept and redirect in-
teraction toadaptive code. An adapted application is
said to beadapt-ready. The adaptation is transparent
because it preserves the original functional behavior
and does not tangle the code that provides the new
behavior (adaptive code) with the application code.

2.2 Robustbpel

RobustBPEL (Ezenwoye and Sadjadi, 2006) is a
framework that was developed as part of the trans-
parent shaping programming model. Using Ro-
bustBPEL, an adapt-ready version of an existing
BPEL process can be automatically generated to pro-
vide better fault tolerance. An adapt-ready process
generated by Robust-BPEL is capable of monitor-
ing the invocation of its Web service partners and
will upon their failure invoke a proxy service through
which autonomic behavior is provided.

To understand how the static proxy works , in Fig-
ure 1 we provide architectural diagrams that show
the differences between the sequence of interac-
tions among the components in a typical aggregate
Web service (Figure 1(a)), and in RobustBPEL (Fig-
ure 1(b)). In a typical composite Web service, first a
request is sent by the client program, then the aggre-
gate Web service interacts with its partner Web ser-
vices (i.e.,WS1 to WSn) and responds to the client.
If one of the partner services fails, then the whole pro-
cess is subject to failure. To avoid such situations, an
adapt-ready process monitors the behavior of it part-
ners and tries to tolerate their failure by forwarding
the failed request to its proxy, which in its turn tries to
find another service to substitute for the failed one.

(a) Architecture of a typical aggregate Web service.

(b) Aggregate Web service interaction using astaticproxy.

Figure 1: Sequence of interaction among the components
in a BPEL process and its adapt-ready version in Ro-
bustBPEL.

As monitoring all the partner Web services might
not be necessary, the developer can select only a sub-
set of Web service partners to be monitored. For ex-
ample, in Figure 1(b)WSi andWSj have been se-

TRAP/BPEL - A Framework for Dynamic Adaptation of Composite Services

217

lected for monitoring. The adapt-ready process mon-
itors these two partner Web services and in the pres-
ence of faults it will forward the corresponding re-
quest to thestatic proxy. The static proxy is generated
specifically for this adapt-ready process and provides
the same port types as those of the monitored Web
services (i.e.,pti andptj). The static proxy in its turn
forwards the request to a substitute Web service. In-
formation about the substitute services is “hardwired”
into the code of this proxy at the time it is generated.

3 WHY TRAP/BPEL?

Although the RobustBPEL framework is able to pro-
vide some self-healing and self-optimizing behavior,
it is limited in the level of adaptive behavior it can pro-
vide. For instance, after a service is determined to be
faulty, there are no mechanisms to prevent the process
from invoking that service again. Normal operation is
only intercepted if a fault occurs upon the invocation
of a partner Web service (Figures 1(b)), thus adaptive
behavior is only exhibited at the occurrence of a fault.
RobustBPEL cannot be used to provide a choice for
service invocation if some other service is determined
to provide better QoS than the default service in the
composition.

In addition to the above limitation, each proxy
service generated by RobustBPEL isspecificto one
BPEL process and cannot be reused for any other pro-
cesses. Therefore, it is not possible to provide a com-
mon autonomic behavior to a set of services. This
lack of support for code reuse and for scalability that
comes from having numerous redundant proxies is
counter to the promise of service-oriented computing.
In the rest of this paper, we show how TRAP/BPEL
addresses the above limitations by using ageneric
proxy.

4 THE FRAMEWORK

For the TRAP/BPEL framework we have developed
a genericproxy that can interact with one or more
adapt-ready BPEL processes.Some behavioral policy
is used in the proxy to guide the adaptive behavior for
each monitored service. In this section, we show the
architecture of the generic proxy and explain how an
adapt-ready BPEL process is generated.

4.1 High-Level Architecture

Figure 2 illustrates the architectural diagram of
TRAP/BPEL at run time. As can be seen from the

figure, several adapt-ready BPEL processes can be
assigned to one generic proxy, which augments the
BPEL processes with self-management behavior. The
generic proxy uses a look-up mechanism to query a
registry service at runtime to find out about available
services. But unlike the static proxy (Figure 1(b)), the
generic proxy has a standard interface which bears no
relation to the interfaces of the monitored services.
The generic proxy has as interfaceptg that is able to
receive requests for any monitored Web service (e.g.,
WS11 andWSkn.

Figure 2: Architectural diagram showing the sequence of
interactions among the components in TRAP/BPEL.

The generic proxy can provide self-management
behavior either common to all adapt-ready BPEL pro-
cesses or specific to each monitored invocation us-
ing some high-level policies. At this point of our re-
search, these high-level policies are specified in a con-
figuration file that is loaded at startup time into the
generic proxy. We plan to allow runtime modifica-
tion to these high-level policies in a future version of
TRAP/BPEL. Figure 3 shows an example policy file
where each unique monitored invocation can have a
policy specified under aservice element. TheInvo-
keName element (line 4) has a value that uniquely
identifies a monitored invocation in an adapt-ready
BPEL process. The generic proxy checks all inter-
cepted invocations and tries to match these invoca-
tions with the specified policies. If it finds a policy for
that invocation, the proxy behaves accordingly, other-
wise it follows its default behavior.

If a policy exists, the generic proxy may take one
of the following actions according to the policy: (1)
invoke the service being recommended in the policy
(line 6); (2) find and invoke another service to sub-
stitute for the monitored service; and (3) retry the in-
vocation of the monitored service in the event of its
failure (line 10). The policy also specifies the time
interval between retries (line 12). The default behav-
ior of the proxy is to consult the registry to find and
invoke an appropriate a service that implements the

WEBIST 2007 - International Conference on Web Information Systems and Technologies

218

1. <Policy>

2. <Service>

3. <!--name for monitored invocation-->

4. <InvokeName value="WS-Invoke"/>

5. <!--WSDL for a default substitute-->

6. <WsdlUrl pref="true" value="f.wsdl"/>

7. <!--timeout for monitored invocation-->

8. <Timeout seconds="2"/>

9. <!--number of retries on failure-->

10. <MaxRetry value="2"/>

11. <!--time to wait between retries-->

12. <RetryInterval seconds="5"/>

13. </Service>

14. <Service>

15. ...

16. </Service>

17.</Policy>

Figure 3: A portion of a policy file for the generic proxy.

same interface as the monitored invocation.

4.2 Service Discovery

A key part of our framework lies on the ability to find
services to substitute for failed services. The abil-
ity to describe the capabilities of Web services in an
unambiguous and machine-readable form is vital for
service requesters to be able to find suitable services.
The two aspects that the World Wide Web Consortium
currently defines for the full description of Web ser-
vices are; (1) syntactic functional description as rep-
resented by WSDL (2) the semantics of the service
and is not currently covered by a specification (Akki-
raju et al., 2005). At this time, the WSDL specifi-
cation (WSDL 1.1) focus on the description of the
service interface. This type of description presents a
limitation to automatic service discovery and compo-
sition because the interface description of a service is
not sufficient to determine what a service does. There-
fore, service discovery with the current specification
requires some human input at some point in the selec-
tion process.

Semantic description of Web services can greatly
improve service discovery and application integra-
tion since it would provide a means to expressively
describe the capabilities of a service in an unam-
biguous machine-readable language. Although the
current WSDL specification does not support se-
mantic service description, there are several research
projects (Martin et al., ; Patil et al.,) that aim to ad-
dress the issue. Despite the push towards the adop-
tion of standards for semantic description, the cur-
rent UDDI (Universal Description, Discovery and In-
tegration) specification does not support the adequate
representation of semantic information in service reg-

istries since the current focus is on syntax. This limi-
tation is however being addressed for future versions
of the specification (Akkiraju et al., 2005).

Figure 4: The interaction between the applications and the
proxy.

5 CASE STUDY

In this section, we use a case study to demonstrate the
feasibility and effectiveness of TRAP/BPEL. For the
case study, we use two sample BPEL process.

5.1 The Bpel Processes

The Google-Amazon business process integrates the
Google Web service for spelling suggestions with the
Amazon E-Commerce Web service for querying its
store catalog. The business process takes as input a
phrase (keywords) which is sent to the Google spell-
checker for corrections. If any word in the input
phrase is misspelled, the Google spell-checker sends
back as reply the phrase with the misspelled words
corrected (the phrase is unchanged if the spellings are
correct). The reply from the Google service is used to
create keyword search of the Amazon bookstore via
the Amazon Web service.

The Loan-Approval process is a commonly used
sample BPEL process. The Loan-Approval BPEL
process is an aggregate Web service composed of two
other Web services: a low-risk assessor service and a
high-risk assessor service. The Loan-Approval pro-
cess implements a business process that uses its two
partner services to decide whether a given individual
qualifies for a given loan amount. Both the business
process and the risk assessor services are deployed
locally. The Loan-Approval BPEL process receives
as input a loan request. The loan request message
comprises two variables: the name of the customer
and the loan amount. If the loan amount is less than

TRAP/BPEL - A Framework for Dynamic Adaptation of Composite Services

219

$10,000, then the low-risk assessor Web service is in-
voked, otherwise the high-risk assessor Web service
is invoked.

5.2 The Experiment Setup and Results

We used the TRAP/BPEL generator to generate the
adapt-ready versions of the two sample processes. As
illustrated in Figure 4, for the Google-Amazon pro-
cess, we have selected the Google spell checker ser-
vice and for the Loan Approval process, we have se-
lected the high-risk assessor service (Approver) to be-
come adaptable. As can be followed in the figure, a
policy is used to forward the intercepted calls to their
original services (labels 1, 2, and 3) and use a substi-
tute service in case an original service fails (labels 4
and 5 for the Loan Approval process).

To evaluate the performance of the TRAP/BPEL,
we configured the client applications to sequentially
make calls to their corresponding processes. Due to
page limitations, we only show the performance chart
for the Google-Amazon process in Figure 5. As the
X-axis of the chart shows the number of total conse-
quent calls is 50. The initial runs were made against
the original BPEL process. The results are plotted in
the chart in Figure 5 under theoriginal curve. Simi-
larly, the results of the observed completion times of
the adapt-ready version are plotted in Figure 5 under
theadaptedcurve.

Figure 5: The response time of the Google-Amazon Pro-
cess.

For the Loan-Approval process, the average com-
pletion time for the original process is approximately
0.06 seconds and for its adapt-ready version is 0.11
seconds. For the Google-Amazon process, the aver-
age completion time for the original process is ap-
proximately 0.82 seconds and for its adapt-ready ver-
sion is 0.86 seconds. Although we expected that there

be some performance overhead in process execution
time caused by redirecting invocations through the
proxy, this experiment shows that the overhead intro-
duced by the TRAP/BPEL framework (approximately
0.045 seconds) is negligible.

6 RELATED WORK

Baresi’s approach (Baresi et al., 2004) to monitor-
ing involves the use of annotations that are stated
as comments in the source BPEL program and then
translated to generate a target monitored BPEL pro-
gram. In addition to monitoring functional require-
ments, timeouts and runtime errors are also moni-
tored. Whenever any of the monitored conditions in-
dicates misbehavior, suitable exception handling code
in the generated BPEL program will intervene. This
approach is much similar to ours in that monitoring
code is added after the original BPEL process has
been produced. This approach achieves the desired
separation of concern; however, it requires modifying
the original BPEL processesmanuallyand the anota-
tion is scattered all over the original code. The man-
ual modification of BPEL code is not only difficult
and error prone, but also hinders maintainability.

Charfi et al (Charfi and Mezini, 2005) use an
aspect-based container to provide middleware sup-
port for BPEL. The two inputs to the framework are
the BPEL process and a deployment descriptor. The
descriptor specifies the non-functional requirements
(e.g., security). All interactions go through the con-
tainer which plugs in support for non-functional re-
quirements. Aspects can be generated using the de-
ployment descriptor to specify the pointcuts. Aspects
specify what and how SOAP messages can be mod-
ified to add, for instance, security information. This
framework is different form our because it requires a
purpose built BPEL engine. Also, the adaptation is
done at a much lower level (the messaging layer).

AdaptiveBPEL (Erradi et al., 2005) is much like
Charfi (Charfi and Mezini, 2005), with the only ma-
jor differences being that AdaptiveBPEL proposes to
augment anexistingBPEL engine with aspect weav-
ing capabilities to address QoS concerns and adapt
processes logic. In addition, adaptation is driven by
a policy negotiated at runtime between the interacting
endpoints.

Erradi et al. (Erradi and Maheshwari, 2005) pro-
vide reliability through a policy driven middleware
named Web Services Message Bus (wsBus), which
is used to transparently enact recovery actions. The
wsBus intercepts the execution of composite services
and transparently provides recovery services based on

WEBIST 2007 - International Conference on Web Information Systems and Technologies

220

an extensible set of recovery policies (e.g., retry, skip,
and use equivalent services). The wsBus provides
exception-handling and recovers from failures such as
service unavailability and timeout. This approach is
modular and separates the business logic of the pro-
cess from the QoS requirements, however, adaptation
is done at a much lower messaging layer. Our adapta-
tion is at the application level, which simplifies main-
tenance of the adaptive process.

Finally, BPELJ (Blow et al., 2004) is an extension
to BPEL. The goal of BPELJ is to improve the func-
tionality and fault tolerance of BPEL processes. This
is accomplished by embedding snippets of Java code
in the BPEL process. This however requires a spe-
cial BPEL engine, thereby limiting the portability of
BPELJ processes. The works mentioned above, al-
though are able to provide some means of monitoring
for aggregate Web services, some require extensions
to be made to the language or execution engine, others
hinder maintainability by performing adaptation at a
much lower messaging level.

7 CONCLUSION

We presented an approach to transparently incorpo-
rating self-management behavior into existing BPEL
processes. Using the TRAP/BPEL framework, we
demonstrated how a generic proxy can be used to en-
capsulate autonomic behavior through the use of self-
management policies. Finally, with the use of a case
study, we evaluated the performance hit introduce by
the TRAP/BPEL framework, which is negligible.

In our future work, we plan to address the follow-
ing issues. First, we plan to provide a GUI for de-
veloping high-level policies and enabling a developer
to modify the policies at runtime. Second, we real-
ized that the task of adding self-management behav-
ior for multiple service collaborations is made even
more complex if the collaborating services arestate-
ful. We plan to investigate this problem by using Grid
services, which are stateful Web services. Finally, we
plan to study the existing ranking systems for service
discovery.

ACKNOWLEDGEMENTS

This work was supported in part by IBM and in
part by the National Science Foundation grants OCI-
0636031 and REU-0552555.

REFERENCES

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt,
M.-T., Sheth, A., and Verma, K. (2005). Web service
semantics - WSDL-S.W3C member submission.

Baresi, L., Ghezzi, C., and Guinea, S. (2004). Smart moni-
tors for composed services. InICSOC ’04: Proceed-
ings of the 2nd international conference on Service
oriented computing, pages 193–202. ACM Press.

Birman, K. P., van Renesse, R., and Vogels, W. (2004).
Adding high availability and autonomic behavior to
web services. InProceedings of the 26th Interna-
tional Conference on Software Engineering (ICSE
2004), pages 17–26, Edinburgh, United Kingdom.
IEEE Computer Society.

Blow, M., Goland, Y., Kloppmann, M., Leymann, F., Pfau,
G., Roller, D., and Rowley, M. (2004). Bpelj: BPEL
for Java.White Paper.

Charfi, A. and Mezini, M. (2005). An aspect based process
container for BPEL. InProceedings of the 1st Work-
shop on Aspect-Oriented Middleware Developement,
Genoble, France.

Erradi, A. and Maheshwari, P. (2005). wsBus: QoS-aware
middleware for relaible web services interaction. In
IEEE International Conference on e-Technology, e-
Commerce and e-Service, Hong Kong, China.

Erradi, A., Maheshwari, P., and Padmanabhuni, S. (2005).
Towards a policy driven framework for adaptive web
services composition. InProceedings of International
Conference on Next Generation Web Services Prac-
tices.

Ezenwoye, O. and Sadjadi, S. M. (2006). Enabling robust-
ness in existing BPEL processes. InProceedings of
the 8th International Conference on Enterprise Infor-
mation Systems.

Gurguis, S. and Zeid, A. (2005). Towards autonomic web
services: Achieving self-healing using web services.
In Proceedings of DEAS’05, Missouri, USA.

Kephart, J. O. and Chess, D. M. (2003). The vision of auto-
nomic computing.IEEE Computer, 36(1):41–50.

Martin, D., Paolucci, M., McIlraith, S., Burstein, M., Mc-
Dermott, D., McGuinness, D., Parsia, B., Payne, T.,
Sabou, M., Solanki, M., Srinivasan, N., and Sycara,
K. Bringing semantics to web services: The OWL-S
approach. InThe First International Workshop on Se-
mantic Web Services and Web Process Composition.

Patil, A., Oundhakar, S., Sheth, A., and Verma, K.
METEOR-S web service annotation framework. In
The Thirteenth International World Wide Web Confer-
ence.

Sadjadi, S. M. and McKinley, P. K. (2005). Using trans-
parent shaping and web services to support self-
management of composite systems. InProceedings
of the International Conference on Autonomic Com-
puting (ICAC’05), Seattle, Washington.

Slominski, A. (2004). On using BPEL extensibility to im-
plement OGSI and WSRF grid workflows. InGGF10
Workshop on Workflow in Grid Systems, Berlin, Ger-
many.

TRAP/BPEL - A Framework for Dynamic Adaptation of Composite Services

221

