
EVOLUTION STYLES IN PRACTICE
Refactoring Revisited as Evolution Style

Olivier Le Goaer, Mourad Oussalah, Dalila Tamzalit
LINA, University of Nantes, My Street, Nantes, France

Djamel Serai
Department of Computing, Ecole des Mines de Douai, Douai, France

Keywords: Software Evolution, Modeling, Components, Design, Languages.

Abstract: The evolution of pure software systems remains a time-consuming and error-prone activity. But whatever
the considered domain, recurring practices can be captured and reused to alleviate the subsequent amounts
of effort. In this paper we propose to treat domain-specific problems-solutions pairs as first-class entities
called “evolution styles”. As such, an evolution style is endowed with an instantiation mechanism and can
be considered at different conceptual levels. Applied on arbitrary domains, an evolution style is intended to
evolve a family of applications whereas its instances evolve given applications. The evolution style’s format
is a component triple where each component is highly reusable. In this way, evolution styles are scalable
knowledge fragments able to support large and complex evolutions, readily available to be played and replayed.

1 INTRODUCTION

To face changing desiderata, the evolution of software
intensive systems is an inevitable activity. Indeed,
software models must be changed very often to
remain useful and meaningful. Nowadays highly
reactive and interactive environments (e.g ubiquitous
computing (Greenfield, 2006) and Ambient Intel-
ligence) calls for a new approach to facilitate and
replay these evolutions. This reactivity is crucial to
cope with the contemporaries open systems where
other ones can be plugged or unplugged, but also
with the fashionable agile software development
(Cockburn, 2002) which encourages many feedbacks
and hence countless requirements modifications. For
all these reasons, an evolution engineering emerged
over the last few years to address this challenge.
This promising engineering field encompass popular
models transformations field, various refactoring
techniques and modernization scenarios for good
practices, or more generally any principle for struc-
tural or behavioral alteration of an existent software
system. In this paper we argue in favor of analysis
and design steps dedicated to software evolution.
The key idea is to extract the evolution features
from traditional software design, for strong reuse

purposes. Indeed, we think that the reuse of recurring
evolution scenarios as patterns is a profitable way to
alleviate the amount of effort required by software
maintenance activities. For that, we advocate that
software evolution has to be identified, encapsulated,
reused and managed. This calls for the treatment of
evolution as a first-class entity, called an evolution
style. Externalization and modularization of features
variations and commonalities have been studied with
Traits (Ducasse et al., 2006), which are composable
units of behavior, and Classboxes (Bergel, 2005),
which are minimal module models supporting local
rebinding. Despite their added-value, these concepts
are not dedicated to evolution, lack of semantics and
are confined to OO systems while evolution should
be challenged in a wider scope. Nevertheless, a
recent and promising work is the Changebox concept
(Nierstrasz et al., 2006), a component to scope
changes over time, even if no modeling conjecture is
given. On our side, an evolution style is a general-
purpose concept, applied to arbitrary domains, to
tame and model the evolution at a wide scope and in
a uniform way. It characterizes a family of evolutions
by factorizing commonalities of evolution practices
and expresses the semantics of changes. A style is
a fragment of knowledge specified as a component-

138
Le Goaer O., Oussalah M., Tamzalit D. and Serai D. (2007).
EVOLUTION STYLES IN PRACTICE - Refactoring Revisited as Evolution Style.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 138-143
DOI: 10.5220/0001341401380143
Copyright c© SciTePress



triple which can be hierarchically organized. The
proposed specification has a favorable influence on
other issues like evolution management, including
evolution styles matching and classification, but this
is not discussed in this paper.

The remainder of this paper is organized as follows:
in the next section (sec. 2) we discuss the keys ideas
of our proposal. Section 3 describes the modeling en-
vironment we adopted to support the evolution style
approach. In section 5 we show how a well-known
refactoring can be revisited as an evolution style, be-
fore we conclude in section 6.

2 STYLES FOR SOFTWARE
EVOLUTION

In this section we introduce the foundation of our
work. We mainly describe the benefits of the reifi-
cation of evolution as a first-class entity, the modular
specification format chosen and the possible organi-
zations and capabilities of evolution styles.

2.1 Evolution as First-class Entity

According to us, the evolution features of a software
system being built must be analyzed and designed
separately from business features, in order to promote
reuse following two complementary axis. First, our
objective is to extract and modularize evolution, that
is, to capture the structure, behavior and the semantics
of evolution. As such, an evolution style encapsulates
important design decision about evolution, as pro-
moted by the principle of information hiding. Evolu-
tion styles factor commonalities between evolutions,
just like classes do for objects in the object-oriented
development. More precisely, they capture the param-
eters, assertions and implementation shared by sev-
eral evolutions. They express semantics of refactor-
ing and other changes. This last point is important
because we are convinced that stakeholders and tools
must be aware of meaning of evolution to work ef-
fectively. Thus, grouping evolutions into styles helps
avoid the specification and storage of much redun-
dant information and hence constitutes the first axis
of reuse. The second axis of reuse extends the in-
formation hiding capability one step further. The key
idea is to support fragmentation and extension of evo-
lution. Practically, the composition and inheritance
mechanisms encourage this kind of reuse and lead to
treat evolution on a hierarchical basis.

2.2 Evolution Style Specification

The evolution style specification is motivated by
the “componentization” of patterns and influenced
by Knowledge-based systems (KBS) (Oussalah,
2002). The proposed three-parts specification to
address evolution question is the convergence of the
Context-Problem-Solution triple defined by patterns
(Erich GAMMA and VLISSIDES, 1995) and the
Domain-Task-PSM1 triple defined by KBS.

Let us make a closer examination of the three compo-
nents constituting an evolution style:

• Domain: evolution depends on an area of knowl-
edge specified by a set of concepts and links
among them. It corresponds to a domain model
and hence defines a vocabulary through a set of
types. The instantiation of a domain engenders an
application able to be evolved.

• Header: evolution can be defined by a contract
which stipulates the starting situation and the re-
sulting one. It is specified by inputs/outputs pa-
rameters typed with elements of the domain, plus
a set of assertions (post/pre-conditions, invariants)
as constraints for the evolution achievement.

• Competence: evolution contains a body of knowl-
edge to fulfill the evolution contract, that is, to en-
sure the morphing from the starting situation to
the resulting one. It can be specified by a block of
declarative or imperative instructions. The choice
is driven by the desired abstraction level.

The three points mentioned above can be described
formally and be clearly modularized as three indepen-
dent but complementary components. An evolution
style has a unique name, has a goal described in nat-
ural language, and is viewed as the aggregation (with
the object meaning) of a domain component, a header
component and optionally a competence component.
This partitioning promotes (a) description reuse be-
cause the components are quite interchangeable and
shareable by several styles at the same time, and (b)
flexibility because the competence component can be
omitted when not enough information is available. In
this last case, we deal with abstract evolution styles.

2.3 Evolution Style Topologies

The evolution styles are arranged and linked to form a
graph or topology. The nodes are evolution styles and
the edges between two nodes represent specialization

1Problem Solving Method

EVOLUTION STYLES IN PRACTICE - Refactoring Revisited as Evolution Style

139



or composition. As a result, the graph can be studied
following a composition viewpoint or a specialization
viewpoint.

Composition viewpoint. A composition hierarchy
is a hierarchy of evolution styles in which an edge
between a pair of nodes represents the IS-PART-OF
relationship, that is, the higher node is composed of
the higher level node. For a pair of evolution styles,
the level style is called a composite style and the lower
level style is a component style. A composite evolu-
tion style references multiple children styles. Each
child can in turn reference their own children styles.
A parent evolution style is dependent of its children
styles. This underlines that an evolution style pro-
vides a service but may requires other ones. This
property makes a distinction between independent
styles called Basic evolution styles and dependent
styles called Complex evolution styles. A methodol-
ogy is given further in this paper to extract a basis of
complex and basic evolution styles, named the evolu-
tion core.

Specialization viewpoint. A specialization hierar-
chy is a rooted hierarchy of evolution styles in which
an edge between a pair of nodes represents the IS-
KIND-OF relationship, that is, the lower node is a
specialization of the higher level node. For a pair of
evolution styles, the level style is called a superstyle
of the lower level style, and the lower level style is
substyle of the higher level class. The three compo-
nents (Domain, Header, Competence) specified for a
style are inherited by all its substyles. Hence, a sub-
style may have:

• a more specific domain: using the concepts and
concept-links provided by a more specific do-
main.

• a more specific header: adding or redefining pa-
rameters and constraints.

• a more specific competence: redefining the imple-
mentation block in case of a code-level represen-
tation, or adding new rules or states in case of a
rule-based or state-based representation.

The single root of the specialization hierarchy is a
system-defined abstract evolution style named EVO-
LUTION whose wide semantics depicts all evolu-
tion practices supported on the considered domain.
There is also two system-defined abstract evolution
substyles named COMPLEX and BASIC, as a stan-
dardized way to explicitly separate dependent and in-
dependent styles.

2.4 Evolution Core

To obtain the most fine-grained and useful evolu-
tion styles, we propose a methodology which says to
project generic operators on relevant entities of the
considered domain. The resulting set of evolution
styles, called the evolution core, is enough to sus-
tain small but relevant evolution practices. In table
1 we have identified recurring operators encompass-
ing change activities during the software maintenance
phase, reconsidering a work on class characteristic
migrations (Castellani et al., 2001). Two kinds of op-
erators are mentioned: simple operators and advanced
operators. The latters need simple operators to be
functional. Consequently, the styles built from pro-
jection of simple operators are basic evolution styles
while the styles built from projection of advanced op-
erators are complex evolution styles. Therefore, after
an exhaustive analysis, for each domain, a set of ba-
sic and complex evolution styles has to be released or
extracted following this methodology.

Table 1: Simple and Advanced operators for evolution.

NAME DESCRIPTION
Simple

Add Connect an entity to another one
Remove Disconnect an entity from another one
Modify Alter an entity’s property
Advanced

Transfer Cut/Paste some entities from a location
to another

Clone Copy/Paste some entities from a loca-
tion to another

Merge Merge two entities into a single one
Split Split a monolithic entity into several

ones

Let us consider the Java Language for a quick exem-
plification. Thus, starting from a Java domain meta-
model and the previous table, we can construct basic
evolution styles such as AddClass(Class super,
Class sub), to insert a new Java Class in a hierar-
chy, or ModifyClassName(Class super, String
newName) to rename an existing Java Class.

3 EVOLUTION STYLE
MODELING ENVIRONMENT

A strong abstraction purpose emerged in the last ten
years to help people to apprehend the variety, the
complexity and the synergies of software artifacts.
The same demand subsists to characterize the evolu-
tion in a global way. Therefore, the obscure or tacit

ICSOFT 2007 - International Conference on Software and Data Technologies

140



evolution activities should be reinterpreted as a clear
and coherent set of models.

4 LAYERED ARCHITECTURE

The modeling environment we work with is a layered
architecture of models, separated by an instantiation
relationship. This architecture exhibits three distinct
layers (or levels) and distinct concerns. We respect
the modeling attitude envisioned by the OMG’s mod-
eling stack.

Figure 1: Evolution style modeling stack.

The M2, M1 and M0 levels are separated by an on-
tological instantiation (instanceOf). In this way, an
element of a Mi level is created from its definition of
the Mi+1 level. According to this architecture, run-
time evolutions (i.e evolution styles instances) are lo-
cated at M0, evolution styles are located at M1 and
the evolution style language is located at M2. In addi-
tion, the layers reveal three distinct stakeholders with
their own duties. The infrastructure builder intervenes
at the M2 level, the styles builder intervenes at the
M1 level and lastly the evolutions builder intervenes
at the M0 level. This cutting of responsibilities tends
to share the global evolution effort by separating the
concerns and skills.

4.1 Modeling Levels

Each level introduces particular conceptual abstrac-
tions and is intended to particular modeling purpose.
Les us make a closer but summarized examination of
the M2, M1 and M0 levels.

Model at level 2. Model at the level 2 is called a
meta-model, that is, a model defining other models.
The infrastructure builder provides minimal but nec-
essary syntactic and semantic constructions allowing
experts to define evolution styles. The meta-model is
not given in this paper but can be summarized as fol-
lows:

• an evolution is an aggregation of a domain com-
ponent, a header component and a optionally a
competence component. The proposed theoretical
meta-model explicits various kind of relationship
between components, usually implicit.

• the meta-model is self-defined, that is, is a domain
and an application at the same time. An evolution
core can be extracted from the meta-model and
the resulting evolution styles can be instantiated
to evolve the meta-model itself.

Model at level 1. The need for domain-specific evo-
lution libraries is the same than for API’s in the
programming language field or components in large-
scale development field: providing readily available
software units in order to alleviate the amount of
efforts. Styles builders (experts) describe evolution
styles by instantiating the elements of the M2 level
provided by the infrastructure builder. For each do-
main, a topology of styles is built incrementally, pack-
aged and released as an evolution library. Accord-
ing to the M2 level, a topology is also a domain.
The immediate result is that (a) evolution libraries are
viewed as components and hence are more easily dis-
tributable and subsequently integrable, and (b) evolu-
tion libraries can be evolved by instances of evolution
styles expressed at the M2 level. In other words, evo-
lution libraries are built and maintained by evolution
styles.

Model at level 0. The M0 level depicts the instance
of evolution style to evolve applications. The instan-
tiation of a style is performed by the instantiation of
its three components. Indeed, the instantiation of a
domain component engenders an application, the in-
stantiation of a header component engenders valued
parameters and constraints checking while the instan-
tiation of a competence component engenders the be-
havior execution. Note that for this reason, an abstract
evolution style cannot be instantiated.

5 REFACTORING SCENARIO

To illustrate our approach, we consider an object-
oriented system in which we attempt to restructure
some portion of code. This section reinterprets a well-
known refactoring example as an evolution style. Al-
though we present a small evolution style in this sec-
tion, the perspective still remains to build large evo-
lution styles by incremental composition of existing
ones.

EVOLUTION STYLES IN PRACTICE - Refactoring Revisited as Evolution Style

141



5.1 What is Refactoring?

According to Martin Fowler (Fowler, 1999), refac-
toring is a disciplined technique for restructuring an
existing body of code, altering its internal structure
without changing its external behavior. Its heart is a
series of small behavior preserving transformations.
Each transformation (called a ’refactoring’) does lit-
tle, but a sequence of transformations can produce
a significant restructuring. Since each refactoring is
small, it’s less likely to go wrong. The system is also
kept fully working after each small refactoring, reduc-
ing the chances that a system can get seriously broken
during the restructuring.

5.2 Extract Method Refactoring

The Extract Method Refactoring consists into taking
a fragment of code inside a subroutine and turning
it into its own routine. The Object-oriented sys-
tems are particularly prone to such a refactoring
activity. The Java source code below, inspired from
Martin Fowler’s Web site’s examples2, clarifies the
before&after treatment.

void printOwing() {
printBanner();

//print details
_amount = _amount * 1.5;
System.out.println ("name: " + _name);
System.out.println ("amount " + _amount);

}

-----------------------------------------
AFTER THE EXTRACT METHOD REFACTORING

-----------------------------------------

void printOwing() {
printBanner();
printDetails();

}

void printDetails () {
_amount = _amount * 1.5;
System.out.println ("name: " + _name);
System.out.println ("amount " + _amount);

}

This simple modification improves the understand-
ability and the reusability of code to make it easier
for human maintenance in the future. Likewise, the
Extract Method refactoring provides a more natural
pointcut that can be used with AOP (Binkley et al.,
2005).

2http://www.martinfowler.com/

5.3 Evolution’s Abstraction

The purpose is to provide a style-based model for ex-
tract method refactoring on object-oriented systems.
Thus, the considered domain is the object-oriented
paradigm here. As an example, the domain is as-
sumed to be FAMIX (Demeyer et al., 1999), a com-
mon exchange model which provides a language-
independent representation of object-oriented source
code. The core presented in figure 2 is a simplistic
version of FAMIX but adequate here.

Figure 2: Core of FAMIX model.

At first glance, the Extract Method pattern can be
summarized with a small set of changes:
1. Addition of a new method in the considered class;
2. Transfer of the considered code (here 1 write ac-

cess plus 2 invocations) from the initial method to
the new one;

3. Addition of an invocation to the new method in
the initial method;

The aforesaid changes are matching with some basic
evolution styles obtained following the methodology
introduced in section 2.4. More precisely, they are ex-
cerpts of projections of the simple operators Add and
Transfer on the FAMIX model. Next, the complex
evolution style named “ExtractMethod” is composed
from the four distinct basic evolution styles presented
in the table 2. The topology represented in figure 3
is a model for style-based Extract Method refactor-
ing, using the UML and OCL notations. The four
basic evolution styles discussed above and the com-
plex ExtractMethod evolution style are added into the
specialization hierarchy, starting from the three stan-
dardized abstract evolution styles. In this model we
also decided to add a supplementary abstract style
to factorize the common parameters for the transfer
from a method to another one. We have also extended
the initial ExtractMethod style to build the LazyEx-
tractMethod style. In this latter, a new precondition is

ICSOFT 2007 - International Conference on Software and Data Technologies

142



added to avoid to execute the extract method if there
is less than four instructions (accesses or invocations).

Table 2: Basic Evolution styles required.

STYLE OP ENTITIES
AddMethod Add Class x Method

TransferAccess Transfer Method x Method
x Access

TransferInvocation Transfer Method x Method
x Invocation

AddInvocation Add Method x
Invocation

Figure 3: Style-based Extract Method refactoring.

The orchestration of the composition is expressed
into the competence component of the ExtractMethod
style. In the event, the scheduling of the basic styles’
invocations is important to guaranty the scenario to
succeed. This behavioral aspect of evolution style can
be represented in various way. The schedule can be
given in a more abstract way by state models, e.g. fi-
nite state machines or Petri nets, just as with rules,
or as detailed as on code level like in the given ex-
ample. Each representation has its own advantages
and disadvantages, and its choice is only driven by
the style builder needs. To overcome this unreliable
thing, we suggest to externalize the behavioral con-
tent and hence to locate and use it just like a resource.

6 CONCLUSION

In our opinion, providing readily available models of
evolution is a sound way to sustain a mass evolu-
tion. Evolution styles offer re-use benefits, guidance
benefits and communication benefits for the evolution
engineering field. In this paper, we explained that

evolution must be exhibited via styles for meaning
and reuse purposes, independently of the technology.
They are mechanisms to push changes through a sys-
tem in a controlled way. In addition, we have shown
how a well-known refactoring can be revisited as a
complex evolution style, built and released by a style
builder, and able to be instantiated on-demand by evo-
lution builders. The refactoring scenario illustrated
the organizational capabilities of our meta-model and
the methodology we provided, using both top-down
approach for style specialization and bottom-up ap-
proach for style composition.

REFERENCES

Bergel, A. (2005). Classboxes — Controlling Visibility of
Class Extensions. PhD thesis, University of Berne.

Binkley, D., Ceccato, M., Harman, M., and Tonella, P.
(2005). Automated pointcut extraction. In Proceed-
ings of the workshop on Linking Aspect Technology
and Evolution workshop.

Castellani, X., Jiang, H., and Billionnet, A. (2001). Method
for the analysis and design of class characteristic mi-
grations during object system evolution. Inf. Syst.,
26(4):237–257.

Cockburn, A. (2002). Agile software development.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Demeyer, S., Tichelaar, S., and Steyaert, P. (1999). FAMIX
2.0 - the FAMOOS information exchange model.
Technical report.

Ducasse, S., Nierstrasz, O., Sch&#228;rli, N., Wuyts, R.,
and Black, A. P. (2006). Traits: A mechanism for
fine-grained reuse. ACM Trans. Program. Lang. Syst.,
28(2):331–388.

Erich GAMMA, Richard HELM, R. J. and VLISSIDES,
J. (1995). Design Patterns : Elements of Reusable
Object-Oriented Softwares. Addison Wesley.

Fowler, M. (1999). Refactoring: improving the design of
existing code. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Greenfield, A. (2006). Everyware : The Dawning Age of
Ubiquitous Computing. New Riders Press.

Nierstrasz, O., Denker, M., Gı̂rba, T., and Lienhard, A.
(2006). Analyzing, capturing and taming software
change. In Proceedings of the Workshop on Revival
of Dynamic Languages (co-located with ECOOP’06).

Oussalah, M. (2002). Component-oriented kbs. In SEKE
’02: Proceedings of the 14th international conference
on Software engineering and knowledge engineering,
pages 73–76, New York, NY, USA. ACM Press.

EVOLUTION STYLES IN PRACTICE - Refactoring Revisited as Evolution Style

143


