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Abstract: A key sampling formula for discretising a continuos-time system is proved when the signals space is a subclass
of the space of Distributions. The result is applied to the analysis of an open-loop hybrid system.

1 INTRODUCTION (T.Chen and B.A.Francis, 1995), (G.F.Franklin
and M.L.Workman, 1990)), (B.C.Kuo, 1992) and
Consider the hybrid system of Figure 1, whexe) (K.Ogata, 1987)), but it was not established by a rig-

andy(t) are input and outputA/D)t is anA/D con- orous proof that indicated the relevant classes of sig-
verter with sampling perio@, (D/A)t is a zero-order  nals considered.
hold (ZOH) and® andC are the plants of a continuous Attempts to provide 1 with a proof are in (E.l.Jury,

time system and a discrete time system, respectively.1958), (K.J.Astrom and B.Wittenmark, 1990) and

In order to perform the transform domain analysis of (T.Chen and B.A.Francis, 1995). Those proofs are
the hybrid system of Figure 1, the transform domain based on the use of impulse trains of impulse trains,
response of a sampled signal must be related to thethose defined as the function

transform response of its correspondent continuous ®
time signal. This is done by building the transform > &(x—nT)
response of the sampled signal upon the superposi- k=—oo
tion of infinitely many copies of its continuous time  whered(x) is the impulse function or Dirac function
transform response, using the formula or Dirac impulse such that
ty b 12 . 400 x=0
Ga(e™) T k:ZOOG(S+ ko) ) 809 = { 0  otherwise

whereG is the Laplace transform of a continuous time and .

signalg, Gy is thez transform of the sequence of its / 3(X)dx= 1

samples{g(kT)}¢ o and T andws = 21/T are the —o

sampling period and the sampling frequency, respec-However, the proofs lack rigour, since the impulse

tively. function, and hence the impulse trains, cannot be de-
Till 1997, with the publication of (Braslavsky fined as functions.
et al., 1997), 1 was mathematical folklore. In fact, In (J.R.Ragazzini and G.F.Franklin, 1958) it is

it was very often used in the digital control literature shown the similarity between 1 and the Poisson Sum-
((M.Araki and T.Hagiwara, 1996), (J.S.Freudenberg mation Formula

and J.H.Braslavsky, 1995), (T.Hagiwara and M.Araki, o ® & ks

1995)), (Leung et al., 1991), (Y.N.Rosenvasser, > fm= 3% / f(s)e""ds

1995a), (Y.N.Rosenvasser, 1995b) and (Yamamoto n=—c =

and Araki, 1994)) and it appeared in many control Consequently, 1 is often indicated as the Poisson
textbooks ((K.J.Astrom and B.Wittenmark, 1990), Sampling Formula. In (G.Doetsch, 1971) a rigorous
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(A/D)r C
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Figure 1: Open Loop Hybrid System.

proof,that avoids the use of the impulse trains, for

_go7) 1
=2 T7

[e4]

> G(s+ jkax)

k=—00

Gy(e¥)

is derived under the assumption that the series

SkG(s+ jkws) is uniformly convergent. However,
since this condition is a transform domain condition,
it is not obvious when a time domain function satisfies
it.

In (Braslavsky et al., 1997) it is pointed that for
1 to hold, it is not enough to require that the Laplace
transformG of g and its sampled versiop, are well

. . p
defined. It is shown that, fan, = 22" and the con-
tinuous function

g(t) =sin((2np+1)t), t € [prt (p+1)p], pe N

1 does not hold, despite the fact th@§(e™) and its
sampled version with periotl = 1, are both well de-
fined in the open right-half plane. In fact, it is proved
that

n
im 5" G(s+ jkox)
k=—n

|—00

does not converges for ars/> 0. Because of the
rapid oscillations ofg ast — « the class of signals
is restricted to functions with bounded and uniform
bounded variation.

Definition 1 ((Braslavsky et al., 1997))A functiong
defined on the closed real interyal b] is of bounded
variation (BV) when the total variation @fon [a, b,

n

sup > 19(t) —g(tk-1)]

a=to<ti<...<th_1<th=bK=1

Vy(a,b) =

is finite. The supremum is taken over everg N and
every partition of the intervala, b] into subintervals
[tk, Tke1] Wwherek =0,1,...n—1 anda=1ty <t; <
e <th1<th=h.

A function g defined on the positive real axis is of
uniform bounded variation (UBV) if for som& > 0
the total variatiorvy(x,x+A) on intervalgx, x4 A of
lengthA is uniformly bounded, that is, if

supVg(X,Xx+4) < o
XERa
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With the class of signals restricted to UBV func-
tions, a proof for

Gy(e)

+3 S G(s+ jlw)

a more general formulation of 1, is provided.

Note that the well posedness of 1 is proved for
an open loop context, when the system considered is
stable. Despite the fact that it is rather common to
analyse a hybrid feedback system with the help of
1, even if the class of signals is restricted to UBV
functions, there is no proof of the well posedness of
the feedback when applying 1.

The discussion about the consistency of Mathe-
matical Frameworks in Systems Theory that started
with the exposure of the Georgiou Smith paradox in
(Georgiou and Smith, 1995) made Leithead and al., in
(Leithhead and J.O’'Reilly, 2003) and (W.E.Leithead
et al., 2005), to attempt a Mathematical Framework
that expands the class of signals to the class of Dis-
tributions (an advantage of a Framework using Distri-
butions is that signals like steps, train pulses and delta
functions can be rigorously defined as distributions).
Consequently, when dealing with hybrid systems, as
the one of Figure 1, in a Distributions Framework, the
well posedeness of 1 must be proved again.

However, despite 1 being quoted in Theorem 16.8
of (D.C.Champeney, 1987), no proof could be found
in the literature. In this paper a rigorous proof of The-
orem 16.8 of (D.C.Champeney, 1987), establishing
1 in a Distributions context, is provided in the Ap-
pendix. Furthermore, an application of this result to a
open loop hybrid system is provided. In particular, a
correct formulation for thé® /A and A/D converters
in a Distributions context is established.



2 SAMPLING THE
TRANSFORMS OF A
DISTRIBUTION

The following notations and conventions are adopted.

The value assigned to eaglt) € D, the class of
good functions with finite support, by the functional
x € D, the class of distributions , is denotedXjip(t)].
The symbols for, respectively a regular functional in
D and the ordinary function by which it is defined,
e.g.x andx(t), are distinguished by the explicit pres-
ence in the latter of the variable. The following sub-
classes ofp are required.

pg=  {xe& D :xregularwithx(t) BV on each
finite interval and|x(t)| < c(1+[t)N
for somec > 0};N >0
Den= {x€ D :xregular withx(t) BV on each
finite interval and|x(t)| < c(1+ [t)N
for someN > 0 andc > O}
Dy = {x€ D :xregular with
Vg piq {X(t)} < c(1+[t|)N for each
finite interval[a, b|
for someN > 0 andc > 0}

{x € D :xregular with
Valjayprg{X(t)} < (14 |t)N for each
finite interval[a, b] for somec > 0};N > 0

DyN =

{xep:x=3",adt}; T >0

{xe D :x=32,ad with
law| < (14 |k)N for some
c>0andN>0};T >0

DEn= {XED 1x=T%,adr with

lax| < (1+ k)N for somec > 0};
N>0T>0

whereVar,p {X(t)} is the variation ok(t) on the in-
terval [a, bﬁ and the functionab; is the delta func-
tional in o defined by

S [@(t)] = (1)

Each functionak € o is related by a linear bijections
to a functionalu such that

X[o(t)] = 2rX[®(w)
for all @(t) € D with
®(w) = 7 [@t)|(w)

A SAMPLING FORMULA FOR DISTRIBUTIONS

The functionalsx and X constitutes a Fourier trans-
form pair with

X = 7 {x} andx= 7 “}{X}

The subclassesig, Upn, Uy, Uyn, U and ugy
are the Fourier transforms of the the corresponding
subclass of>. The members ofi T and its subclasses
are periodic with period2/T.

A multiplier in o is an ordinary functiorf (x) that
is infinitely differentiable at each real valuexfThe
multipliers inD are denoted bys . The subclasss "
is the class of periodic multipliers with periodt2T .

The relations between the transform of a distribu-
tion and its sampled version is established in the fol-
lowing Theorem.

Theorem 2(16.8 (D.C.Champeney, 1987)$uppose
f € w has a transfornmF € o that is regular and
equal to a function F that is of bounded variation
on each finite interval (though not necessarily on
(—00,00)): then

(i) F (y) will be equal a.e. to a functiong{y) such
that, at all y,

z
2

Fo(Y) = S[Fo(y ) +Fo(y")]

(ii) also

Xy f(x—nx) )

will converge inu to define a periodic functionaj
whose Fourier coefficients{Gre given by

Gh=Fp(n/X), n=0,+1,4+2, ...

(iii) if in addition f € Dsand F(y)/(1+|y|)N is of
bounded variation orf—o, ), then 2 will converge
in Ds.

A proof of 2 is given in the Appendix.

3 OPEN LOOP HYBRID
FEEDBACK SYSTEM

Reconsider the planBandC of the open loop hybrid
system of Figure 1 as the stable systemsmgnand
Dg, respectively.

C:xen'—yen y=Wxx

P:XxeD—ye D y=®xX

whereW and® are convolutes om T and®, respec-

tively. However, since it is required that the idealised
sampling of continuous time signal is well-defined,
a more appropriate reformulation of continuous time
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signals is provided by the subclass of distributions
DB.

Consequently, the convolutéd and ® corre-
sponding to plant€ andP must be restricted tog
andpg, respectively. In transform domain the Fourier
transforms of signals are represented by functionals
in ug and the transfer functions of systems are func-
tionals inarg, the class of multipliers om g mapping
ugy into itself for allN > 0. It remains to establish a
correct formulation of th®/A andA/D converters.

3.1 Frequency Domain Analysis D/A
Converter

Consider an ideaD/A converter which acts, with a
time constanfl, on a discrete time signa{x[k]} to
produce a piecewise constant continuous time signal,
y(t); thatis, it acts as an ideal zero-order-hold (ZOH).
The linear relationship betweefxk]} andy(t) in

the frequency domain is established by the following
Theorem.

Theorem 3. A discrete time signalsx[k] } is acted on
by a ZOH, with time constant T, to produce a piece-
wise constant time signalty such that

[

yt) = >

k=—00

x[khT (t — k)

where H (t) = 1when te [0, T), zero otherwise. Pro-
vided there exists a periodic functionaleXw gy, with
Fourier coefficientdx[k] }, then yt) defines a regular
functional, ye ©gnN Dy such that Y=HT X where
Y = 7 {y} € ugnN uyn and H" = # {h"} with hT
the functional inp defined by h(t).

Proof. y(t) is of bounded variation on any finite inter-
val, and, sinceX € u gty implies |x[K]| < ¢(1+ k)N
for somec, |y(t)] < c*(1+t))N for somec*. Hence
y= ZE’:_wX[k]hIT € pgn. Furthermore for alb; €
{-1,1} and{14,Tp,...,Tny1} Satisfyinga< 11 < 12 <
< Tn+1 § b

3 BT —y(+T)
= 3 B+ T) YT
< 3 (¥4t + v+

< i(c*(lJr [t+Tipa|) +c (|t +Til)

<2c'n(1+[t+b)N
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wheren = int(t/(kT)). Hence,Var[aH,bH]{y(t)} <
c(1+ |t))N, for somec™ 0, andy € Dy . In addition,
sinceh' is a convolute om,

n

> xn] her
k=—n

n

X[K] &

k=—n
n
> XK&r = h' xx

k=-—n

with x = # ~1{X} andY = HT X as required.

y=lim h" «

nN—oo

= lim *

n—oo

=h' * lim

n—oo

Therefore, aD/A converter is represented in the
frequency domain by the multipliét™ mappingu g,
into ugn N Uvn. Moreover, as a consequence, a dis-
crete time subsystem positioned befor® AA con-
verter is equivalent to a continuous time subsystem
positioned after th® /A converter, provided their fre-
guency response functions are the same.

3.2 Frequency Domain Analysis A/D
Converter

Consider an ideah/D converter which samples, with
a sampling interval , a continuous time signak{t),

to produce a discrete time sign@lk]} = {x[k|}. The
linear relationship betweex(t) and{y[k]} in the fre-
guency domain is established by the following Theo-
rem.

Theorem 4. A continuous time signal,(¥), is acted
by a sampler with sampling interval T to produce a
discrete time signalylk]}. Provided there exists a
regular functional xe gy defined by &) then

(i) x(t) is equal almost everywhere to a function
xp(t) such that, at all t,

— +

ro(t) = 200560
and so sampling is well defined witfky= xp (kT).

(ii) the summation% Yk Xork/T CONVerges in
u, where X= #{x} € ugn, and {yk]} are the
Fourier coefficients for a periodic functional ¥
ugy with period 2r/T such that Y= oT[X] =
% Z°k°:7m X2T[/T

Proof. SinceX € Dgn, X(t) is of bounded variation
on each finite interval and part (i) follows from The-
orem 2. In addition, there exists a periodic func-
tional Y € «, with period 2t/T and Fourier co-
efficients yk[k] = xp(kT) such that the summation
%Zf}m Xorw/T coOnverges inu andY = 0T [X]
1Sk o XoryT. Furthermore, sinc& € Dgy, ¥ =
7YY} € i as required by part (ii). [ |



Therefore, arA/D converter is represented in the
frequency domain by the linear operatof on g
mappinguey into gy for all N > 0. Further proper-
ties of the operatop ' are established in the following
Theorem.

Theorem 5. If X is a functional inzzg with " deriva-
tive X", Y is a functional inuzg and M is a periodic
multiplier in a/g with period2r/T then

(i) oT[X] is a periodic multiplier inarg with pe-
riod 21/ T provided XM € g for all n > 0;

([ioTMTX]=MToT[X];

i) oT[YoT[X]] = oT[Y]oT[X]
"™ e qqforalln > 0.

provided

Proof. (i)The regular functionak= 7 ~1{X} € pgis
defined by a functiox(t), which by Theorem 4 part
(i) is equal almost everywhere to a functixs(t) such
that, at all,

— +

XD(t) _ (XD(t) ;XD(t))

For alln > 0, sincej"X™ ¢ wugg, y € Do, where

y is the functional defined by"x(t), and the se-
ries Tp_ ., (KT)"xp (KT)e k9T converges for alko.
Hence, by Theorem 4 part (i " [X] is an infinitely
differentiable regular functional. Furthermore, tifé
derivative ofo T[X] is continuous and periodic and so
bounded. Consequently,” [X] is a multiplier inag
with period 27/T.

(ii) For any X € fuBN, MTX € ugy and by Theo-
rem 4 botho " [X] € ugy ando " [MTX] € ugy exist.
Moreover, sincéMT is a multiplier inarg with period
21T,

Tim 5 M
1 lim 5 MTX imMT § X
L Z =T him Z T
*A'L‘l Z Xer
andoT[MTX] = MToT[X] as required.

(iii) 1t follows directly from part (i) and (ii). W

A SAMPLING FORMULA FOR DISTRIBUTIONS

3.3 The Response of the Open Loop
Hybrid Feedback System

In time domain the stable hybrid feedback system of
Figure 1 has solution

y=®x[(D/A)7(¥*[(A/D)rx)] ®)

DefineKl andKp the multipliers ina/g, the trans-
fer functions of the convoluté# and®, respectively.
Therefore, by Theorems 3 4 and 5, in Frequency Do-
main, to 3 corresponds the solution

Y =Kp[HT (Kc[0TX])]

whereY and X are functionals inug, the Fourier
transforms ofy andx.

4 CONCLUSION

In this paper the proof of the well posedness of the
sampling of a the transform of a distribution is given,
establishing the correctness of the Sampling Theorem
16.8 quoted in (D.C.Champeney, 1987). Moreover,
the result is applied to the frequency domain response
of an open loop hybrid system, through the correct
formulation for theD/A andA/D converters.
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APPENDIX

Theorem 2 (D.C.Champeney, 1987)

Proof. (i) and (ii) Let fy € » be the regular func-

tional defined byfy (x) where

sin(n(ZN +1)x/(2X
sin(tx/(2X))

)

f ejn (2m/X)x _
nZN

fy is a multiplier on® and fy(x) is periodic with
periodX such that

X/2

/4/2
For any regulag € o, with g(x) of bounded variation
on any finite interval, and any(x) € D,

(WO = 8w = [ g

fn(X)dx= X

W(x)dx
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Mathematical description and

Sincey(x) is of finite supportaK such thatp(x) =0
for [x| > (K + 3)X. Hence,
. (K+1/2)X f
NG = [ a0 oW ax
x2 [ K
:/ S fu(gx+kX)W(x+kX) b dx
—X/2 | k==K
X/2
= [ e (9
—X/2
X/2 ( SIn (LZE;{DX) (X)X
:/ = ¢ dx
—X/2 X sin(2¥)

where

(X Z g(x+ kX)W (x+kX)

k=—K
For all k, g(x) is of finite variation on [(k —
1/2)X, (k4 1/2)X] and sogk (x)X/(sin(Tx/(2X))) is

of finite variation onf(k— 1/2)X, (k+1/2)X]. Conse-
quently, by Theorem 5.10 of (D.C.Champeney, 1987),
X = 0is a Dirichlet point and

X/2
m / (sin(T(2N + 1)x/(2X)) /%)
X/2

. L [
Mathematical description and N—w /_

{@c(x)x/sin(mx/ (2X)) }dx = X(@(07) + @(07)) /2

It follows that
lim (@) W)

_XZ

kK 2
=X
330

L f\g converges to

)+ (kX)W (kX)

)+ (kX)) dex [W(x)]

Hence N

h

K ~
S 5(000¢) + glkx))Bix
k=—K

in ©. Furthermore,

(g ) +g(kX"),

0

H=g{h}= S

k=—00

and by Theorem 16.3 of (D.C.Champeney, 1987),
is periodic with period /X and Fourier coefficients
{3(g(kX") +g(kX"))}. However

F Ef"" —
XNQ =
1 N

< > 8n(2n/x)> +G=
n=—N

(2ryx) € U

{7 {9)

[

N ~
= Gni2m/x
Nn:Z_N n(2r/X)



It immediately follows thats S5 o Gniamx) € U
and is equal tod. Thus part (i) part and (ii) are
established.

(iii) Let fy as above. For any functiag(x), with
g(x)/(1+|x])M of bounded variation ofi—, ») for
someM > 0, and anyj(x) € S

[9O)W(X)| < c/(1+[x])?
for somec > 0. Hence,

[ 900 fuwix)dx
(K+1/2)X
— lim { / fi
K- | J-(K+1/2)X
X/2
fn ()

(x)g(x)m(x)dx}

= lim
K—eo J_x/2

{ z g(x+kX)w(x+ kX)} dx
k=—K
In addition, for anyx,

lg(x+ KX)W(x+kX)| < ¢/ (14 |kX])?
for somec > 0 and the series

K
o (X) = Z g(x+ kX)W(x+ kX)
k=—K

is absolutely convergent. Hence, there exists a func-

tion, @(x), such thatex (x) converges pointwise to
@(x) and there exists a constad, such that, for all

K> 0, | (X)| <A Vxe[-X/2,X/2]. Consequently,
by Theorem 4.1 of (D.C.Champeney, 1987),

X/2 K
KIiLnoo 2 fn(x) {k_ng(er kX)P(x+ kX) } dx
X/2
7/></2
X/2 sin(%‘) @) ;
L5 )<W> x

X

Furthermore, @(x)x/(sin(Tx/(2X)) is of bounded
variation on [-X/2,X/2]. By Theorem 5.10 of
(D.C.Champeney, 198& = 0 is a Dirichlet point and

o T(2N+1)X
X/2 ( SIn
N—00 —X/2 X

(x) ~
{Sm(m;() }dx X(@(0") +@(07))/2
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Since, for|x| < X/2,
|9(kX+X)P(KX +x)| < ¢/ (1+ kX])?
for somec >0

®07) =

00

> 9(kX")P(kx")
k=—00

and

[

®o )=y
k=—00
and it follows that

lim /m (09I dx

[e4]

,x Z
(g(kX )LIJ(kX )
fx z g(kX ") +g(kX " )Ww(kX™))p(kX)

k=—o0

g(kXT)W(kXT)

g(kXH)P(kX ™))

Let fy € Ds be the regular functional defined by
fn(X) then fy is a multiplier onps. For the regular
functionalg'e s defined byg(x)

(NGO = Bl OWO0] = [ g Wl
From the foregoing, it follows that

lim (@) w00

i )4+ gX ) W(KX)

§ )+ X)) Bex W)

Hence, fn§ converges to

z )+ (kX)) Bex

in Dg. Furthermore,
H=g{h}= S
k=—o0

and by Theorem 16.3 of (D.C.Champeney, 198¥),
is periodic with period /X and Fourier coefficients
{3(g(kX™) +g(kX"))}. However
2hgh = 2 (fuh 7 (9)
F < NG = X‘I Nf*F g
1( N . ~ 1 N &
= n:ZN5n(2n/X) *G=3 n:ZN Gn(2m/x)

It immediately follows that} S5 o, Gni2mx) € Ds
and is equal td. Thus part (jii) is established. H

1 _ ~
5(9(kX7) +9(kX"))&amyx) € 5
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