
UNCOUPLED PARALLEL VIEW DEPENDANT LEVEL OF 
DETAIL RENDERING OF BINTREE TRIANGULATIONS 

Bernd Biedermann and María Cecilia Rivara 
Departamento de Ciencias de la Computación, Universidad de Chile, Chile 

Keywords: Bintree Triangulations, Parallel Mesh Tessellation, Continuous Level of Detail, Uncoupled Parallel Mesh 
Refinement. 

Abstract: In this paper we present an uncoupled parallel technique for view dependant continuous level of detail 
rendering of regular height field terrain. To this end, the terrain is globally modelled by a simple bintree 
patch-based representation of right-triangles, which is adaptively divided into uncoupled meshes for parallel 
processing. This is easily performed by uncoupling the mesh along the observer line. Each uncoupled mesh 
is then recursively approximated to the corresponding level of detail in the terrain.  Cracks are avoided by 
constraining the refinement levels at the boundaries of adjacent meshes. The level of detail is created on-
the-fly with a low amount of CPU overhead, allowing a good representation of the terrain and high frames 
per second performance. This implementation shows significant improvements in CPU load and frames per 
second performance over the serial method when executed on machines with multiple processors. 

1 INTRODUCTION 

Several approaches for multiresolution 
representation, adaptive modelling, level of detail 
control, and real time rendering of terrain data have 
been proposed and studied in the last 10 years.  
Pioneer work on general mesh simplification and 
multiresolution modelling are discussed in (Heckbert 
and Garland 1997; Hope 1996, Hope 1998).  In 
particular for the multiresolution modelling of 
regular height-field data, methods based on right-
triangle triangulations have been developed and 
widely used.  The most important of these methods 
are quadtree-based and bintree-based representations 
methods (Duchaineau et al, 1997; Pajarola 2002).  
These methods are reported to provide a more 
compact representation of the terrain, better spacial 
access, faster level of detail (LOD) triangulation and 
rendering and are easier to implement than more 
general methods. (Pajarola 2002). 

Recently (Holst and Schumann 2006) combine 
the use of a reduced multiresolution hierarchy based 
in (De Floriani et al 1997) together with triangle 
strips for patches. They do not use right bintree 
triangle representation, nor perform any parallel 
work. 

As a basic tool of this research we use a right-
triangle multiresolution bintree algorithm as 

discussed in (Duchainean et al, 1997), which is a 
special case of the longest edge refinement 
algorithms for general triangulations discussed in 
(Rivara 1984, Rivara 1997). 

Essentially, the bintree multiresolution method 
works as follows: (1) Each right triangle in the 
bintree structure is splitted by its longest edge 
producing right and left right-triangle children in the 
bintree;  (2) The adaptive local splitting of every 
target triangle is performed by using a sequence of 
simple mesh operations over couples of triangles of 
the same bintree level, which share a longest edge in 
the mesh;  (3) The local splitting of a general target 
triangle having a longest-edge neighbour of a 
different level requires splitting propagation, which 
is a particular case of the longest edge propagation 
path discussed in (Rivara 1997). 

 
When rendering terrain a specific problem arises. 

The horizon of visibility is much bigger than in other 
real time rendering with fixed scenes. If we were to 
render every triangle at a fixed resolution we would 
either have a very low quality terrain or a low 
performance with a high quality terrain. To solve 
this particular problem the amount of triangles close 
to the observer has to be maximized and be reduced 
as the distance increases. This is known as 
continuous level of detail and the problem has been 
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addressed by some authors with different techniques. 
The core of the problem is to find a mesh for each 
frame that will realistically represent the terrain. The 
main problem of Continuous Level of Detail is the 
huge amount of CPU overhead it produces. The 
ROAM (Real Time Optimally Adapting Meshes) 
algorithm (Duchaineau et al, 1997), which will be 
briefly explained on this paper, is a View Dependant 
Level of Detail algorithm, which adapts a mesh to an 
optimal triangulation for the camera point of view.  

In order to improve the adaptive terrain 
rendering performance we propose a parallel 
uncoupled method similar to the one discussed in 
(Rivara et al, 2006) which takes advantage of the 
multiprocessor architecture of current computers. 
Traditional VLOD (Visual dependant Level of 
Detail) algorithms run all this CPU work through 
only one processor and therefore make the CPU 
overhead a big problem. This can be reduced by 
mesh subdivision and parallel tessellation (Padrón et 
al, 2005). Most algorithms present fairly 
complicated solutions for this. In this paper we 
consider simple parallelization of real time view 
dependant continuous level of detail. 

2 BASIC TECHNIQUES USED IN 
THIS PAPER 

2.1 View Dependant Level of Detail 
Algorithms 

VLOD algorithms are designed to interactively 
perform view-dependent locally adaptive terrain 
meshing. They rely on a multi-resolution terrain 
representation that is used to build the adaptive 
terrain representation of a frame. To accomplish this, 
the algorithm used in this paper is a basic 
implementation of ROAM. VLOD algorithms take 
the complete terrain data usually, in form of a height 
field, and generate a mesh that includes every vertex 
of the height map near the observer and discard 
vertices as they generate mesh sections further away 
from the observer. ROAM accomplishes this by 
generating a mesh for each frame, while other 
algorithms, like GeoMipMaps (H. de Boer, 2000) do 
this by pre-calculating a certain amount of meshes. 
The advantage of dynamically generating the mesh 
for each frame is that the representation is much 
better than on pre-calculated meshes. The 
disadvantage is that they require a lot more 
processing than pre-calculated meshes do. To make 
up for this a simple parallelization mechanism is 
shown in this paper.  

2.2 Mesh Representation 

Multiresolution representations based on right-
triangle triangulations are the most suitable for 
adaptive terrain modelling of regular height field 
data, where a multi-resolution surface is stored in a 
data structure that can be recursively refined on 
demand. Among these we can mention the quatree 
and bintree methods (Lario, Pajarola and Tirado, 
2003). Quad-Trees have the disadvantage though, 
that they are inherently based on recursive quads 
which can have up to four children. For our purpose 
a structure that is inherently based on triangles is 
much better suited given the refinement technique 
described later.  In a Binary Triangle Tree, each of 
two possible children are triangles formed by 
dividing the parent triangle in two by longest edge 
bisection as illustrated in Figure 1.  For a discussion 
and evaluation of the bintree multiresolution 
representation see (Duchaineau et al, 1997; Pajarola 
2002).  

 

 
Figure 1: First 6 levels of a Binary Triangle Tree. 

Figure 2: Split and Merge operations. 
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3 NON-PARALLEL BINTREE 
PATH-BASED METHOD  

The serial method chosen to represent terrain is a 
simple version of ROAM. The algorithm can be 
described as follows: 

 
Serial Tessellation Algorithm: 
Input: A high resolution height map terrain data.  
a) The terrain data is divided into N square patches. 
b) Each terrain patch is initialized with two bintree 
triangle structures at the coarsest level (every patch 
contains two triangles).  The height coordinate of 
each triangle vertex is given by the corresponding 
value in the height map. 
c) All triangles are linked together by pointers to 
their three neighbours.  
For each frame adaptively do:   
   d) The landscape is initialized and the adaptive    
   view dependant level of detail tessellation process  
   is performed. 
e) The frame is rendered. 
For ends. 
 

The terrain is subdivided into bintree patches in 
order to keep the depth of the tree structures 
controlled. 

During the tessellation process (Duchaineau et 
al, 1997) the mesh is dynamically calculated for 
each frame. This is done by recursively traversing 
the two BTT structures in each visible patch and 
refining it until the desired level of detail is reached. 
This is done with two basic mesh operations called 
merge and split (see figure 2).  

When two adjacent triangles are both from the 
same level we refer to it as a diamond. Split replaces 
a triangle T with its children T0 and T1 and does so 
with the adjacent triangle as well. This introduces a 
new vertex at the centre of the diamond, resulting in 
a new continuous triangulation.  

This tessellation process is by far the most CPU 
expensive part of the algorithm. During this process, 
each visible patch is visited and their BTT structures 
recursively traversed and refined. A triangle T in a 
triangulation cannot be split immediately when its 
base neighbour Tb is of a coarser level. It would 
produce a crack in the mesh, so we have to force T 
to split. To force T to split, Tb must be forced to 
split first, which may require other triangles to split 
first. As long as we recursively split all required 
triangles, the mesh will remain consistent. This is 
also known as the Longest Edge Propagation Path or 
LEPP (Rivara, 1997), which finishes finding a 
terminal edge, which is the base edge for two 
adjacent triangles or an edge of the border of the 

mesh. Only then we start the splitting process (see 
figure 3). 

If we go on refining too much, we can eventually 
run out of memory. To avoid this, a pool of possible 
vertices to be allocated is defined. Once a new 
vertex is introduced, it is eliminated from the pool 
and becomes part of the triangulation. Once we run 
out of vertices in pool, no further refinement is 
possible. 

Figure 3: In order to split T all the triangles along the 
longest edge path have to be split first. 

Since we want different levels of refinement on 
different areas of the mesh, we need to decide how 
far to refine the mesh in a given point. This is done 
by introducing an adaptive tolerance parameter t 
which depends on the distance of the given point to 
the observer. 

Each time that a triangle in the BTT is analyzed 
we compute t for the given position and compare its 
value with the distance between the middle point of 
the triangles base and the corresponding point in the 
Height Map. If the distance is bigger than our 
calculated t we split the triangle. In this way we 
achieve our goal of continuous level of detail. 

4 PARALLEL TESSELLATION 

With multiple processor technology the tessellation 
could be done in a fraction the time if the meshing 
problem is decoupled. The problem that arises is that 
given the recursive nature of the process, the CPUs 
might want to allocate the same vertex at the same 
time, causing access violations and ending the 
process. The first approach to solve this problem is 
to work on separate meshes and thereby distributing 
the process completely. This causes a problem of 
continuity at the bounding of adjacent meshes. For 
illustration purposes, let us focus on dual processor 
scenario. As both meshes are refined independently, 
we have no guarantee the union is going to be 
continuous and therefore cracks may appear at the 
union.  
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Other algorithms solve the problem by 
concurrent vertex insertion (Chernikov and 
Chrisochoides, 2004), scheduling the point insertion 
in such a way that no access violations will occur 
during the refinement. The problem could be solved 
by using a different mesh structure but we want to 
keep the efficiency of the BTT structure. The 
solution implemented in this paper works by 
decoupling the mesh, and working on it as if it were 
two separate meshes, but maintaining consistency.  
This way we do transform the process into a 
distributed problem but with shared memory 
resources. 
The solution implemented parallel tessellation 
algorithm works as follows: 
 
Input: a high resolution height map terrain data.  
The terrain data is divided in N square patches.  
Each terrain patch is initialized with two bintree 
triangle structures. 
While the observer traverses the terrain do  
    For each frame (observer position) do 
    - the mesh is partitioned  along the observer line L   
      and common parameters t are calculated along L.  
    - each submesh and associated parameters t are                                                                                                                                  
       assigned to each processor for tessellation.  
    - each submesh is adaptively calculated in parallel  
       using bintree triangle structures until the desired  
       level of  detail is achieved.  
    For ends. 
While ends. 
 

The reason to partition the mesh along the line of 
observation is to balance processor load. This can be 
easily done by identifying the patches at each side of 
the observer and accessing their BTT structures. 

At the initialization stage all triangles of the BTT 
structures would be linked together in the serial 
algorithm, instead each half of the mesh is linked 
together, leaving an unconnected division of it 
running through the middle of the mesh (see figure 
4). This way we assure that it is a decoupled 
problem because the edges in the middle of the mesh 
become terminal edges, were the refinement stops. 
More on decoupled parallel refinement can be found 
in (Rivara et al, 2006). 

After splitting the mesh two separate pools for 
vertex allocation are defined. This way both halves 
can be refined independently without sharing 
resources.  

The LOD is computed by two tessellation 
threads. These can be assigned to separate CPUs. 
The tessellation process is the same as in the non-
parallel case using the method described above. 

Each of the tessellation threads has its own pool 
of vertices and set of patches containing the BTT 
structures, the only shared resource is the height 

map. If we would duplicate the height map and 
include a copy of the height map to each thread, the 
process would be completely distributed and 
therefore have no shared memory resources. This 
could be useful to run the algorithm on a cluster of 
machines. 

For the parallel processor problem, the access to 
the height map does not present any problems, 
because each thread is dealing with a different part 
of the terrain and therefore there is no possibility 
that both threads would try to access the same value.  

Once the tessellation process is complete, and 
before the rendering step can start, the two halves 
have to be consistent with each other to avoid cracks 
at the initial division line of the mesh. At this point 
we have no guarantee that both parts of the meshes 
fit together without leaving cracks at the union. To 
ensure consistency we force the tolerance factor t at 
both adjacent borders to be exactly the same. This 
means the same level of detail will be used on both 
halves and the condition to stop refining is the same 
at both sides of the union as long as we had enough 
vertices in the pool. This produces a mesh with 
duplicate vertex at the union and thus producing a 
few extra triangles, but with no cracks in the mesh. 
We are also over-refining the neighbouring mesh. 
This causes a few extra triangles to appear at the 
coarser side of the mesh.  The triangle overhead is a 
small price to pay, given the fact we have done the 
tessellation in almost half the time. 

5 RESULTS 

To test the performance of the algorithm, a parallel 
version and a non-parallel version of the same 
algorithm were implemented and compared in terms 
of CPU load, memory usage and frames per second 
performance.  

The testing method used can be described as 
follows. A 230 second long flight over the terrain 

Figure 4: The initial mesh is divided. The triangles 
running along the middle are uncoupled. 
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was programmed and executed ten times. Each of 
the flights was done rendering the scene at different 
levels of detail, starting with 180000 vertices and 
ending at 5000. Each flight was performed with the 
serial and the parallel algorithm and CPU load and 
frames per second were measured for both 
algorithms. The number of desired vertices per 
frame, maximum allowed time and circuit were 
given. Spatial steps were calculated in terms of the 
elapsed time, total time allowed and position. The 
test platform was a dual Turion64 processor 
computer, running at 1.6 GHz with 1 GB of RAM 
and an Nvidia GeForce 6100 graphics card running 
Windows XP.   

The results are illustrated in the following table: 

Table 1: Performance of sequential and parallel algorithm. 

Vertices 
per 

Frame 

Average 
Sequential 
frames/sec 

Average 
Parallel 

frames/sec 

% Increase 
in 

Performance 

180000 17.03 23.78 39.64 
160000 17.42 25.31 45.29 
140000 20.22 33.10 63.70 
120000 21.05 35.71 69.64 
100000 23.61 39.85 68.78 
80000 28.60 44.57 55.84 
60000 39.42 57.35 45.48 
40000 52.19 68.16 30.60 
20000 71.04 73.06 2.84 
5000 81.03 81.18 0.19 

The same experiment executed over different 
terrain data yielded similar results. 

As shown in figures 6 to 8, the average CPU 
load was well balanced. The load balance was not 
exactly the same due to differences on the terrain 
geography on each side of the mesh division.   

Although one might be tempted to think that the 
performance should increase by a bigger factor, we 
need to have in mind the fact that all we have done 
is parallelizing the tessellation process, but other 
processes like computing texture coordinates are 
done sequentially. Given this, the increase in frames 
per second performance shown in table 1 is 
considerable. As shown in table 1, the increase in 
performance was at its maximum between 100 000 
and 160 000 vertices per frame. When decreasing 
the amount of vertices, the parallel algorithm shows 
smaller improvement over the sequential algorithm. 
This happens because at low workloads one CPU is 
able to manage all of the work, improvement starts 
to be noticeable at 40 000 vertices. On the other end, 
with over 160 000 vertices the improvement of the 
parallel algorithm over the sequential one starts 
decreasing until it stays at around 39 %. 

The memory usage showed no considerable 
change between the serial and the parallel algorithm. 
In both algorithms the entire structure could be 
stored in the same amount of memory. This was to 
be expected as the mesh size did not change and no 
extra storage space was needed. The structure took 
about 1.2 MB of storage space at low vertex rates. 
This increased to a maximum of 17.2 MB at 180 000 
vertices per frame. 

Figure 6: CPU load at 180 000 vertices per frame. 

Figure 7: CPU load at 100 000 vertices per frame. 

Figure 8: CPU load at 20 000 vertices per frame. 

Figure 5: Terrain mesh. 
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6 CONCLUSIONS AND 
DISCUSSION 

We have presented a parallel continuous level of 
detail technique for rendering bintree based 
structures. The mayor improvements in performance 
are achieved by turning the problem into an 
uncoupled refinement process, which allows a 
terrain mesh to be generated on multiple processors 
and thereby increasing the performance in terms of 
frames per second considerably.  

The issue of keeping the load balanced on more 
than two processors posts some difficulty because 
the mesh partitioning strategy needs to be 
generalized. Due to the decreasing level of detail 
towards the observers horizon, and the changes in 
complexity of the mesh, the next partition strategy is 
much harder to determine and will be part of future 
research.  

This paper focused on showing the increase in 
performance by parallel mesh tessellation, but many 
improvements can still be implemented, like node 
caching, triangle fan generation, priority queues and 
occlusion culling among other techniques. 
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