
AN EFFICIENT SYSTEM FOR EJB MOBILIZATION

Liang Zhang, Beihong Jin, Li Lin and Yulin Feng
Institute of Software, Chinese Academy of Sciences, Hai Dian, Beijing, P.R. China

Keywords: Mobile computing, middleware, EJB, MIDP.

Abstract: In these days, conducting business requires more and more employees to be mobile. To be efficient, these
mobile workers need to access the enterprise applications with their mobile devices at anytime and any-
where. How to efficiently extend the enterprise applications to the mobile devices becomes a challenging
task to the enterprise. In this paper, we present our recently developed system for mobilizing enterprise ap-
plications. Considering the characteristics of wireless media, our system can dynamically choose the most
appropriate communication method and provide the synchronous exactly-once communication semantic.
Security is explored by providing data encryption, two-way authentication and a simple tool for managing
the access control list. We also develop a mechanism for supporting priority service. Thread pool and object
caching are implemented to increase the efficiency. Lastly, our system offers various tools to enhance the
development automatism, while still allowing the programming flexibility by providing a rich set of APIs.

1 INTRODUCTION

We live in a fast-paced world that is easily serviced
in an office. But conducting business these days re-
quires more and more employees to be mobile. Ex-
ecutives, consultants and sales people have always
travelled as part of their jobs. Many of these mobile
workers must return to their offices to do paperwork.
This apparently reduces the workers’ working hours,
increases expenses and worst causes both the enter-
prise and the workers from getting real-time data,
which will put the business in an unfavourable situa-
tion under today’s keen competition (Dave, 2002).

To keep the competitive edge, more and more
enterprises have realized the importance of mobile
computing, with which the mobile workers can eas-
ily access the same set of applications provided at
the office while they are away and the enterprise can
promptly place information to its mobile workers as
needs arise. There is a lot of data showing that mo-
bile computing can create a very high return on in-
vestment and bring the enterprise sustainable com-
petition advantages (Douglas, 2004). The rest of this
paper is organized as follows. Section 2 reviews the
related work. Section 3 presents the system architec-
ture. Section 4 describes the communication module.
Section 5 deals with the security issue. Section 6
introduces the detail of mobilizing enterprise appli-
cations. The final section concludes the paper.

2 RELATED WORK

As more and more workers are mobile now, many
IT companies have released their solutions to mobile
computing. Basically, there are two types of solu-
tions: Browser/Server (BS)-based solutions and Cli-
ent/Server (CS)-based solutions. For the former so-
lutions, the mobile worker can use the on-device
web browser for accessing the enterprise web-based
applications. Microsoft’s ASP .Net Mobile and
IBM’s WebSphere Everyplace Access belong to this
type of solutions. Although the BS solution imposes
no requirements on the client side, it requires the
enterprise to invest new products on the server side
for context adaptation and transcoding. The enter-
prise has to also invest in a portal product and wrap
the applications into portals for a portal-based solu-
tion. Another problem of a BS solution is it cannot
support offline operations (Thierry, 2003).

For the CS-based solutions, the mobile worker
can invoke an enterprise application by executing a
client program on the mobile device. Typically, the
enterprise application is deployed on an application
server. As we know, in the world of application mid-
dleware, there are two technologies competing with
each other. One is the .Net technology by Microsoft
and the other is the J2EE technology by SUN and
many IT titans. Because J2EE possesses many fa-
vourable features such as reliability, scalability and.

173
Zhang L., Jin B., Lin L. and Feng Y. (2007).
AN EFFICIENT SYSTEM FOR EJB MOBILIZATION.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - SAIC, pages 173-178
DOI: 10.5220/0002351601730178
Copyright c© SciTePress

Figure 1: The overall system architecture.

most importantly Java’s “Write Once, Run Every-
where” capability, more and more enterprises have
adopted the J2EE-certified middleware product for
deploying and managing their applications. There-
fore, we target our system to the J2EE-certified mid-
dleware. In this context, Enterprise JavaBean (EJB)
is widely used because of its features such as easy
portability and fast development (Roman, 2004).

On the client side, the client program can be de-
veloped with either native programming or platform-
based programming. For the native programming,
the developer typically has to first install the Soft-
ware Development Kit (SDK), then develop the cli-
ent program with the SDK and finally deploy it to
the mobile device. Obviously, this approach makes
both the application development and deployment
difficult due to the various mobile devices. The plat-
form-based programming provides a device-agnostic
solution. Microsoft’s .Net Compact Framework and
Sun’s J2ME technology belong to this type. How-
ever, although .Net Compact Framework ensures the
client program developed to be run on any Windows
CE device, it is not a truly device-agnostic solution
as it does not support its program run on other oper-
ating systems. The only device-agnostic solution at
present is provided by J2ME. J2ME specifies several
classes of configurations and profiles for each band
of mobile devices, within which MIDP2.0 (Jim,
2002) has the largest popularity. Currently, almost
all new mobile devices support MIDP2.0 as their
standard configuration. Therefore, at the client side,
we choose MIDP2.0 as the target platform.

Our system can be described as EJB component
invocation on MIDP2.0 mobile devices. We believe
our system will provide the greatest applicability
while requiring the lowest investment

3 SYSTEM ARCHITECTURE

The main goal of our system is to provide conven-
ient API support on mobile devices for transparently
invoking the existing EJB components at the enter-
prise. Figure 1 shows the overall architecture of our
system, which adopts a three-tier approach. The cli-
ent-tier is a packaged MIDlet program running on
the J2ME platform. Our system provides the follow-
ing modules in this tier.

 Client side communication module – This
module provides the fundamental support for
mobile applications as they need to interact
with the enterprise. Since wireless communi-
cation suffers from the poor transmission me-
dia – the air, it is more likely to lose messages.
We develop this module to shield the upper
layer program from handling message loss and
provide the synchronous exactly-once com-
munication semantic.

 Serialization module – Since MIDP2.0 does
not support object reflection and serialization,
we develop this module to serialize and dese-
rialize objects to and from a byte stream so
that they can be transmitted over the wireless.

 Message Handler – A trigger when receiving a
new message

 Client side exchange pattern module – Since
wireless communication normally causes long
transmission delay, it is desirable to provide
not only the synchronous EJB component in-
vocation interface but also asynchronous inter-
faces to the developer.

The developer can develop the MIDlet program by
simply invoking the desired interfaces provided by
the client side exchange pattern module.

The proxy-tier, except for SMS Transceiver, is a
packaged web program that can be run in any servlet

ICEIS 2007 - International Conference on Enterprise Information Systems

174

container. Our system provides the following mod-
ules in this tier.

 Proxy side communication module – This
module together with the client side commu-
nication module provides the synchronous ex-
actly-once communication semantic.

 Serialization module – The same as the client
side

 Message Handler – The same as the client side
 ACL Manager – ACL stands for Access Con-

trol List. This module is responsible for au-
thenticating the client’s identity and controls
the access authority.

 Priority Evaluator – This module evaluates the
priority of each EJB component invocation
request and recommends the next request to
process with the highest priority.

 Proxy side exchange pattern module – This
module together with the client side exchange
pattern module provides different EJB com-
ponent invocation patterns.

 EJB Invoker – This module performs the ac-
tual invocation of EJB components.

The server-tier is the multiple EJB components
that may span across several Application Servers
(AS) of different brands.

Our system in addition provides several tools for
assisting the development and management of mo-
bile applications.

 SMS Transceiver – Since SMS messages can-
not directly be sent to or from the proxy web
program, we provide a simple program called
SMS Transceiver to handle SMS transmission
and interact with the proxy through HTTP.
The developer can substitute SMS Transceiver
by developing a program that bridges the SMS
service provider and the proxy the same way
as SMS Transceiver does.

 Account Management Tool –This tool is for
managing the client’s account information
such as user name and password.

 ACL Management Tool – This tool is for
managing the eligibility for calling a certain
method of a certain EJB component.

 EJB Toolkit – This is the most important tool
for our system. During the development of a
mobile application, the developer needs to
modify some parameters of certain modules
according to the situation by editing the proper
configuration files. He also needs to create
some new classes and incorporate them into
certain modules. Of course, it is not feasible to
require the developer to manually perform
these modifications. He should only focus on

the development of the MIDlet program. EJB
Toolkit automates all of these modifications
and packages the proxy side into a Web Ar-
chive (WAR) file ready for deployment. Fur-
thermore, it can generate a sample MIDlet
program, based on which the developer can
quickly develop the program for the applica-
tion. After that, the tool can package the client
side for deployment. If the developer needs,
the tool can even test the program by loading
the WAR file into Apache Tomcat and run-
ning the MIDlet with SUN’s J2ME Simulator.
We believe this tool will greatly increase the
usability of our system.

4 RELIABLE COMMUNICATION

As described in Section 3, a reliable communication
mechanism is the fundamental requirement for any
mobile enterprise application that needs interaction
with the server. Due to the poor transmission charac-
teristics of the wireless media, messages are fre-
quently lost, duplicated, received in different order,
and sometime even transmitted without an upper
bound time limit. It is desirable to have a wireless
communication mechanism that can shield all these
defects and provide to the upper layer program with
the synchronous exactly-once communication se-
mantic. Here synchronous means messages are de-
livered in order with an upper bound time limit, and
exactly-once means messages are reliably delivered
without duplication.

Table 1: Characteristics of HTTP/HTTPS/SMS.

 Reliability Duplication Order Time Limit
HTTP Yes No Yes Yes

HTTPS Yes No Yes Yes
SMS No Yes No No

The Generic Connection Framework (GCF) in

MIDP2.0 defines six connection interfaces, within
which only HTTP and HTTPS interfaces are useful
because all the others are either for local connections
or not able to pass the enterprise’s firewall. In addi-
tion, we discover that the optional Wireless Messag-
ing API (Marquart, 2002) is widely supported by
MIDP2.0 mobile devices. Therefore, it is possible
that we use SMS as the alternative path for commu-
nication. Let us first look at the characteristics of
these three communication methods in Table 1.

HTTP and HTTPS are based on TCP/IP, and
therefore in case the link is connected, they can sat-
isfy the desired synchronous exactly-once semantic.

AN EFFICIENT SYSTEM FOR EJB MOBILIZATION

175

However, it is very likely that the wireless link is
disconnected due to various reasons and message
loss occurs. SMS sends messages asynchronously,
and therefore it cannot guarantee our requirement
entirely. So we develop another component above
these three methods to guarantee the synchronous
exactly-once semantic. We name this component
Communication Manager as shown in Figure 1. In
fact, Communication Manager performs a simplified
TCP’s sliding window algorithm (Tanenbaum, 2002)
by piggybacking the next expected message id to the
messages sent so that the other side can determine
whether to need to retransmit some messages. Pig-
gybacking is achieved with the Decorator pattern
(Gamma, 1995) by embedding the original message
in a decorator class which defines a new NextEx-
pected field and some relevant methods.

Communication Manager maintains three
queues: Sending Queue, Receiving Queue and Ex-
ception Queue. Sending Queue is further divided
into three sub-queues for the three communication
methods. Communication Manager determines the
proper sub-queue for each new message and transfer
messages from one sub-queue to another if the cor-
responding communication method does not work.
In our implementation, if Communication Manager
finds HTTP/HTTPS communication fail for twice, it
will transfer the messages in the HTTP/HTTPS sub-
queue to the SMS sub-queue. If a message sending
fails for the predefined maximum retries, it will be
reported to Exception Queue to be handled by the
upper layer program.

Since wireless communication is either charged
by time or data, we provide two different communi-
cation modes for HTTP/HTTPS. The user will be
prompted a window to select the mode for the first
time and the selection will be stored in the persistent
Record Management System (RMS) supported by
MIDP2.0. If the communication is charged by time,
the client side HTTP/HTTPS will periodically poll
its sub-queue and establish the connection when it
has some messages to send. Notice that the
HTTP/HTTPS connection can only be established
from the client side, so the client side has the re-
sponsibility to establish the connection even when it
has no messages to send but the proxy side may
have some invocation return values to deliver. How-
ever, if the connection is charged by data, the client
side HTTP/HTTPS will simply maintain a long term
connection. In this case, both sides can immediately
transfer whatever messages in the sub-queue. If the
connection fails, the client side will wait a few sec-
onds before trying to establish another connection.

5 SECURITY

In mobile computing, security is a very important
topic because data is transmitted over the unpro-
tected air media. Basically, there are three issues to
consider for security: encryption, authentication and
authorization, which are discussed in the next three
paragraphs in detail.

Encryption can prevent attackers from eaves-
dropping the transmitted data. Of course, it is great
to encrypt every transmitted data. However, this will
cost a substantial amount of system resources be-
cause encryption is a computationally expensive
process. It would be much reasonable to only en-
crypt those critical data such as credit card informa-
tion and leave the rest in plaintext. Therefore, we
provide two sets of interfaces to the developer, one
for unencrypted and the other for encrypted. If the
developer chooses the unencrypted interface, Com-
munication Manager will select HTTP as the default
communication method. If the developer chooses the
encrypted interface, Communication Manager will
select HTTPS as the default method since HTTPS in
MIDP2.0 is carried over any of the following secu-
rity protocols: Transport Layer Security (TLS), Se-
cure Sockets Layer (SSL), Wireless Transport Layer
Security (WTLS), and WAP TLS Profile and Tun-
neling Specification (Jonathan, 2002). SMS is also a
secure communication method, and therefore Com-
munication Manager can use SMS as the alternative
path for both HTTP and HTTPS in case they do not
work.

Authentication is a method to prove the identity
of the other side of the communication. With both
encryption and authentication, the communication
two parties are confident that not a third person can
involve the communication. In our system, HTTPS
can be used for the client authenticating the proxy.
But there is not a ready vehicle for the proxy authen-
ticating the client. Although SMS can support two-
way authentication, it cannot guarantee the client is
not a stolen device from a legitimate user. There are
two methods available for the client authentication.
One is password authentication and the other is cer-
tificate authentication. In our system, we does not
use certificate authentication because it involves the
complicated task of distributing the private secret,
i.e., for each copy of the client program, it should be
packaged with a unique client key and certificate.
Also, it cannot prevent a stolen device from access-
ing the application. We adopt password authentica-
tion and implement ACL Manager to authenticate
the client with the provided user name and pass-
word.

ICEIS 2007 - International Conference on Enterprise Information Systems

176

It is common that not every legitimate user can
access the same set of EJB components and meth-
ods. Based on the client authentication, ACL Man-
ager controls whether an invocation request should
be filtered or carried out for processing.

6 EJB INVOCATION

6.1 Exchange Patterns

In our system, we provide not only one synchronous
EJB component invocation interface (i.e., Sync) but
also three asynchronous interfaces (i.e., Fire-and-
Forget, Poll and Push) to the developer. Each inter-
face defines a unique message exchange pattern as
follows:

 Sync – The client issues a request message to
the proxy and makes the current thread pause
until it receives the response.

 Fire-and-Forget – The client issues a request
message to the proxy but is immediately re-
turned because it does not expect any re-
sponse; this interface can be used for invoking
those methods without return values.

 Poll – The client issues a request message to
the proxy but is immediately returned with a
key; the client continues with other business
logic; later the client can use the key to poll
for the response.

 Push – The client issues a request message to
the proxy together with a response handler;
the client continues with other business logic;
the response handler is triggered immediately
after the response is received.

As we can see, the asynchronous exchange pat-
terns do not require the current thread pause for the
response, which is extremely useful when wireless
communication shall cause long transmission delay.
In our implementation, the client side and proxy side
exchange pattern modules work together to provide
the four invocation patterns. There is one tricky that
the Poll pattern in the proxy side module actually
performs the same as the Sync pattern and the re-
sponse is stored in the local memory in the client
side module. When later the client requests the re-
sponse with the key, this process will only involve
the client side, which will reduce the wireless trans-
mission cost and increase the response time.

6.2 Prioritized Service

The proxy side Message Handler together with Pri-
ority Evaluator can provide prioritized service to

EJB component invocation. As shown in Figure 2,
each incoming request is first classified according to
whether it is a synchronous or asynchronous invoca-
tion. For the synchronous invocation, it is inserted
into the synchronous queue specific to the client of
the invocation. For the asynchronous invocation, it is
inserted into the asynchronous queue shared by all
clients. The reason is that we desire synchronous
invocation to be handled in the same sequence as
they are issued, but relax the execution sequence of
asynchronous invocation. Message Handler repeat-
edly invokes Priority Evaluator to evaluate the next
invocation request with the highest priority, and
passes the winner to EJB Invoker for execution. The
candidates for each round of evaluation are mapped
in Figure 2 within the dash line that include all the
requests in the asynchronous queue and the first re-
quest in each synchronous queue. In our implemen-
tation, Priority Evaluator considers four factors as
follows:

 The period that the request has already stayed
in the queue T1

 The average invocation time T2, which is re-
trieved from EJB Invoker

 The average round trip time T3, which is re-
trieved from the proxy side Communication
Manager

 The request mode, which is either synchro-
nous or asynchronous

Figure 2: Request classification.

The first three factors add up affecting the re-
sponse time from the client’s point of view. The
priority is calculated with the following equation:

P = W1 × Norm(T1 + T2 + T3) + W2 ×
(Request Mode = Synchronous ? 1 : 0) (1)

where W1 and W2 respectively mean the weighting
factor of the response time and the request mode,
and we set both of them to 0.5. Norm(t) is a normali-
zation function for time and we define it as follows:

⎩
⎨
⎧

≥
<≤

=
51

505
t

tt/
Norm(t) (2)

The developer can define his own priority evaluation

Async Queue

Sync Queue for Client 1

Sync Queue for Client 2

Sync Queue for Client n

R
equest

C
lassifier

AN EFFICIENT SYSTEM FOR EJB MOBILIZATION

177

strategy by replacing our Priority Evaluator.

6.3 Efficient Invocation

EJB Invoker performs the actual invocation of EJB
components. It could be the system bottleneck as all
the requests are handled in this module. To increase
efficiency, we use two strategies: thread pool and
object caching.

At the start-up of the proxy, a thread pool with
the initial capacity is created. Whenever there is a
new request, EJB Invoker will select an available
thread from the pool to handle it. As the workload
increases, the pool size will also increase. The prin-
ciple is to always make sure there are enough
threads for handling requests unless reaching the
predefined maximum. To accomplish this goal, EJB
Invoker continuously monitors two variables: the
average request incoming rate λ and the average
invocation time 1/μ. (The average invocation time
T2 defined in Section 6.3 has different meaning from
1/μ. T2 is actually the summation of the average
time waiting for an available thread plus 1/μ.) If the
number of available threads is less than the expected
number of new requests (λ/μ) before any working
thread can accomplish its task and become available,
EJB Invoker will create a new thread to the pool. If
the pool size reaches the maximum, EJB Invoker
will start to queue requests when all the threads are
unavailable. However, if the number of busy threads
plus the expected number of new requests is less 2/3
of the pool size, EJB Invoker will destroy one avail-
able thread to preserve system resources unless the
pool size has reached the initial capacity.

During the invocation of an EJB component, it
has to first create a specific context object and then
create an EJB home object based on which a refer-
ence to a new EJB object can be made. After that,
the invocation can be accomplished by calling the
appropriate method of the EJB object reference.
Creating the whole set of objects during each invo-
cation is apparently a time consuming task. There-
fore, we cache these objects in a three-layer tree data
structure. The top layer is context objects, the mid-
dle layer is EJB home objects and the bottom layer
is EJB object references. The upper two layers can
actually be created at the start-up of the proxy as the
set of EJB components has already been determined
during the application development. For the third
layer, since each EJB object may be initialized with
different parameters, it cannot be created prior to the
invocation takes place. However, once created, the
EJB object reference shall be cached for later usage.

7 CONCLUSION

In this paper, we present our recent developed sys-
tem for mobilizing enterprise applications. Our sys-
tem adopts a three-tier Client/Proxy/Server architec-
ture. As the popular of Java, our system is targeted
for providing efficient accessing to EJB components
from MIDP2.0 mobile devices. We consider reliabil-
ity and security issues since the wireless media is
both unreliable and unprotected. To deal with the
long transmission delay, we provide to the developer
not only synchronous invocation API but also asyn-
chronous APIs. We also develop a simple mecha-
nism for supporting priority service. Thread pool
and object caching are implemented to increase the
system efficiency. Lastly, we develop a set of tools
and programs for assisting the development and
management of mobile applications, which will
greatly increase the usability of our system.

ACKNOWLEDGMENTS

This work was supported by the National Natural
Science Foundation of China under Grant No.
60673123 and the National Hi-Tech Research and
Development 863 Program of China under Grant
No. 2006AA01Z231.

REFERENCES

Dave B. and Linda M. P., “Extending Enterprise Applica-
tions to Mobile Users”, Technical Report in IBM Per-
vasive Computing Division, July 2002.

Douglas D., “The Return on Your Mobility Investment:
Enterprise Opportunities for Windows Mobile-based
Pocket PCs and Smartphones”, Technical Report in
Microsoft Mobile Devices Division, April 2004.

Jim V. P. and James W., “JSR 118: Mobile Information
Device Profile 2.0”, November 2002.

Marquart C. F., “JSR 120: Wireless Messaging API”,
August 2002.

Tanenbaum A., “Computer Networks”, Prentice Hall,
August 2002.

Gamma E., Helm R., Johnson R. and Vlissides J., “Design
Patterns: Elements of Reusable Object-Oriented Soft-
ware”, Addison Wesley, January 1995.

Roman E., Rima P. S. and Gerald B., “Mastering Enter-
prise JavaBeans”, Wiley, December 2004.

Thierry V. and Ray O., “Supporting Disconnected Opera-
tion in Wireless Enterprise Applications”, Java Blue-
Prints for Wireless White Paper, June 2003.

Jonathan K., “MIDP Application Security”, Sun Technical
Articles and Tips, December 2002.

ICEIS 2007 - International Conference on Enterprise Information Systems

178

