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Abstract: Skeletonization is an important procedure in morphological analysis of three-dimensional objects. A 
simplified object geometry allows easy semantic interpretation at the cost of high computational effort. This 
paper introduces a fast morphological thinning approach for skeletonization of tubular structures and objects 
of arbitrary shape. With minimized constraints for erosions at the surface, hit-ratio is increased allowing 
high performance thinning with large datasets. Time consuming neighbourhood checking is solved by use of 
fast indexing lookup tables. The novel algorithm homogenously erodes the object’s surface, resulting in an 
accurate extraction of the centerline, even when the medial axis is placed between the actual voxel-grid. The 
thinning algorithm is applied for vessel tree analysis in the field of computer-based medical diagnostics and 
thus has to meet high robustness and performance requirements. 

1 INTRODUCTION 

Thinning is the morphological process of removing 
parts of a binary object’s surface until only the inner 
core remains. The remaining object’s core is called 
skeleton and should be aligned as close as possible 
to the medial axis of the original object. 

Continuous object surface removal is usually 
accomplished with erosion and Hit-or-Miss 
operators (Serra, 1982). Depending on thinning 
constraints, side effects like foreshortening and 
breaking of connections are prevented. Thinning for 
2D data may be implemented following (Gonzales 
and Woods, 2001) using Hit-or-Miss transformation, 
iteratively applying eight structuring elements. 

For thinning on three-dimensional input data, 
Jonker (Jonker, 2002), (Jonker, 2004) presents a 
thinning algorithm based on shape primitives for 
space curves and surfaces. The approach uses Hit-
or-Miss transformations with a set of structuring 
elements according to the dimensionality of the 
input mask. The focus of their work lies on the 
calculation of these structuring elements for 
arbitrary dimensionality and neighbourhood 
connectivity. When extracting an object’s skeleton, 
shape primitives for space curves but also for space 

surfaces must not be further eroded. With this 
approach shape preserving thinning is guaranteed. 
The algorithm is quite costly as Hit-or-Miss 
transformation has to be performed for the entire 
image mask with more than 50 million structuring 
elements for 3D data. In the work of Lohou a Binary 
Decision Diagram (BDD) is introduced for 
combining these millions of structuring elements, 
thus reducing complexity of the thinning algorithm 
to 12 sub-iterations (Lohou, 2001).  

As the novel thinning algorithm described in this 
work is needed for centerline detection as pre-
processing for vessel graph analysis, no shape 
preserving for arbitrary objects but a fast algorithm 
is required, as large CT vessel data has to be 
processed.  

2 METHODS 

2.1 Basic Notations 

Thinning algorithms usually work on binary 3D 
image data. The basic notations defined in this 
section are basis for our thinning algorithm.  
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2.1.1 Binary 3D Object 

Under the terms of set theory, a binary image A in 
Ζ3 is a set of n foreground elements a = (ax, ay, az). 
The following definition is established:  
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Consequently, a voxel not contained in A belongs to 
the complementary set of A, defined as background. 

2.1.2 Morphological Operators 

The two basic operations of Mathematical 
Morphology, dilation and erosion, are defined as 

( ){ }≠= ABzBA z I
ˆ| . (3) 

( ){ }ABzBA z ⊆= | . (4) 

for voxels z in Ζ3 with binary input image A, 
structuring element B and the reflection of B 
(Gonzales and Woods, 2001).  

The morphological transformations of Equ. 3 
and Equ. 4 can be expressed with Minkowski 
addition and subtraction by the following equations 
(Vincent, 1991), where b refers to the elements of 
structuring element B and x refers to the elements of 
the resulting set:  

{ }AbxBbxBA ∈−∈∃∈= ,|3 . (5) 
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Those formulations are adapted for Ζ3. Dilation and 
erosion are typically implemented as kernel 
operations (Gonzales and Woods, 2001). The hot-
spot of structuring element B translates over all 
elements of A. In case of dilation, all elements of B 
are set in the result, if the position under the hot-spot 
in A is set too, see Equ. 5. Erosion only preserves 
those parts of A where A and B fully overlap.  

Many common image processing applications let 
the user control the filtering process by the choice of 
structure element’s shape and size rather than by a 
specified number of iterations. Most complex 
structure elements of large size may be decomposed 
to simple structure elements of size three in each 
dimension (Park and Chin, 1995), (Anelli et al., 
1996). This decomposition is efficient for arbitrary 
structure elements. In the presented work only 
simple 3D structuring elements are used, see Fig. 1.  

 
Figure 1: Simple structuring elements for application of 
morphological operators in 2D and 3D. 2D elements are 
named as N8 and N4 (left) respectively as N26 and N6 for 
the analogous ones in 3D (right).  

Besides recursive decomposition to default 
structuring elements, there is a further optimization 
potential. When using a structuring element B for 
morphological operation on A, it is sufficient to 
apply B on the surface of A (Vincent, 1991), 
elements with not all neighbours set in N26. 

Both, recursive application of structuring 
element B and the constraint to operate on the 
surface of A lead to an enormous reduction of 
runtime as will be presented in the following 
sections.  

2.2 Hit-or-Miss Thinning 

For a set A, thinning can be defined as Hit-or-Miss 
transformation, defined in Equ. 7, for mask B with 
foreground (Bset, 1) and background (Bunset, 0) 
values.  

( ) )( unsetset BABABA − . (7) 

The other positions in the structuring elements are so 
called “don’t cares” (Jonker, 2002).  

Thinning is defined as Hit-or-Miss 
transformation on a set of structuring elements 
B={B1, B2, … Bn} and all rotated and mirrored 
variants of B. Structuring elements for Hit-or-Miss 
transformation not only define required foreground 
positions but also required background positions to 
perform erosion / dilation.  

The Hit-or-Miss operation is iteratively repeated 
until a convergence criterion is reached. Typically 
convergence is reached when no single erosion is 
performed for a full iteration cycle. If a voxel in A 
under the hot-spot of mask B meets the Hit-or-Miss 
condition, erosion can be performed (the concerning 
voxel in A is labelled as hot-spot in the following 
section).  

Constraints for the skeleton are (a) constant 
thickness of diameter one when convergence is 
reached and (b) the prevention of connection 
intersection. For an object fully connected in N26, the 
skeleton must remain fully connected. 

Furthermore thinning must prevent 
foreshortening of the resulting skeleton. Therefore 
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erosion at the ends of skeletons with target thickness 
of one must be avoided.  

 
Figure 2: Input object and resulting skeleton. The skeleton 
remains fully connected. No foreshortening at the endings, 
i.e finger tips (Jonker, 2004).  

2.3 Accelerated Thinning 

The developed thinning algorithm can be iteratively 
applied on the object’s surface for preserving a 
centerline of good quality in minimal time. Only 
homogenously applied in-place erosion with default 
structuring element N6 is needed to calculate the 
centerline of a binary tubular object A, when the 
surface is homogenously eroded from all directions. 
The critical point is how to erode in such a uniform 
way that the correct centerline is extracted.  

To preserve fully-connectedness, erosion of the 
hot-spot is only valid, when it is not the only 
connection between the vessel elements in N26 
around the hot-spot. Otherwise connections break 
and convergence is reached when the object mask 
has totally disappeared. Further erosion at the end of 
the “tail” is not performed to prevent continuous 
shortening of the resulting vessel centerline.  

Providing the correct centerline location, not all 
elements of the surface are considered for erosion. 
Only those voxel positions with a “low” number of 
set neighbours in N26 are taken into account for 
erosion as they belong to the “outer” surface. 
Without this restriction erosion along the 
centerline’s orthogonal plane is enforced resulting in 
a misplaced centerline.  

2.4 Algorithm Description 

Neighbourhood conditions for dilation on the 
surface of an object are introduced to preserve 
connections and to ensure total erosion of the object. 
For each N26 check, only the hot-spot is considered 
for erosion operation. 

2.4.1 First Neighbourhood Condition 

Two voxel i and j are neighbours in N26 when their 
position Δ in all dimensions k is one voxel width at 
the most, see Equ. 8. 

Whenever the hot-spot is set in a N26 
neighbourhood, all set neighbours (defined in Equ. 
8) are fully-connected at least via the hot-spot 
position, as the hot-spot is neighbour of all other 
elements in N26, see Equ. 10. When eroding the hot-
spot, the remaining elements in N26 must remain 
fully connected and thus preventing break-up of 
connected structures, see Equ. 11. Fig. 3.a shows 
neighbourhood configurations, where erosion of the 
hot-spot would lead to a break-up of connectivity. 
The hot-spot in the neighbourhoods visualized in 
Fig. 3.b are valid for erosion of the hot-spot 
concerning the first neighbourhood condition. 
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2.4.2 Second Neighbourhood Condition 

Erosion of the hot-spot is prohibited when it leads to 
foreshortening of the thinned object. At a number of 
only three remaining set elements in the 
neighbourhood, no further thinning of this area is 
required, see definition in Eq. 12. Examples for 
these neighbourhood configurations are shown in 
Fig. 3.c. 
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Combining the first and second neighbourhood 
condition, erosion of the hot-spots is driven until a 
convergence criterion is reached and no valid 
erosion operations are identified for an entire 
iteration step. Implying the first two neighbourhood 
conditions, erosion still has to be restricted to the 
object’s surface, introducing the third condition. 

2.4.3 Third Neighbourhood Condition 

The hot-spot in Fig. 3.d is per definition part of the 
current object’s surface. In those cases, however, 
erosion would lead to a grabbing into the object that 
negatively influences the centerline shape and 
position. Consequently, the definition for surface has 
to be restricted. Analyzing the object’s surface area, 
no neighbourhood configurations are obvious with 
more than 12 neighbours besides the hot-spot and 

VISAPP 2008 - International Conference on Computer Vision Theory and Applications

76



 

the hot-spot being interpreted as part of the “outer” 
surface (see Equ. 13). A voxel is element of the 
“outer surface” when there is at least one 
background neighbour in N6.  

Note that raising the background neighbour 
threshold from base level 12 leads to an increase in 
runtime but a reduction of side-effects concerning 
quality of the resulting centerline. The gain in 
performance for use of larger threshold values result 
from the higher number of erosions (higher hit-ratio) 
that can be performed during each iteration step. 
Experimental tests showed that the quality of the 
thinning results is hardly affected up to a threshold 
level of 15 but runtime is reduced due to a higher 
percentage of erosions performed for the time-
consuming neighbourhood checking. Nevertheless, 
this threshold parameter can be used to balance 
between quality and runtime. 

All three conditions must be met to erode the 
hot-spot position, see Equ. 14. 
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2.5 Mapping of Neighbourhood 
Conditions 

Neighbourhood conditions 1 and 2 lead to an overall 
number of 5,421,509 configurations in N26 where 
erosion of the set hot-spot is not allowed. Compared 
to the total number of different configurations in N26  
with a set hot-spot, namely 67,108,864 (226), only in 
8.08% of all cases erosion is not allowed.  

Checking the neighbourhood around each hot-
spot for fulfilling the neighbourhood criterions 
during the thinning operation is too time-consuming 
from an implementation point of view. Instead, a 
mapping for all possible configurations in N26 is pre-
calculated. All possible 226 configurations are 
generated and checked for the neighbourhood 
criterions. The boolean result is persisted to a file as 
lookup table. The applied mapping code is derived 
from the neighbourhood configuration. Each 
position in N26 neighbourhood is coded as a defined 
bit-position in the 226 hash code, where position 0 is 
coded as bit 0, position 1 as bit 1 and so on. 
Generation of the lookup-file takes about 3 minutes 
performed on Intel Pentium 4 with 2.8GHz. Note 
that this has to be executed only once. 

When iterating over the voxels of object A, the 
calculation of the hashing code is the only operation 

to perform. Direct mapping with the neighbourhood 
configuration code leads to a boolean value 
indicating whether erosion is allowed or not for 
current neighbourhood configuration. 

 
Figure 3: Neighbourhood configurations where erosion of 
the hot-spot is allowed or permitted. Upper row (a): 
erosion would lead to loss of full-connectivity as the other 
neighbours would get separated when the hot-spot is 
removed. Row (b): erosion would not influence 
connectivity and therefore is allowed as the remaining 
neighbours are still fully-connected. Foreshortening of the 
skeleton has to be prevented in (c). Lower row (d): 
Although the hot-spot is part of the surface, erosion would 
cause grabbing into the object, that has to be prevented by 
applying neighbourhood condition 3 (Equ. 13). 

2.6 Balanced Surface Erosion 

The erosion order for the object voxels is important 
for the symmetry of the extracted medial axis. 
Continuous iteration as well as recursive 
propagation would strongly prefer elements at the 
beginning and thus yields a deviation of the resulting 
skeleton from the optimal medial axis, depending on 
the propagation order and direction. To overcome 
this inadequacy, random neighbourhood selection is 
applied. Balanced erosion from all sides of the 
object leads to significant improvements. The 
described random shuffling has to be performed only 
once for initialization of the processing order.  

Only the surface elements with at least one 
background neighbour are relevant at each iteration 
step. Hence for each iteration run, only these surface 
elements are taken into consideration. Using a 
structuring element B for morphological operations 
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on A it is sufficient to apply B only on the surface of 
A (Vincent, 1991), more precisely all elements with 
at least one background neighbour set in N26. 

When eroding a certain voxel, all of it’s 
foreground neighbour voxels become elements of 
the “outer” surface. This way, a homogenous erosion 
of the surface is ensured for arbitrary shaped objects.  

Constriction of the morphological erosion to 
surface voxels leads to a significant reduction of 
runtime complexity, as discussed in the results 
section.  

2.7 Post-Processing 

The presented method yields centerlines aligned as 
much as possible along the middle of the tubular 
object, but that very likely do not build up a straight 
line. This results from the random iteration order 
described before. The linearity of results primarily 
depends on the objects size. For a symmetric 
ellipsoid of size 10x10x100 used as test data, there is 
e.g. no discrete course of connected points 
representing the centerline. Consequently, the 
resulting centerline’s voxel are aligned at discrete 
positions around the optimal course, see Fig. 7.b. 
Other centerline approaches (Jonker 2004) would 
lead to a straighter result, but differing from the 
optimal center according to the preferred 
segmentation direction.  

Results of the thinning algorithm can be further 
smoothed using interpolation. To preserve hierarchy, 
cyclic graph creation has to be applied for vectorized 
centerlines. The voxels along the graph’s edges are 
smoothed by interpolation-techniques. This post-
processing strategy with vectorization and graph 
creation is presented in (Zwettler et al., 2006) for 
acyclic 2D vessel data and can be analogously 
expanded to application on three-dimensional data.  

3 RESULTS 

When performing erosion and dilation operations 
with decomposed structuring elements on the 
object’s surface, a significant gain in performance is 
achieved. In Fig. 4 surface based dilation with 
minimal size of structuring element B is presented.  

Tab. 1 and Tab. 2 illustrate results of 
performance analysis on dilation algorithms for the 
input mask discussed in Fig. 4. Algorithm M1 uses a 
large structuring element of size 7x7 translated over 
the entire image mask. For M1’ translation is 
restricted to the outer surface. M2 algorithm 
decomposes the large structuring element to several 

iteration steps with a default structuring element, see 
Fig. 4.a. For M2’ the decomposed structuring 
element appliance is restricted to the object area and 
for M2’’ restricted to the object’s surface.  

 
Figure 4: The shown structuring element of size 7x7 is 
decomposed to three iterations using N4 (a). Three dilation 
iterations (c-e) on input mask (b). Only elements of the 
surface vector are used for morphological operations. 
Changes of current iteration are stored in the surface 
vector used during next iteration. The iterative approach 
and the usage of large structuring element result in the 
same output masks (f-g). 

Results of algorithm complexity measures show 
a significant increase for iterative and surface based 
dilation. The improvement increases with the size of 
the binary object in relation to the entire mask size. 
Runtime complexity for M1, M1’, M2, M2’ is 
( )nheightwidthO ⋅⋅  with n as the number of iterations, 

respectively the size of structuring element B. 
Runtime complexity can be approximated for M2’’ 
with ( ) ( ) ( )heightwidthrnrOnrO ,min,2 ≤⋅≅⋅⋅⋅ π  for 
a fixed radius. Similar findings concerning runtime 
analysis are presented in Tab. 5 for 3D data and in 
the work of Nikopoulos for surface based 
morphological operations (Nikopoulos and Pitas 
2000). The improvement depends on the volume-to- 
surface ratio of the object.  

Further runtime analysis is evaluated for 3D 
dilation, see Tab. 3. Comparing results in row 1 with 
2 (n=1 and n=4) and 3 with 4 (n=10 and n=20) for 
M2’’, linear time complexity is observed whereas all 
other approaches approximately have square 
complexity concerning number of iterations n. 
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Table 1: Arithmetic operations used for decomposition of 
the dilation algorithm. Weight value classification for 
basic operations are based on runtime analysis of 
(Blaschek, 2007) executed for integer operations on 
Pentium IV, 2.4 GHz; code compiled with Microsoft 
Visual C++ 7.1. Index operation weight composition is 
defined according to results of performed runtime 
analysis. 

operation description weight 
Op1 2D index calculation 4.4 
Op2 2D index access 17.3 
Op3 value comparison 6.4 
Op4 mapping index calc. 107.6 
Op5 value assertion 1.0 
Op6 1D index calculation 2.2 
Op7 1D index access 3.3 
Op8 1D vector element add 4.3 

Table 2: Runtime complexity of several dilation 
approaches evaluated for 2D example presented in Fig. 2 
(b). Number of executions for the basic operations [1-8] 
described in Tab. 1 are listed. M1: large structuring 
element translated over entire mask. M1’: large structuring 
element translated over surface. M2: iterative applying of 
small structuring element over entire mask. M2’: iterative 
applying on binary object structure. M2’’: iterative 
applying on surface. Total weight is calculated from 
number of executions listed in Tab. 2 and weights listed in 
Tab. 1. 

operation M1 M1’ M2 M2’’ M2’’’ 
Op1 1955 240 2457 1977 240 
Op2 2830 1115 2457 1977 240 
Op3 2830 1115 2457 1977 1190 
Op4 875 875 965 965 470 
Op5 875 875 965 91 91 
Op6 0 35 0 126 655 
Op7 0 35 0 126 655 
Op8 0 35 0 126 287 
weight / 
1000 

170.7 122.9 173.8 160.7 68.3 

Table 3: Runtime analysis on binary results of liver 
segmentation at different number of iterations; Presented 
values are the execution time in seconds. Data set size: 
280x233x318. segmented volume: 4,689,190 voxels 
(22.6%) initial surface: 283,925 voxels (1.4%). Runtime 
test performed on Intel Pentium 4, 2.8GHz. P1: execution 
with MeVisLab (http://www.mevislab.de/); P2: execution 
with insight toolkit’s (ITK) (http://www.itk.org/) 
itkBinaryDilateImageFilter integrated into MeVisLab 
networks. 

n M1 M1’ M2 M2’ M2’’ P1 P2 
1 1.17 0.47 0.87 0.87 0.06 15.1 38 
4 17.09 1.53 3.76 3.55 0.24 50.2 150 
10 168.2 11.90 10.03 10.57 0.61 102 378 
20 1808 119.9 22.33 25.40 1.26 199 757 

Quality and performance of the presented thinning 
method is demonstrated on the basis of several tests 
with data at different scale. Further the hit-ratio, i.e. 
the number of performed erosions divided by the 
total number of neighbourhood checkings, is 
emphasized as measure for thinning algorithm 
efficiency. Validation of the resulting centerline is 
performed by measurements on the centerline’s 
position, see Tab. 4.  

Depending on the volume-to-surface ratio, the 
restriction of the presented fast thinning algorithm 
for the total object (FT) on the object’s surface 
(FT_surf) goes along with an increased hit-ratio. 

FT and FT_surf lead to different skeletons, as 
FT morphology is performed in-place and because 
changes influence the neighbourhood of voxel not 
examined during the current iteration. On the other 
hand FT_surf only processes all surface elements 
during each iteration what leads to more 
homogenous results compared to FT.  

The center of mass Δ in Tab. 4 refers to the level 
of misplacement. For presented test data with even 
dimensions, no discrete centerline is calculated. 
Hence an error far below an Euclidian voxel 
distance of 0.5 constitutes an improvement over 
thinning algorithms that would result in a more 
linear centerline at the cost of an exact misplacement 
Δ of 0.5 depending on the preferred operation 
direction, see (Jonker, 2002).  

The resulting centerlines of the test runs logged 
in Tab. 4 are plotted in Fig. 5 and 6 and visually 
presented in Fig. 7-10.  

As shown in Fig. 4, FT_surf leads to a 
significant reduction in runtime compared to 
Jonker’s implementations, with regard to the 
increased hit-ratio. The correlation of FT after 
square rooting confirms the stated reduction of 
runtime complexity when restricting morphological 
operations to the object’s surface.  

To receive objective results, the implementations 
for the Jonker approaches and FT_surf are 
implemented as similar as possible. The typically 
recursive implementation of Jonker (J_rec) shows 
longer runtimes than the iterative implementation 
(J_iter) analogously derived from our thinning 
approach with Jonker’s structuring elements. Of 
course they also feature the fast surface erosion in 
contrast to FT. Reduction of runtime mainly results 
from a more effective hit-ratio, see Fig. 6. For 
FT_surf only 5,421,509 (8.08%) of all 
configurations are rejected for erosion, whereas 
Jonker’s space curve and surface shape primitives 
lead to more than 34 million (~53%) rejections.  
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Results of thinning a volumetric ellipsoid are 
presented in Fig. 7. The remaining skeleton is fully-
connected and positioned around the virtual rotation 
center. Jonker’s algorithm results in a straighter line 
with a Δ of about 0.5 from the rotation axis. 
FT_surf is adequate for center detection of a sphere, 
see Fig. 8.  

Table 4: Results of thinning algorithm test runs on data 
with different tubular and rotation-symmetric morphology. 
The erosion percentage refers to the number of erosions 
compared to all neighbourhood checkings. Erosion 
percentage is significant for the performance increase that 
can be seen comparing FT and FT_surf, the presented 
thinning algorithm applied to the object’s surface. 
[Runtime test performed on Intel Pentium 4, 2.8GHz]. 

ellipsoid, 40x40x400, voxel: 335,232; surface: 50,904 
 J_iter J_rec FT FT_surf 
iterations 43 21 158 40 
hit-ratio  0.986 0.949 0.019 0.988 
time [sec] 0.876 1.919 19.641 0.671 
centerline 
length 

394 385 379 395 

center of 
mass Δ 

.48 .5 .0 .46 .5 3.02 .06 .09 .17 .03 .03 .4  

ellipsoid, 80x80x800, voxel: 2,681,050; surface: 207,336 
 J_iter J_rec FT FT_surf 
iterations 93 41 342 84 
hit-ratio 0.99 0.958 0.009 0.981 
time 6.214 24.27 402.36 4.962 
centerline 784 781 837 770 
center of 
mass Δ 

0.54 0.48 
1 

0.47 0.5
8.8 

.02 .07 6.2 0.01 0.04 5

sphere, 200x200x200, voxel: 4,188,900; surface: 186,176 
 J_iter J_rec FT FT_surf 
iterations 399 101 427 206 
hit-ratio 0.984 0.926 0.008 0.991 
time 13.492 70.98 721.41 6.117 
centerline 389 174 3 3 
center of 
mass Δ 

15.4 22 
25.1 

66 30 67 .17 .5 .17 0.17 0.17
0.5  

grid, 200x200x200, voxel: 4,288,580; surface: 1,091,381 
 J_iter J_rec FT FT_surf 
iterations 122 20 559 63 
hit-ratio  0.697 0.511 0.005 0.774 
time 14.243 40.011 1160.0 7.599 
centerline 39,934 39,642 33,645 34,476 

vessel tree, 318x316x454, voxel: 146,783; surface: 70,418
 J_iter J_rec FT FT_surf 
iterations 68 15 66 86 
hit-ratio 0.443 0.308 0.064 0.484 
time 1.096 3.601 11.578 0.890 
centerline 3,595 3,506 3,385 3,692 
 

Skeletonization of a three-dimensional grid confirms 
that all object connections remain fully connected, 
see Fig. 9.  

The extraction of a vessel tree centerline is 
demonstrated in Fig. 10. Results are suitable for later 
vessel tree vectorization, cyclic graph creation and 
graph analysis.  

 

 
Figure 5: Results of runtime analysis presented in Tab. 4. 
FT_surf shows lowest runtime for all 5 test data sets. FT, 
the only approach not thinning at the object’s surface, was 
plotted after square rooting. Evidently, erosion 
constriction to the surface voxels leads to an approximated 
runtime reduction by one dimension as stated for 2D data 
in the section before. 

 
Figure 6: Hit-ratio analysis based on test runs presented in 
Tab. 4. The marginal hit-ratio improvements of FT_surf 
compared to the Jonker implementations lead to a 
significant reduction in runtime. 

 
Figure 7: Thinning of an ellipsoid (a). Results of FT_surf 
presented in (b) and results of J_rec in (c) (zoomed sub-
section). 
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Figure 8: Thinning of sphere (a). FT_surf detects center 
of the sphere as hot-spot (b) whereas inhomogeneous 
erosion can lead to branched results (c), a side effect of 
many other thinning algorithms. 

 
Figure 9: Thinning of a 3D grid (a). Results of FT_surf 
presented in (b) and (c). 

 
Figure 10: Thinning of hepatic vessel tree (a). Results 
presented in (b), (c) and zoomed vessel branching in (d). 

4 CONCLUSIONS 

In this paper existing algorithmic concepts for 
acceleration of morphological operations are 
combined for development of a novel thinning 
concept optimized for the application area of tubular 
structures. The presented algorithm is robust and fast 
compared to other state-of-the-art thinning 
operators, taking advantage due to the specialization 
on tubular and rotation-symmetric morphological 
objects.  

The algorithm meets all requirements for clinical 
application in the field of liver vessel graph analysis 
for liver lobe classifications. As the presented 
algorithm yields no favourite segmentation 
direction, the resulting centerlines are closer to the 
rotational axis when the object’s dimension is even 
at the cost of generally not smoothed centerline 
characteristics. The constraints of full-connectivity 
and a centerline width of one are invariably fulfilled.  
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