
THE FUTURE OF PARALLEL COMPUTING: GPU VS CELL
General Purpose Planning against Fast Graphical Computation Architectures,

which is the Best Solution for General Purposes Computation?

Luca Bianchi, Riccardo Gatti and Luca Lombardi
Department of Informatics Engineering, University of Pavia, Via Ferrata 1, Pavia, Italy

Keywords: Real-time Visual Simulations, Parallel Computing, HPC, CELL, GPU, GPGPU, General Purposes, Fast
Computing.

Abstract: Complex models require high performance computing (HPC) which means Parallel Computing. That is a
fact. The question we try to address in this paper is "which is the best suitable solution for HPC contexts
such as rendering? Will it be possible to use it in General Purpose elaborations?" We start from these
questions and analyze two different approaches, IBM CELL and the well known GPGPU, showing how
changing our minds and breaking some assumptions can lead to unexpected results and open a whole set of
new possibilities. We talk about rendering, but quickly move slightly towards general purpose computation,
because many algorithms used in Visual Simulations are not only referred to rendering issues but to a wider
range of problems.

1 HIGH PERFORMANCE
COMPUTING

In a couple of years the demand for fast computation
solutions has grown up dramatically, thanks to the
wide diffusion of multimedia applications and the
availability of complex models for visual
simulations.

Many attempts have been done to push
computer's CPUs to overcome their limits using the
performance grow rate described by Moore's law.
Until recently the performance gains for processors
performances were obtained through clock
frequency increasing. However this led to the rise of
many unavoidable problems which slew down CPU
growth rate, due to heating problems originating
from too high an integration of circuits on a single
chip.

A couple of years ago some solutions started to
be implemented to overcome this strong limit which
would have bounded elaboration performances and,
indirectly, technology development. One interesting
solution comes from 3D graphics and involves the
adoption of parallel architectures for High
Performance Computing. This gained wide success
in the critical performance context of rendering for
3D Graphics. Certainly this solution was optimal

and researchers soon started to investigate out of the
rendering context in which it was initially
developed. In this way a new paradigm emerged and
was established: General Purpose on GPU (Luebke
& Harris, 2004).

In the same years Sony, IBM and Toshiba started
to develop a new processor architecture designed for
parallel computing which was called CELL.

1.1 The Heart of the Problem

Many publications have been written to show how
both solutions are better than traditional common
CPUs. No one though has yet taken a position on
how parallel computing will be in the next years.

We started by considering that Real-Time Visual
Simulations often require to address problems not
only concerned to rendering itself (e.g. physics,
collision detections, artificial intelligence), and
require fast computation even for general purpose
algorithms. This is the reason why hardware
producers, such as nVidia, try to propose their
solution not only for renderings or graphics-related
contexts.

419Bianchi L., Gatti R. and Lombardi L. (2008).
THE FUTURE OF PARALLEL COMPUTING: GPU VS CELL - General Purpose Planning against Fast Graphical Computation Architectures, which is
the Best Solution for General Purposes Computation?.
In Proceedings of the Third International Conference on Computer Graphics Theory and Applications, pages 419-425
DOI: 10.5220/0001099904190425
Copyright c© SciTePress

Figure 1: Standard Rendering Pipeline (The Computer
Language Co. Inc., 2004).

With this fact clear in mind we asked ourselves i)
which one between GPGPU and CELL is the best
approach for HPC, ii) how much flexibility is
important and iii) how much it is paid with
performance loss.
Our goal is to show that CELL processor provides
higher flexibility than the GPGPU approach as well
as performances that are comparable if not better in
many general purpose contexts. Our intention is not
to run after clock frequencies, but to discuss how
architectural choices make CELL a better solution
for HPC. For this reason, we just present a small
amount of data and then discuss them.

The next section introduces both the GPGPU and
CELL approaches to parallel computing, assuming
that both provide better performances compared to
traditional CPUs (nVidia, 2006) (IBM, 2007).

Section 3 counters some common assumptions
hinting that GPGPU could be the only solution for
parallel computing and explains how CELL can
easily overcome such assumptions.

Section 4 shows some of the benefits provided
by this processor not available for GPGPU. Section
5, finally, presents the work we propose to unleash
the power of CELL processor.

2 PARALLEL COMPUTING

2.1 General Purpose on GPU

This approach develops in the specific context of
real – time 3D graphics out of the strong need for
high accuracy with complex shading models and real
– time performances for renderings.

A lot has been done since the late 90s when the
first programmable unit for GPU was realized. Since
then, the graphical pipeline was thought of not as a
fixed sequence of steps built on GPU, but as a
solution with two programmable stages (figure 1).
This idea was supported by the adoption of a stream
processing SIMD architecture which could perform
a single instruction on multiple data in a single
execution step (Akenine-Moller & Haines, 2002).

It is well known today which advantages in
performance can be achieved through a
programmable rendering pipeline, and not only at
the graphic level. The idea behind the so called
GPGPU is to play a trick by using the graphical unit
for general elaborations. With this purpose, only the
fragment shader is generally used: a single quad is
sent down the pipeline, while data are stored in a
texture as pixels’ values. At rastering stage the quad
is mapped on to screen dimension and a grid is built.
Thanks to this object we can reference each data in
our texture and use it for computation. Results are
stored in a FrameBuffer from where they can easily
be transferred back to CPU or sent to the screen. The
program in the fragment shader could be any kind of
algorithm, thus realizing general purpose computing
(Luebke & Harris, 2004). What should be kept in
mind is that GPGPU execution is still constrained by
the concept of pipeline and computing is done using
graphic hardware as a black box. One of the greatest
limits to this approach is that each stream processor
should work alone without sharing data from another
processor.

2.1.1 Computer Unified Device Architecture
and Tesla

In late 2006 nVidia Corporation sold the first
GeForce 8800 card which used a new kind of
pipeline (nVidia Technical Brief, 2006). This
architecture, according to Shader Model 4 specs, can

GRAPP 2008 - International Conference on Computer Graphics Theory and Applications

420

provide more flexibility than the previous one. The
separation between vertex and fragment units was
left aside in moving to a new unified unit capable of
load balancing (figure 2).

Also data transfers between stream processors
were made more flexible by introducing a parallel
data cache which could be used for making
computed data available for other units. This is a
great step forward, but GPU architecture still
remains constrained by the pipeline paradigm, which
has proved to be a good solution for fast renderings.

Recently, nVidia started proposing a modified
version of GeForce 8800 named Tesla, with more
memory and no DVI connectors (nVidia, 2007).
This is a solution thought for GPGPU.
Unfortunately, no data could be retrieved either for
Tesla or for 8800 series. According to nVidia,
CUDA graphic cards are 30% faster than other
cards: as a result a comparison can be drawn even
without data.

Figure 2: CUDA Architecture.

2.2 CELL Processor

CELL was designed by a partnership of Sony,
Toshiba and IBM to be the heart of Sony’s
Playstation3 gaming console. However, results from
Berkeley laboratory show that CELL architecture
has a tremendous potential for scientific
computations in terms of both raw performance and
power efficiency (Williams, Shalf, Oliker, Kamil,
Husbands, & Yelick, 2006).

CELL combines the considerable floating point
resources for demanding numerical algorithms with
a power-efficient software-controlled memory
hierarchy. Instead of slowly evolving towards a
streaming SIMD multi-core architecture, the CELL
Processor was designed with these concepts in mind.

CELL architecture is made of nine processors
operating on a shared, coherent memory. The

processors can be distinguished between PPE and
SPEs. PPE (PowerPC Processor Element) is a high
performance 64-bit PowerPC core with 32KB L1
cache and 512KB L2 cache (figure 3).

Each SPE (Synergistic Processor Element) has a
Synergistic Processor Unit (SPU), a 256KB local
memory and a memory flow controller. SPEs are
independent processors that are optimized for
running compute-intensive applications.

PPE provides support for the operating system
and manages the work of all the SPEs. PPE uses 2-
way symmetric multithreading which is comparable
to Intel Hyperthreading .SPEs, on the other hand,
provide to CELL the application performance. Each
SPE includes four single precision (SP) datapaths
and one double precision (DP) datapath. SIMD
double-precision operation must be serialized. The
SPE cannot access the main shared memory and it
must transfer data via DMA to its own local store
using the Memory Flow Controller (MFC). The
MFC operates asynchronously with respect to the
SPU, so that is possible to overlap DMA transfers
with other concurrent operations.

All CELL elements are connected by 4 data
rings known as the EIB (Element Interconnection
Bus). This ring permits 8 byte/s to be read and
simultaneous transfers to be carried out.
Access to external memory is made by a 25.6 GB/s
XDR memory controller.

Figure 3: CELL Architecture Diagram (Gschwind, 2005).

3 COMMON BELIEFS

Thanks to game industry GPU parallel computing
model is more widespread than CELL. This led to a
series of assumptions that are often GPU biased. In

THE FUTURE OF PARALLEL COMPUTING: GPU VS CELL - General Purpose Planning against Fast Graphical
Computation Architectures, which is the Best Solution for General Purposes Computation?

421

this section we present the most common claims and
try to centre the balance.

3.1 GPUs do not Cost as Much as
CELL

This first claim rises from one of the few papers
available that draw a direct comparison between the
two architectures (Baker, Gokhale, & Tripp, 2007).
In this work it is shown how GPU has a lower price
and an higher Speedup/$K rate. This could may
appear obvious reading the paper, but some things
need to be pointed out.

First of all, by looking to raw data the difference
in performance and costs is not so huge because
although CELL price is three times nVidia 7900
GTX price, it is also three times faster. In fact the
Speedup/$K rate is almost the same: the difference
is 0.34. The important thing is that in this benchmark
a single graphic card vs a CELL blade system which
mounts two processors is used. In order to make
results comparable, only one Blade’s processor is
used. In this way we have the cost of a blade but half
the power it could provide. Using the single CELL
of a PS3 we discover that a single video card has the
same price of a Playstation, which does not only
includes the CELL processor. This small difference
in terms of price is more evident if we compare the
nVidia Deskside Tesla (sold at 7500$) and CELL
QS21 Blade (almost 8000$). What Baker, Gokhale
& Tripp (Baker, Gokhale, & Tripp, 2007) show is
the importance of the possibility to buy a single
CELL solution without all the PS3 environment.

The last thing to point out is that in the paper the
code used for benchmarks is not optimized. This
affects more the CELL performances than the
GPU’s, as we will discuss further on.

3.2 GPUs have a Faster Learning
Curve

As a matter of fact GPUs have a faster learning
curve if your aim is just to write a “Hello world”
program. If your goal is to use GPU for small
algorithms with no high performance needs you will
be able to do that after a while. On the contrary if
your goal is to develop an optimized solution for a
problem where performances really matter, then you
will have to learn graphic programming and
OpenGL (or DirectX). This will not make your
learning curve so fast. Some good news comes from
nVidia with the announcement that a C compiler
will be available for CUDA. In this way learning
graphics will be no longer necessary but you will

always need to know how your code is executed on
GPU. This is the very problem which makes the
CELL the learning curve so slow.

In considering learning curves, the only
difference worth pointing out is that GPU makes
parallel programming transparent to users (nVidia
CUDA, 2007). However it has not yet been
demonstrated that this would be and advantage in
specific contexts where optimizations matter.

3.3 GPUs are Specific for Graphic and
Provide Better Performances

This is a claim often proposed while presenting
benchmarks between GPUs and CPUs, and is
obviously true. If you have an algorithm, the closer
it is to graphic context, the more porting it to GPU
would provide faster performance. The common
example is image filtering, where we can obtain an
incredible speedup with respect to CPU
implementations. What is never said but often
thought is that GPU performances are the best tool
available in parallel computing, both at the graphic
and general purpose levels. This is not true.

One of the most significant results provided by
CELL over GPGPU architecture concerns the
solution of a matrix multiplication problems. This
has been used for a long time to demonstrate the
GPU’s abilities. nVidia Quadro 4600 performs
single precision matrix multiplications with a
throughput of 90 GFLOPS (GPU-Tech, 2007). The
same operation performed on CELL processor with
8 SPU runs at 140 GFLOPS (Barcelona
Supercomputing Center, 2007). This result is highly
significant, as matrix multiplication has always been
GPU computing’s greatest achievement. We do not
aim to claim that CELL should be used for graphics
rendering. Our purpose is just to demonstrate that, if
this processor is valuable even for a context where
GPU has always been the top solution, its flexibility
probably makes it a better choice for general
purpose parallel computing.

It might be argued that, on paper, nVidia G80
offers a higher GFLOPS rate than CELL (500
against 208). This claim is true if you only compare
the raw computation rates, positing a full utilization
of both technologies. This is just an ideal case. In
real applications, code optimization is extremely
difficult for GPU, and is even more so if we consider
the C compiler layer introduced by CUDA
architecture. In poor words in real applications, such
as real-time ray tracing, CELL benefits from code
optimization more than GPU and provides higher
performance even with the single six core CELL

GRAPP 2008 - International Conference on Computer Graphics Theory and Applications

422

processor of Playstation 3 as shown in (Minor,
2007). In this paper, both architectures are
compared, first on raw computation GFLOPS and
then with the graphics algorithm of Interactive
Raytrace applied to Stanford Bunny. The results are
amazing: one single CELL processor is four to five
times faster than G80. If we consider the “on paper”
computing power and use a QS20 blade (which has a
comparable GFLOPS amount), it is eight to eleven
time faster.

4 WHY A GOOD SOLUTION IS A
GOOD SOLUTION

The CELL architecture provides features that makes
it an excellent platform for developing any kind of
applications. We identify two main benefit in CELL
structure: the possibility of using and organizing the
work of the different cores in a totally separate and
independent way and the fast communication system
that link all the chip components. A developers
framework for CELL offers useful tools like
profilers, simulators and compilers for helping the
programmers to take advantage of all the CELL key
features.

4.1 Flexibility

The CELL Broadband Engine Architecture has been
designed to support a variety of different
applications.

Although the CELL processor was initially
conceived for application in game consoles or high-
definition televisions, its architecture was designed
to allow fundamental advances in processor
performance and programming flexibility.

 The GPU Architecture, on the other hand, was
initially designed as a dedicated rendering device
and is highly efficient in making more effective all
those algorithms and all those computations bound
to graphics needs. Using a dedicated architecture to
make general purpose applications requires the
programmer to deal with a large number of problems
and limitations in their algorithms. In fact, the
GPGPU concept of programming is based on
deceiving the GPU by using the graphics pipeline
for making different types of computations unrelated
to graphics applications.

Programs that run on CELL typically split
computational cost among all the available processor
elements. In order to determine workload and data
distribution, the programmer should take the
following considerations into account:

• Processing-load distribution

• Program structure
• Data access patterns
• Code movement and data movement among

processors
• Cost of bus loading and bus attachments

In the CELL programming way there are
different application partitioning models can be
found. The two main models are the PPE-centric
model and the SPE-centric model.

 In the PPE-centric model the main application
runs on the PPE while the SPEs are used to off-load
other individual tasks. The PPE duties are to wait
and coordinate the different results coming from the
SPEs. Applications that have serial data and parallel
computations fit this model well. The SPEs can be
used in three different ways:

• The multistage pipeline model
• The parallel stages model
• The services model

If an application requires multiple and sequential
stages, the programmer can use a multistage-pipeline
model approach. Every step of the application is
loaded onto a single SPE and the results are sent
through the shared bus from SPE to SPE. The data
stream is initially sent to the first SPE and the results
can be taken from the last SPE that contains the last
stage of the application. In Multistage pipelining
problems occur in determining load balancing and in
large data-movement between the SPEs.

In the parallel stages model each SPE runs the
same task and the data input of the application is
equally split among all the SPEs as well as
processed at the same time. This is a concept of
programming similar to the GPGPU where the input
data stream is processed at the same time in different
shaders running the same kernel.

The PPE-centric service model is used when
there is the need to run different tasks that are part of
a large application not in a pre-existing order. In
each SPE a different program is loaded and the
appropriate SPE is called by the PPE when a
particular service is needed.

In the SPE-centric model the application code is
split among all the SPEs (or part of them). Each SPE
fetches its next work from either the main storage or
its local memory. The PPE on the other hand acts as
a resource manager for the SPEs.

All this flexibility in using the different CELL’s
cores makes it a perfect platform for any kind of
application. The programmer just has to devise the
best way to organize the steps of his algorithms to
exploit all the possibilities and the power of the
CELL architecture.

THE FUTURE OF PARALLEL COMPUTING: GPU VS CELL - General Purpose Planning against Fast Graphical
Computation Architectures, which is the Best Solution for General Purposes Computation?

423

There are already many papers that show how
CELL architecture boosts the performance of many
kinds of applications ranging from rendering to
general purpose ones. A work from Utah University
shows how good the performances of ray tracing on
the CELL Processor are. The research shows how to
efficiently map the ray tracing algorithm to the
CELL Processor, with the result that a single SPE
attains the same performance as a fast x86 system.
(Benthin, Wald, Scherbaum, & Friedrich, 2007).
Another work shows how a parallelized form of
H.264 encoding algorithm (Park & Soonhoi, 2007)
achieves optimal performance. In this work the
authors also claim that a SPE-specific optimization
is needed to obtain a meaningful speed-up. By using
the Vector/SIMD instructions and reducing data
transfers between SPE and PPE, better performance
can be achieved in their particular application.

Some effort were also made in porting a digital
media indexing application (MARVEL) on CELL
processor. This kind of application needs image
analysis for feature extraction; overall performance
of this algorithms was excellent on CELL platform
(Lurng-Kuo, Qiang, Apostol, Kenneth, Smith, &
Varbanescu, 2007).

Again, all these examples show how the CELL
architecture is suitable for improving performance of
a different range of applications.

4.2 Shared Memory

The CELL processor can be programmed as a
shared-memory multiprocessor where SPE and PPE
units can interoperate in a cache-coherent shared-
memory programming model. Anyway PPE and
SPE have significant difference in the way they
access memory. PPE accesses main storage with
load and store instructions that go between a private
register file and main storage. SPE accesses main
storage with direct memory access (DMA)
commands that are stored, along with data, in a
private local memory. This 3-level organization
(register file, local store and main storage) explicitly
parallelizes computation and the transfer of data and
instructions. The main reason for this organization is
that application performance is, in most cases,
limited by memory latency rather than by peak
compute capability or peak bandwidth. The DMA
model allows each SPE to have many concurrent
memory accesses. Another benefit is that very few
cycles are needed to set up a DMA transfer
compared to the long waiting time (in terms of
cycles) that occurs when a load instruction of a

program misses in the caches in conventional
architecture.

A valid approach in memory-access is to create a
list of DMA transfers in the SPE’s local store so that
the SPE’s DMA controller can process this list
asynchronously while the SPE operates in
previously transferred data.

The on-chip communication benchmark of the
CELL was matter of accurate benchmark and tests.
Overall results of the experiments demonstrate that
the CELL processor’s communication subsystem is
well matched to the processor’s computational
capacity. The communication network provides all
the speed and bandwidth that applications need in
order to exploit the processor’s computational power
(Kistler, Perrone, & Petrini, 2006).

4.3 Simulator, Compiler and Profiler

One of the main problems while programming
GPGPU kernels is the portability of the code. There
are many differences between architectures of
different manufacturers that prevent the code to be
freely used on any GPU (g.e texture format, texture
size, pixel format supported …). On the other side
CELL architecture provides to the programmer with
a unique and complete environment.

A Full-System Simulator is offered as an
alternative to conventional process and thread
programming. Here the programmer has access to
many features such as scheduler for threads,
debugging tools, performance visualization, tracing
and logging capabilities.

PPE implements an extended version of the
PowerPC instruction set. This extension consists of a
Vector/SIMD Multimedia extension plus some
changes in PowerPC instructions. The SPE
instruction set is similar to PPE but needs a different
compiler. All these extensions are supported by C-
language intrinsics. Intrinsics substitute assembly
instructions with C-language commands. Most
instructions process 128b operands, divided into four
32b words.

5 CONCLUSIONS

Both GPGPU and CELL approaches are excellent
solutions for HPC applications. Without any doubt
they will mark the state of the art for next years.
Many upcoming changes will be released, starting
from CELL v2.0 through next CUDA generation
especially designed for physics.

GRAPP 2008 - International Conference on Computer Graphics Theory and Applications

424

Hopefully we’ve proved that CELL has the best
opportunities to become the standard for general
purposes computing: its flexibility could provide
high performances without too many constraints.

An additional gain of CELL is represented by its
reduced size which makes it suitable for embedded
devices.

Our interest in the topic is focused on creating a
good knowledge base for CELL programming, using
it to reduce computational costs in general purpose
contexts as Medical Image Elaboration or Virtual
Reality. This lack of knowledge and realizations on
CELL are today one of the biggest obstacles its
adoption because strengthens the idea of a solution
which don’t pay the investment and with a too
abrupt learning curve.

ACKNOWLEDGEMENTS

Special thanks to Elisa Ghia for all the support given
to this work.

This work has been partially supported by PRIN
2006 - Ambient Intelligence: event analysis, sensor,
reconfiguration and multimodal interfaces.

REFERENCES

Akenine-Moller, T., & Haines, E. (2002). RealTime
Rendering. A. K. Peters.

Baker, Z. K., Gokhale, M. B., & Tripp, J. (2007). Matched
Filter Computation on FPGA, Cell and GPU. 15th
Annual IEEE Symposium on Field-Programmable
Custom Computing Machines., (pp. 207-218).

Barcelona Supercomputing Center. (2007). Matrix
Multiplication Example. Retrieved 11 25, 2007, from
Computer Sciences:
http://www.bsc.es/plantillaH.php?cat_id=420

Benthin, C., Wald, I., Scherbaum, M., & Friedrich, H.
(2007). Ray Tracing on the Cell Processor. IEEE
Symposium on Interactive Ray Tracing (pp. 15-23).
IEEE.

GPU-Tech. (2007). GPU-Tech GPU Computing.
Retrieved 11 26, 2007, from GPU-Tech:
http://www.gpucomputing.eu/index3.php?lang=en&pa
ge=_demo1.php&id=2

Gschwind, M. (2005, 08 17). The Cell project at IBM
Research.

IBM. (2007). Cell Broadband Engine - An Introduction.
Kistler, M., Perrone, M., & Petrini, F. (2006). Cell

Multiprocessor Communication Network: Built for
Speed. IEEE Micro , 26 (3), 10-23.

Luebke, D., & Harris, M. (2004). GPGPU: General
Pourpose Computation On Graphics Hardware.
SIGGRAPH Course Notes.

Lurng-Kuo, L., Qiang, L., Apostol, N., Kenneth, R. A.,
Smith, J. R., & Varbanescu, L. A. (2007). Digital
Media Indexing on the Cell Processor. IEEE
International Conference on Multimedia and Expo.
IEEE International.

Minor, B. (2007, 09 05). Cell vs G80. Retrieved 11 23,
2007, from Game Tomorrow: http://
gametomorrow.com/blog/index.php/2007/09/05/cell-
vs-g80/

nVidia CUDA. (2007). GeForce 8800 & NVIDIA CUDA
A New Architecture for Computing on the GPU.

nVidia. (2006). CUDA Programming GUIDE v0.8.
nVidia.

nVidia. (2007, 10 18). nVidia Tesla Tech Specifications.
Retrieved 11 18, 2007, from nVidia Web site:
http://www.nvidia.com/object/tesla_tech_specs.html

nVidia Technical Brief. (2006). NVIDIA GeForce 8800
GPU Architecture Overview. nVidia Corporaion.

Park, J., & Soonhoi, H. (2007). Performance Analysis of
Parallel Execution of H.264 Encoder on the Cell
Processor. IEEE/ACM/IFIP Workshop on Embedded
Systems for Real-Time Multimedia, 2007 (pp. 27-32).
ESTIMedia.

The Computer Language Co. Inc. (2004). Graphics
Pipeline. Retrieved from Answer.com:
http://www.answers.com/topic/graphics-
pipeline?cat=technology

Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P.,
& Yelick, K. (2006). The Potential of the Cell.
Berkeley : Computational Research Division
Lawrence Berkeley National Laboratory.

Wright, R. J. (2004). OpenGL SuperBible. Addison
Wesley.

THE FUTURE OF PARALLEL COMPUTING: GPU VS CELL - General Purpose Planning against Fast Graphical
Computation Architectures, which is the Best Solution for General Purposes Computation?

425

