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Abstract: Complex models require high performance computing (HPC) which means Parallel Computing. That is a 
fact. The question we try to address in this paper is "which is the best suitable solution for HPC contexts 
such as rendering? Will it be possible to use it in General Purpose elaborations?" We start from these 
questions and analyze two different approaches, IBM CELL and the well known GPGPU, showing how 
changing our minds and breaking some assumptions can lead to unexpected results and open a whole set of 
new possibilities. We talk about rendering, but quickly move slightly towards general purpose computation, 
because many algorithms used in Visual Simulations are not only referred to rendering issues but to a wider 
range of problems. 

1 HIGH PERFORMANCE 
COMPUTING 

In a couple of years the demand for fast computation 
solutions has grown up dramatically, thanks to the 
wide diffusion of multimedia applications and the 
availability of complex models for visual 
simulations.  

Many attempts have been done to push 
computer's CPUs to overcome their limits using the 
performance grow rate described by Moore's law. 
Until recently the performance gains for processors 
performances were obtained through clock 
frequency increasing. However this led to the rise of 
many unavoidable problems which slew down CPU 
growth rate, due to heating problems originating 
from too high an integration of circuits on a single 
chip. 

A couple of years ago some solutions started to 
be implemented to overcome this strong limit which 
would have bounded elaboration performances and, 
indirectly, technology development. One interesting 
solution comes from 3D graphics and involves the 
adoption of parallel architectures for High 
Performance Computing. This gained wide success 
in the critical performance context of rendering for 
3D Graphics. Certainly this solution was optimal 

and researchers soon started to investigate out of the 
rendering context in which it was initially 
developed. In this way a new paradigm emerged and 
was established: General Purpose on GPU (Luebke 
& Harris, 2004). 

In the same years Sony, IBM and Toshiba started 
to develop a new processor architecture designed for 
parallel computing which was called CELL. 

1.1 The Heart of the Problem 

Many publications have been written to show how 
both solutions are better than traditional common 
CPUs. No one though has yet taken a position on 
how parallel computing will be in the next years. 

We started by considering that Real-Time Visual 
Simulations often require to address problems not 
only concerned to rendering itself (e.g. physics, 
collision detections, artificial intelligence), and 
require fast computation even for general purpose 
algorithms. This is the reason why hardware 
producers, such as nVidia, try to propose their 
solution not only for renderings or graphics-related 
contexts. 
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Figure 1: Standard Rendering Pipeline (The Computer 
Language Co. Inc., 2004). 

With this fact clear in mind we asked ourselves i) 
which one between GPGPU and CELL is the best 
approach for HPC, ii) how much flexibility is 
important and iii) how much it is paid with 
performance loss. 
Our goal is to show that CELL processor provides 
higher flexibility than the GPGPU approach as well 
as performances that are comparable if not better in 
many general purpose contexts. Our intention is not 
to run after clock frequencies, but to discuss how 
architectural choices make CELL a better solution 
for HPC. For this reason, we just present a small 
amount of data and then discuss them. 

The next section introduces both the GPGPU and 
CELL approaches to parallel computing, assuming 
that both provide better performances compared to 
traditional CPUs (nVidia, 2006) (IBM, 2007). 

Section 3 counters some common assumptions 
hinting that GPGPU could be the only solution for 
parallel computing and explains how CELL can 
easily overcome such assumptions. 

Section 4 shows some of the benefits provided 
by this processor not available for GPGPU. Section 
5, finally, presents the work we propose to unleash 
the power of CELL processor. 

2 PARALLEL COMPUTING 

2.1 General Purpose on GPU 

This approach develops in the specific context of 
real – time 3D graphics out of the strong need for 
high accuracy with complex shading models and real 
– time performances for renderings. 

A lot has been done since the late 90s when the 
first programmable unit for GPU was realized. Since 
then, the graphical pipeline was thought of not as a 
fixed sequence of steps built on GPU, but as a 
solution with two programmable stages (figure 1). 
This idea was supported by the adoption of a stream 
processing SIMD architecture which could perform 
a single instruction on multiple data in a single 
execution step (Akenine-Moller & Haines, 2002). 

It is well known today which advantages in 
performance can be achieved through a 
programmable rendering pipeline, and not only at 
the graphic level. The idea behind the so called 
GPGPU is to play a trick by using the graphical unit 
for general elaborations. With this purpose, only the 
fragment shader is generally used: a single quad is 
sent down the pipeline, while data are stored in a 
texture as pixels’ values. At rastering stage the quad 
is mapped on to screen dimension and a grid is built. 
Thanks to this object we can reference each data in 
our texture and use it for computation. Results are 
stored in a FrameBuffer from where they can easily 
be transferred back to CPU or sent to the screen. The 
program in the fragment shader could be any kind of 
algorithm, thus realizing general purpose computing 
(Luebke & Harris, 2004). What should be kept in 
mind is that GPGPU execution is still constrained by 
the concept of pipeline and computing is done using 
graphic hardware as a black box. One of the greatest 
limits to this approach is that each stream processor 
should work alone without sharing data from another 
processor. 

2.1.1 Computer Unified Device Architecture 
and Tesla 

In late 2006 nVidia Corporation sold the first 
GeForce 8800 card which used a new kind of 
pipeline (nVidia Technical Brief, 2006). This 
architecture, according to Shader Model 4 specs, can 
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provide more flexibility than the previous one. The 
separation between vertex and fragment units was 
left aside in moving to a new unified unit capable of 
load balancing (figure 2). 

Also data transfers between stream processors 
were made more flexible by introducing a parallel 
data cache which could be used for making 
computed data available for other units. This is a 
great step forward, but GPU architecture still 
remains constrained by the pipeline paradigm, which 
has proved to be a good solution for fast renderings. 

Recently, nVidia started proposing a modified 
version of GeForce 8800 named Tesla, with more 
memory and no DVI connectors (nVidia, 2007). 
This is a solution thought for GPGPU. 
Unfortunately, no data could be retrieved either for 
Tesla or for 8800 series. According to nVidia, 
CUDA graphic cards are 30% faster than other 
cards: as a result a comparison can be drawn even 
without data.  

 

 
Figure 2: CUDA Architecture. 

2.2 CELL Processor 

CELL was designed by a partnership of Sony, 
Toshiba and IBM to be the heart of Sony’s 
Playstation3 gaming console. However, results from 
Berkeley laboratory show that CELL architecture 
has a tremendous potential for scientific 
computations in terms of both raw performance and 
power efficiency (Williams, Shalf, Oliker, Kamil, 
Husbands, & Yelick, 2006). 

CELL combines the considerable floating point 
resources for demanding numerical algorithms with 
a power-efficient software-controlled memory 
hierarchy.  Instead of slowly evolving towards a 
streaming SIMD multi-core architecture, the CELL 
Processor was designed with these concepts in mind.  

CELL architecture is made of nine processors 
operating on a shared, coherent memory. The  

processors can be distinguished between PPE and 
SPEs. PPE (PowerPC Processor Element) is a high 
performance 64-bit PowerPC core with 32KB L1 
cache and 512KB L2 cache (figure 3). 

Each SPE (Synergistic Processor Element) has a 
Synergistic Processor Unit (SPU), a 256KB local 
memory and a memory flow controller. SPEs are 
independent processors that are optimized for 
running compute-intensive applications.  

PPE provides support for the operating system 
and manages the work of all the SPEs. PPE uses 2-
way symmetric multithreading which is comparable 
to Intel Hyperthreading .SPEs, on the other hand, 
provide to CELL the application performance. Each 
SPE includes four single precision (SP) datapaths 
and one double precision (DP) datapath. SIMD 
double-precision operation must be serialized. The 
SPE cannot access the main shared memory and it 
must transfer data via DMA to its own local store 
using the Memory Flow Controller (MFC). The 
MFC operates asynchronously with respect to the 
SPU, so that is possible to overlap DMA transfers 
with other concurrent operations. 

All CELL elements are connected by 4 data 
rings known as the EIB (Element Interconnection 
Bus). This ring permits 8 byte/s to be read and 
simultaneous transfers to be carried out.  
Access to external memory is made by a 25.6 GB/s 
XDR memory controller. 
 

 
Figure 3: CELL Architecture Diagram (Gschwind, 2005). 

3 COMMON BELIEFS 

Thanks to game industry GPU parallel computing 
model is more widespread than CELL. This led to a 
series of assumptions that are often GPU biased. In 
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this section we present the most common claims and 
try to centre the balance. 

3.1 GPUs do not Cost as Much as 
CELL 

This first claim rises from one of the few papers 
available that draw a direct comparison between the 
two architectures (Baker, Gokhale, & Tripp, 2007). 
In this work it is shown how GPU has a lower price 
and an higher Speedup/$K rate. This could may 
appear obvious reading the paper, but some things 
need to be pointed out. 

First of all, by looking to raw data the difference 
in performance and costs is not so huge because 
although CELL price is three times nVidia 7900 
GTX price, it is also three times faster. In fact the 
Speedup/$K rate is almost the same: the difference 
is 0.34. The important thing is that in this benchmark 
a single graphic card vs a CELL blade system which 
mounts two processors is used. In order to make 
results comparable, only one Blade’s processor is 
used. In this way we have the cost of a blade but half 
the power it could provide. Using the single CELL 
of a PS3 we discover that a single video card has the 
same price of a Playstation, which does not only 
includes the CELL processor. This small difference 
in terms of price is more evident if we compare the 
nVidia Deskside Tesla (sold at 7500$) and CELL 
QS21 Blade (almost 8000$). What Baker, Gokhale 
& Tripp (Baker, Gokhale, & Tripp, 2007) show is 
the importance of the possibility to buy a single 
CELL solution without all the PS3 environment. 

The last thing to point out is that in the paper the 
code used for benchmarks is not optimized. This 
affects more the CELL performances than the 
GPU’s, as we will discuss further on. 

3.2 GPUs have a Faster Learning 
Curve 

As a matter of fact GPUs have a faster learning 
curve if your aim is just to write a “Hello world” 
program. If your goal is to use GPU for small 
algorithms with no high performance needs you will 
be able to do that after a while. On the contrary if 
your goal is to develop an optimized solution for a 
problem where performances really matter, then you 
will have to learn graphic programming and 
OpenGL (or DirectX). This will not make your 
learning curve so fast. Some good news comes from 
nVidia with the announcement that a C compiler 
will be available for CUDA. In this way learning 
graphics will be no longer necessary but you will 

always need to know how your code is executed on 
GPU. This is the very problem which makes the 
CELL the learning curve so slow. 

In considering learning curves, the only 
difference worth pointing out is that GPU makes 
parallel programming transparent to users (nVidia 
CUDA, 2007). However it has not yet been 
demonstrated that this would be and advantage in 
specific contexts where optimizations matter. 

3.3 GPUs are Specific for Graphic and 
Provide Better Performances 

This is a claim often proposed while presenting 
benchmarks between GPUs and CPUs, and is 
obviously true. If you have an algorithm, the closer 
it is to graphic context, the more porting it to GPU 
would provide faster performance. The common 
example is image filtering, where we can obtain an 
incredible speedup with respect to CPU 
implementations. What is never said but often 
thought is that GPU performances are the best tool 
available in parallel computing, both at the graphic 
and general purpose levels. This is not true. 

One of the most significant results provided by 
CELL over GPGPU architecture concerns the 
solution of a matrix multiplication problems. This 
has been used for a long time to demonstrate the 
GPU’s abilities. nVidia Quadro 4600 performs 
single precision matrix multiplications with a 
throughput of 90 GFLOPS (GPU-Tech, 2007). The 
same operation performed on CELL processor with 
8 SPU runs at 140 GFLOPS (Barcelona 
Supercomputing Center, 2007). This result is highly 
significant, as matrix multiplication has always been 
GPU computing’s greatest achievement. We do not 
aim to claim that CELL should be used for graphics 
rendering. Our purpose is just to demonstrate that, if 
this processor is valuable even for a context where 
GPU has always been the top solution, its flexibility 
probably makes it a better choice for general 
purpose parallel computing. 

It might be argued that, on paper, nVidia  G80 
offers a higher GFLOPS rate than CELL (500 
against 208). This claim is true if you only compare 
the raw computation rates, positing a full utilization 
of both technologies. This is just an ideal case. In 
real applications, code optimization is extremely 
difficult for GPU, and is even more so if we consider 
the C compiler layer introduced by CUDA 
architecture. In poor words in real applications, such 
as real-time ray tracing, CELL benefits from code 
optimization more than GPU and provides higher 
performance even with the single six core CELL 
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processor of Playstation 3 as shown in (Minor, 
2007). In this paper, both architectures are 
compared, first on raw computation GFLOPS and 
then with the graphics algorithm of Interactive 
Raytrace applied to Stanford Bunny. The results are 
amazing: one single CELL processor is four to five 
times faster than G80. If we consider the “on paper” 
computing power and use a QS20 blade (which has a 
comparable GFLOPS amount), it is eight to eleven 
time faster. 

4 WHY A GOOD SOLUTION IS A 
GOOD SOLUTION 

The CELL architecture provides features that makes 
it an excellent platform for developing any kind of 
applications. We identify two main benefit in CELL 
structure: the possibility of using and organizing the 
work of the different cores in a totally separate and 
independent way and the fast communication system 
that link all the chip components. A developers 
framework for CELL offers useful tools like 
profilers, simulators and compilers for helping the 
programmers to take advantage of all the CELL key 
features. 

4.1 Flexibility 

The CELL Broadband Engine Architecture has been 
designed to support a variety of different 
applications. 

Although the CELL processor was initially 
conceived for application in game consoles or high-
definition televisions, its architecture was designed 
to allow fundamental advances in processor 
performance and programming flexibility.  

 The GPU Architecture, on the other hand, was 
initially designed as a dedicated rendering device 
and is highly efficient in making more effective all 
those algorithms and all those computations bound 
to graphics needs. Using a dedicated architecture to 
make general purpose applications requires the 
programmer to deal with a large number of problems 
and limitations in their algorithms. In fact, the 
GPGPU concept of programming is based on 
deceiving the GPU by using the graphics pipeline 
for making different types of computations unrelated 
to graphics applications. 

Programs that run on CELL typically split 
computational cost among all the available processor 
elements. In order to determine workload and data 
distribution, the programmer should take the 
following considerations into account: 

• Processing-load distribution 

• Program structure 
• Data access patterns 
• Code movement and data movement among 

processors 
• Cost of bus loading and bus attachments 

In the CELL programming way there are 
different application partitioning models can be 
found. The two main models are the PPE-centric 
model and the SPE-centric model. 

 In the PPE-centric model the main application 
runs on the PPE while the SPEs are used to off-load 
other individual tasks. The PPE duties are to wait 
and coordinate the different results coming from the 
SPEs. Applications that have serial data and parallel 
computations fit this model well. The SPEs can be 
used in three different ways: 

• The multistage pipeline model 
• The parallel stages model 
• The services model 

If an application requires multiple and sequential 
stages, the programmer can use a multistage-pipeline 
model approach. Every step of the application is 
loaded onto a single SPE and the results are sent 
through the shared bus from SPE to SPE. The data 
stream is initially sent to the first SPE and the results 
can be taken from the last SPE that contains the last 
stage of the application. In Multistage pipelining 
problems occur in determining load balancing and in 
large data-movement between the SPEs. 

In the parallel stages model each SPE runs the 
same task and the data input of the application is 
equally split among all the SPEs as well as 
processed at the same time. This is a concept of 
programming similar to the GPGPU where the input 
data stream is processed at the same time in different 
shaders running the same kernel. 

The PPE-centric service model is used when 
there is the need to run different tasks that are part of 
a large application not in a pre-existing order. In 
each SPE a different program is loaded and the 
appropriate SPE is called by the PPE when a 
particular service is needed.  

In the SPE-centric model the application code is 
split among all the SPEs (or part of them). Each SPE 
fetches its next work from either the main storage or 
its local memory. The PPE on the other hand acts as 
a resource manager for the SPEs. 

All this flexibility in using the different CELL’s 
cores makes it a perfect platform for any kind of 
application. The programmer just has to devise the 
best way to organize the steps of his algorithms to 
exploit all the possibilities and the power of the 
CELL architecture. 
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There are already many papers that show how 
CELL architecture boosts the performance of many 
kinds of applications ranging from rendering to 
general purpose ones. A work from Utah University 
shows how good the performances of ray tracing on 
the CELL Processor are. The research shows how to 
efficiently map the ray tracing algorithm to the 
CELL Processor, with the result that a single SPE 
attains the same performance as a fast x86 system. 
(Benthin, Wald, Scherbaum, & Friedrich, 2007). 
Another work shows how a parallelized form of 
H.264 encoding algorithm (Park & Soonhoi, 2007) 
achieves optimal performance. In this work the 
authors also claim that a SPE-specific optimization 
is needed to obtain a meaningful speed-up. By using 
the Vector/SIMD instructions and reducing data 
transfers between SPE and PPE, better performance 
can be achieved in their particular application. 

Some effort were also made in porting a digital 
media indexing application (MARVEL) on CELL 
processor. This kind of application needs image 
analysis for feature extraction; overall performance 
of this algorithms was excellent on CELL platform 
(Lurng-Kuo, Qiang, Apostol, Kenneth, Smith, & 
Varbanescu, 2007). 

Again, all these examples show how the CELL 
architecture is suitable for improving performance of 
a different range of applications. 

4.2 Shared Memory 

The CELL processor can be programmed as a 
shared-memory multiprocessor where SPE and PPE 
units can interoperate in a cache-coherent shared-
memory programming model. Anyway PPE and 
SPE have significant difference in the way they 
access memory. PPE accesses main storage with 
load and store instructions that go between a private 
register file and main storage. SPE accesses main 
storage with direct memory access (DMA) 
commands that are stored, along with data, in a 
private local memory. This 3-level organization 
(register file, local store and main storage) explicitly 
parallelizes computation and the transfer of data and 
instructions. The main reason for this organization is 
that application performance is, in most cases, 
limited by memory latency rather than by peak 
compute capability or peak bandwidth. The DMA 
model allows each SPE to have many concurrent 
memory accesses. Another benefit is that very few 
cycles are needed to set up a DMA transfer 
compared to the long waiting time (in terms of 
cycles) that occurs when a load instruction of a 

program misses in the caches in conventional 
architecture. 

A valid approach in memory-access is to create a 
list of DMA transfers in the SPE’s local store so that 
the SPE’s DMA controller can process this list 
asynchronously while the SPE operates in 
previously transferred data. 

The on-chip communication benchmark of the 
CELL was matter of accurate benchmark and tests. 
Overall results of the experiments demonstrate that 
the CELL processor’s communication subsystem is 
well matched to the processor’s computational 
capacity. The communication network provides all 
the speed and bandwidth that applications need in 
order to exploit the processor’s computational power 
(Kistler, Perrone, & Petrini, 2006). 

4.3 Simulator, Compiler and Profiler 

One of the main problems while programming 
GPGPU kernels is the portability of the code. There 
are many differences between architectures of 
different manufacturers that prevent the code to be 
freely used on any GPU (g.e texture format, texture 
size, pixel format supported …). On the other side 
CELL architecture provides to the programmer with 
a unique and complete environment.  

A Full-System Simulator is offered as an 
alternative to conventional process and thread 
programming. Here the programmer has access to 
many features such as scheduler for threads, 
debugging tools, performance visualization, tracing 
and logging capabilities.  

PPE implements an extended version of the 
PowerPC instruction set. This extension consists of a 
Vector/SIMD Multimedia extension plus some 
changes in PowerPC instructions. The SPE 
instruction set is similar to PPE but needs a different 
compiler. All these extensions are supported by C-
language intrinsics. Intrinsics substitute assembly 
instructions with C-language commands. Most 
instructions process 128b operands, divided into four 
32b words.  

5 CONCLUSIONS 

Both GPGPU and CELL approaches are excellent 
solutions for HPC applications. Without any doubt 
they will mark the state of the art for next years. 
Many upcoming changes will be released, starting 
from CELL v2.0 through next CUDA generation 
especially designed for physics.  
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Hopefully we’ve proved that CELL has the best 
opportunities to become the standard for general 
purposes computing: its flexibility could provide 
high performances without too many constraints. 

An additional gain of CELL is represented by its 
reduced size which makes it suitable for embedded 
devices.  

Our interest in the topic is focused on creating a 
good knowledge base for CELL programming, using 
it to reduce computational costs in general purpose 
contexts as Medical Image Elaboration or Virtual 
Reality. This lack of knowledge and realizations on 
CELL are today one of the biggest obstacles its 
adoption because strengthens the idea of a solution 
which don’t pay the investment and with a too 
abrupt learning curve. 
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