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Abstract. This paper reports on non-linear principal component analysis for 
fault detection on an internal combustion (IC) engine. An auto-associative 
neural network (AANN) model is built from transient engine data collected 
under varying atmospheric conditions. The experimental data used for 
modelling was collected for two different drive cycles, the Identification Cycle 
and the New European Drive Cycle. The key issue here is to decide which data 
should be used for training the neural network to produce good fault detection 
generalisation under different atmospheric conditions and with a different drive 
cycle. This is achieved successfully, with the Q monitoring statistic indicating 
an absence of unwanted false alarms under fault-free operation, along with 
successful detection of air leaks of varying magnitude in the inlet manifold. 

1 Introduction 

The specific provisions of more general emissions legislation relating to the detection 
of faults within an internal combustion engine is commonly known as On-Board 
Diagnostics (OBD). This details both the component parts of the engine to be tested 
and at what frequency. This monitoring entails the diagnosis of any fault, which could 
cause the tailpipe emissions of carbon monoxide (CO), unburned hydrocarbons (HC) 
and oxides of nitrogen (NOx) to rise above legislated values.  

The automotive industry currently employs a combination of signal and model-
based diagnostic techniques for OBD, the latter being based mainly on physical 
models of the system.  However, as the emissions thresholds have reduced in response 
to increasingly stringent regulation demands, the OBD fault detection thresholds have 
tightened accordingly, thereby increasing the challenge in engine modelling and 
monitoring (Stobart, 2003) with over 50% of engine control unit software being 
currently devoted to OBD. The complexity of physical models will have to increase 
dramatically if the smaller variations in emissions, constituting a fault under future 
OBD regulations are to be successfully detected. Further, such models will require 
extensive on-line validation for each engine and vehicle derivative. Consequently, the 
cost of developing and validating physical models will increase exponentially. Over 
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the last decade the mathematical complexity and computational intensity of physical 
model-based OBD has stimulated research on alternative fault detection and diagnosis 
approaches suitable for automotive engines (Nyberg, 1999; Grimaldi et al., 2001; 
Crossman et al., 2003; Kimmich et al., 2005.)  

Some work has also been done on statistical methods, including principal 
component analysis (PCA) where a reduced set of statistically independent score 
variables are generated for process monitoring. Unfortunately, while PCA in its 
original form is only applicable to linear data, a nonlinear extension in the form of an 
auto-associative neural network (AANN) (Kramer, 1992) is now available, where the 
scores are produced in the network bottleneck layer. Because of its conceptual 
simplicity and close relation to linear PCA, our previous work on diesel engines used 
an AANN for monitoring during steady-state operation (Antory et al., 2005), 
including increased sensitivity in detecting minor faults (Wang et al., 2008a) by 
incorporating additional analysis in the form of the statistical Local Approach.  

Nonlinear PCA (NLPCA) has also proved to be effective when applied to 
experimental data recorded from the air intake system of a gasoline engine during 
transient operation (Wang et al., 2008b). Here the AANN was trained on a modified 
identification (MI) cycle, specially designed to ensure that the engine speed and 
throttle position covered the complete operating map at rates similar to those 
experienced during normal operation. Importantly, the resulting model proved 
suitable for more general use with the New European Drive Cycle (NEDC), a 
standardised test for all new model types representing a mixture of urban and 
motorway driving. In this work also, rather than using the same operational cycle for 
AANN training and testing, two completely different engine drive cycles will be 
employed, as detailed later.  

The major limitation in all the previous work is the absence of any consideration of 
the effects of atmospheric changes on the ability of the model-based fault detection to 
generalise in terms of avoiding false alarms while correctly identifying fault 
conditions. Thus, the experimental data used for validating the AANN model and the 
faulty data sets were all recorded under similar atmospheric temperature and pressure 
conditions to those for the training data. Moreover, none of the measured engine 
variables previously included in the monitoring model was in fact significantly 
affected by such atmospheric changes. Any AANN model derived for IC engine 
monitoring under laboratory conditions, should also be capable of being generalised 
to a wider range of driving conditions. The aim of the present paper is to address this 
important deficiency. The practical significance of the results reported later is that the 
experimental data sets available for neural modelling not only covered two different 
operational cycles, as required for dynamic monitoring, but were also recorded under 
different temperature conditions. 

Some work on the effect of changes in atmospheric pressure and temperature on 
the performance of an engine has been reported in the literature, but from the 
perspective of engine design (Sher, 1984). Here computer code was developed to 
simulate the engine cycle for the purpose of evaluating an optimal engine design 
giving the best performance at high altitude conditions. The focus of this paper is data 
modelling of a modern automotive petrol engine, based on which its fault monitoring 
under different driving conditions can be achieved. This further significantly extends 
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the generalisation abilities of the AANN IC engine model described in our previous 
work. 

The paper is organised as follows. An introduction to the experimental petrol IC 
engine facility, the engine drive cycles and the data collection regime is given next in 
Section 2. Following a brief review of NLPCA, Section 3 then presents the 
experimental condition monitoring results. The paper ends with a brief discussion, 
some conclusions and suggestions for future research. 

2 Automotive Engine Tests 

This section briefly describes the experimental engine test-bed, followed by detailed 
explanations of the data collection regime under both normal and faulty operating 
conditions. 

2.1 Engine Test Cell 

The target application was a four-cylinder 1.8 litre spark ignition engine, 
manufactured by Nissan. This engine represents current technology with devices such 
as variable valve timing, inlet swirl plates, exhaust gas recirculation and a close-
coupled catalyst. The engine installation can be seen in . 

The engine was installed in a state-of-the-art test facility at Queen's University 
Belfast. An AC dynamometer with a Ricardo S3000 controller was used to control the 
engine throughout the simulated transient drive cycles. Sensor signals were recorded 
using the testcell data acquisition hardware – a Ricardo TaskMaster 500/2000 system, 
capable of recording up to 32 analogue input channels simultaneously.  

 

 
Fig. 1. View of engine test-bed and dynamometer. 

The intake subsystem of this engine was investigated. In order to simplify the air 
intake modelling, the exhaust gas recirculation (EGR) function was disabled. The 
following five variables were used to analyse this subsystem: crankshaft rotational 
speed (rev/min), pedal position (%), mass air flow (kg/h), inlet manifold pressure 
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(bar) and inlet manifold temperature (ºC). Rotational speed and pedal position formed 
the engine inputs, while the other variables represented the dynamic behaviour of the 
intake system. Importantly, these variables are all available from current sensors fitted 
to the standard vehicle and so the modelling and fault detection system for OBD 
outlined in this paper requires no additional hardware. 

In contrast to our previous work on this IC engine where atmospheric conditions 
were not considered, it will be seen that including the inlet manifold temperature in 
the data modelling allows atmospheric temperature changes to be incorporated, as 
shown later in subsection 2.3. 

2.2 Atmospheric Changes 

The atmospheric temperature and pressure both affect the dynamic performance of an 
IC engine and so must be accounted for in any model-based OBD scheme. This study 
is confined to consideration of the variation in atmospheric temperature, since 
atmospheric pressure control in the engine test cell was not available.  

The experimental engine data sets were collected at two different temperature 
conditions. Normal room temperature (RM) was around 20-25ºC and required no 
manual intervention. The elevated temperature (ET) condition was controlled at 30-35 
ºC by electrical heating of the combustion air. The engine’s performance under these 
two temperature conditions is analysed below, after the two drive cycles have been 
introduced. 

2.3 Drive Cycles 

The New European Drive Cycle (NEDC) is used for emissions certification of light 
duty vehicles in Europe. It is composed of various sections which simulate both urban 
and motorway driving conditions. The measurement of the resulting exhaust 
emissions forms one component of the Type Approval test, which is compulsory for 
any new vehicle model entering the European market. Alternative drive cycles 
include the FTP 75 used in the USA and the 10-15 Mode Cycle adopted by Japan. 

The variation in the engine speed and pedal position inputs produced by the NEDC 
for a sampling rate of 10Hz are shown in the top two plots of Fig. 2. Note that Fig. 2 
shows two experimental data sets, corresponding to the RM (black) and ET (red) 
temperature conditions respectively. In addition to the five engine variables, the figure 
also includes the atmospheric temperature. The reason for including the atmospheric 
temperature is to help visualise the impact of its change on the engine performance. 
This variable is not to be included in the subsequent engine modelling.  

It is clear from Fig. 2 that the NEDC is a highly transient cycle which includes 
periods of rapidly varying engine speed and pedal position inputs as gear changes are 
simulated. During vehicle deceleration, when the pedal position is zero, the engine 
speed is often higher than idle speed. Here the engine is motored through the 
transmission which contributes to the vehicle’s braking requirement. These phases of 
the NEDC were simulated during testing by supplying a torque input from the 
motoring dynamometer to maintain the commanded engine speed. 
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In the example shown in Figure 2, the temperature of the air drawn into the intake 
manifold in the RM case is increased slightly above the atmospheric temperature due 
to heat transfer from the warm engine.  The average inlet manifold temperature is 
therefore around 26oC. Conversely, in the ET case, the temperature of the air supplied 
to the engine is higher than that of surrounding environment and so some heat is lost 
by convection from the intake manifold, reducing its temperature to around 32oC on 
average.  Assuming the volumetric efficiency of the engine remains the same for a 
given combination of inputs, the increase in temperature between the RM and ET 
cases reduces the density of the air, and hence the mass air flow rate, entering the 
engine by around 2%.  The intake manifold pressure was unaffected by the change in 
atmospheric temperature. 
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Fig. 2. Engine variables for the NEDC (10Hz sampling) with RM (black) and ET (red) 
atmospheric temperatures. 

While the NEDC is indeed a highly dynamic cycle, and is purported to be 
representative of typical vehicle use, Fig. 4 shows that the engine control inputs do not 
cover the whole operational map. For example, engine speed does not exceed 
3500rpm while the throttle pedal position is less than 15% for most of the cycle, 
briefly reaching a maximum of around 28% at 3500rpm during the motorway driving 
phase.  This represents only 55% of the peak torque available at that engine speed. 
This analysis implies that data from the NEDC would be unsuitable for training an 
AANN model. Inaccurate predictions would be produced and false alarms generated, 
when the IC engine is operated outside the regions of the map accessed during 
training. 

An alternative drive cycle, the Kimmich identification cycle (KI cycle), was also 
considered to provide better coverage of the operating region (Kimmich et al., 2005). 
However, although this cycle indeed produces a broader range of engine speeds and 
throttle positions, the rate at which these variables change is very significantly lower 
than that experienced in real driving. The NEDC by contrast is more dynamic in 
nature and does produce more realistic transients. A modified identification (MI) 
cycle was therefore designed to generate suitable data for transient modelling. This 
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was developed by examining the sections of the NEDC where the engine speed was 
undergoing the greatest transients, which occurs during accelerations in 1st gear.  The 
timescale of the KI cycle was then reduced by a factor of 5.7 such that the rate of 
change of engine speed matched that of the most transient section of the NEDC. The 
resulting MI drive cycle therefore combines the benefits of both the KI one and the 
NEDC as it produces good coverage of the engine operating map, while also 
simulating realistic dynamics. The engine inputs for the MI cycle and corresponding 
outputs for the same two cell temperature conditions as before are shown in Figure 3. 
The same observation can be made as for the NEDC responses in Fig. 2 viz. that only 
the inlet manifold temperature has been affected by the atmospheric temperature 
change. 

Comparing the operating maps of the MI and NEDC cycles in Fig. 4, it is clear that 
any model built on engine data from the former cycle will better represent a much 
wider range of IC engine operation, as required.  
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Fig. 3. Engine variables for the modified identification (MI) cycle with RM (black) and ET 
(red) atmospheric temperatures. 
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Fig. 4. Comparison of engine operating maps for the NEDC (circles) and MI (crosses) drive 
cycles. 
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2.4 Data Collection 

The MI cycle last about 8 minutes, providing 4785 data points. This cycle was 
repeated three times for both RM and ET conditions without introducing any engine 
fault. This generates two sets of engine data for model building, the third being 
reserved to validate the model. A further single set of NEDC data was recorded 
during normal ‘fault-free’ operation under both RM and ET conditions, in order to 
assess the generalisation capability of the trained AANN model on unseen data. 

2.5 Air Leak Fault 

In this investigation, the faulty conditions took the form of air leaks of varying sizes 
in the intake manifold. This is indicative of a process, rather than sensor fault, and is 
representative of a leakage past a gasket or fitting between the throttle plate and the 
intake valve. A minor air leak potentially may not be noticeable to the driver. 
Nevertheless, when a fault of this type occurs, the driver would adjust the throttle 
pedal until the desired torque is achieved. Thus, in this fault scenario it is imperative 
to preserve the values of the engine speed and pedal position between the fault-free 
and faulty conditions. The fault was introduced by drilling a hole into a bolt which 
was then screwed into the inlet manifold of the engine downstream of the throttle 
plate. A total of four such bolts were used: a solid one to produce the fault-free 
condition, and three others with 2mm, 4mm, and 6mm diameter holes to introduce 
faults of differing magnitude. Data representing all three faulty conditions were 
collected for both the MI cycle and the NEDC.  

3 Nonlinear PCA 

The AANN shown in Fig. 5 is a special neural network architecture with 3 hidden 
layers, referred to as the mapping, bottle-neck, and demapping layers respectively.  

 
Fig. 5. Auto associative neural network architecture for nonlinear PCA. 

The AANN represents an identity mapping for a given set of n variables, such that 
the network inputs and outputs are identical. A hyperbolic tangent function was used 
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as the activation function in the mapping and de-mapping layers, while the other two 
layers contained linear activation functions. Note also the presence of direct links 
from the inputs to the bottleneck layer and from the bottleneck layer to the outputs.  

This network is regarded as a nonlinear version of PCA because of its similarity in 
producing ‘scores’, normally fewer in number than the original variables from a given 
process. The scores generated by linear PCA are based on the linear relationships 
among the physical variables, and can effectively represent the variance in these 
variables. The scores can then be used for reconstructing the original variables or for 
monitoring any unknown data from the same process. In the case of NLPCA, the 

ni <  nodes in the bottleneck layer represent the nonlinear scores, itt ,,1 . They 
are obtained by capturing the nonlinear relationship between the engine variables in 
the input layer. The scores are then able to reconstruct the original variables by 
passing them through the de-mapping layer to the output layer. If only linear 
relationships exist between the engine variables, the scores from such a NLPCA 
model should in theory be the same as those from a PCA one.  

The mathematical description of the identity mapping can be described in two 
parts. The scores are produced in Figure 5 by the mapping layer that constitutes a 
nonlinear transformation on the inputs. Thus, for the kth score: 

 
)(xt kk G=  (1) 

 
 

The variables at the output layer x′  can then be obtained using: 
 

( )Tijj tttHx 21=′  (2) 
 
The AANN network parameters are trained by minimising the cost function: 
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When the NLPCA has been trained from fault-free data, a Q statistic can be 

calculated based on the model prediction error as 
 

eeTQ =  (4) 
 
Here e  refers to the difference between the model prediction vector and its 

measured value for one sample. Q follows a central 2χ  distribution and appropriate 
confidence limits can be estimated as discussed in Jackson, 1991. The values of the Q 
statistic from the training data were used to calculate 95% and 99% confidence limits, 
which are subsequently used as benchmarks for monitoring unknown data from the 
engine. 
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4 Results 

Choosing the best training set from the fault-free MI cycle data sets to use for AANN 
training required careful consideration. Three data sets had been generated for each of 
the two atmospheric temperature conditions. Moreover, the atmospheric temperature 
varied by 2 or 3 degrees during the three repetitions of the MI drive cycle. Although 
minor, this variation will have an impact on the generalisation of any engine model. 
The principle used in selecting training data here was to choose the fault-free data 
with the widest possible range of temperature conditions, while leaving adequate 
fault-free data for validation. Closer inspection showed that data sets one and three, 
under either RM or ET temperature conditions, provided a much wider range of 
temperature coverage than any alternative pairing. The training data used in this work 
therefore consisted of four MI cycles corresponding to data sets one and three under 
each of RM and ET temperature conditions. The second data sets, collected under 
both RM and ET temperature conditions were then employed for validation purposes.  

Subsection 4.1 provides details of how the model was trained, along with its 
validation on the MI cycle. The generalisation capability of the resulting engine 
model is assessed in section 4.2, while its ability to detect air leak faults with the 
engine operating under both the MI and NEDC cycles is presented in subsections 4.3 
and 4.4 respectively. 

4.1 Training and Validation 

The NLPCA built on the training data had a 5-10-4-10-5 structure, with 10 nodes in 
the mapping and de-mapping layers and 4 in the bottle-neck layer.  Having trained the 
model it was subsequently validated using a new set of data recorded during a fault-
free MI cycle. The performance of the model during this training and validation 
process is illustrated by the variation in the Q statistic shown in Figure 6.  
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Fig. 6. Q statistic variation on fault-free MI cycle data collected under two atmospheric 
temperature conditions for model validation. 
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Here the upper limit represents the 99% confidence level, whereas the lower one is 
for a 95% threshold, both of which were derived from the Q statistic of the AANN 
training data. The resulting numbers of violations shown for data recorded under both 
the RM and ET conditions are statistically acceptable, confirming the modelling 
validity of the trained AANN. 

4.2 Generalisation 

When a model is used in practice, the new operational inputs often take a form 
previously unseen by the model during its training. This is particularly the case with 
automotive IC engines, which impose a stringent requirement for generalisation if the 
results are to be of practical significance. This aspect of the NLPCA model was 
therefore challenged by comparing the measured and predicted values of both mass 
air flow and manifold air pressure produced by the NEDC with the engine operating 
under fault-free conditions. The excellent generalisation capability of the trained 
AANN is supported by Fig. 7, which shows the low numbers of violations of the 
confidence limits by the Q statistic under both temperature conditions. This reveals 
that there is little difference between the measured engine data and the corresponding 
predictions. This is an important finding as the NEDC engine inputs of speed and 
pedal position vary at rates ranging from steady-state up to the highly transient 
conditions found during 1st gear accelerations and motored deceleration phases. 
Moreover, the atmospheric conditions when these data sets were collected also 
differed from those of the training data. 
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Fig. 7. Q statistic variation on fault-free NEDC and two temperature conditions for model 
generalisation.  

4.3 Fault Detection on MI Data 

This section assesses the AANN model’s ability to detect a fault produced by running 
the MI cycle in the presence of a 2mm, 4mm, and 6mm air leak on the inlet manifold. 
Fig. 8 and Fig. 9 show the variation in the corresponding Q statistics for data recorded 
under RM and ET conditions respectively. It can be seen that in either case the 
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number of violations of the confidence limits naturally grows as the magnitude of the 
fault increases. Since the 2mm air leak does not have a significant impact on the 
engine performance, its Q statistic does not produce as many obvious violations to the 
99% confidence limits as for the larger two air leaks. Even so, this minor fault can 
still be detected by referencing to the 95% confidence limit. 
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Fig. 8. Monitoring 2mm/4mm/6mm air leak faults for the MI cycle at the RM temperature 
condition. 
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Fig. 9. Monitoring 2mm/4mm/6mm air leak faults for the MI cycle at the ET temperature 
condition. 

It should be noted that there are certain regions in the faulty data set where the 
impact of the air leak fault may not be apparent in the monitoring statistic. This is 
expected, as this fault would not affect the engine when it is operating at high throttle 
openings. Under such circumstances, the manifold pressure is close to, or equal to, the 
atmospheric pressure. Consequently, the pressure difference across the leakage orifice 
is small and the flow rate of air through it is therefore negligible.  
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4.4 Fault Detection on NEDC 

The variations in Q statistic for the AANN model shown in Fig. 10 and Fig. 11 cover 
the three fault conditions for the NEDC under both RM and ET temperature 
conditions respectively. Pleasingly, these results confirm successful detection of all 
three air leak faults, despite the model having being trained using the substantially 
different MI identification cycle. 
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Fig. 10. Monitoring 2mm/4mm/6mm air leak faults for the NEDC cycle at the RM temperature 
condition. 
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Fig. 11. Monitoring 2mm/4mm/6mm air leak faults for the NEDC cycle at the ET temperature 
condition. 

5 Conclusions 

This paper showed the capability of an AANN in both modelling and air-leak fault 
detection for an automotive gasoline IC engine. The modelling data was derived for 
two different transient drive cycles under different atmospheric temperature 
conditions. The model trained using MI cycle data sets that were recorded under all 
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available atmospheric temperature conditions produced the best generalisation to 
measurements from the unseen NEDC cycle. There was an absence of unwanted false 
alarms under fault-free conditions, and successful detection of air leaks of varying 
magnitude in the inlet manifold. 
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